Bibliography

Bibliography
 Garey, M. R. and Johnson, D. S. Computers and Intractability:
A Guide to the Theory of NPCompleteness. New York: W. H. Freeman, 1983.
 Eppstein, D., The traveling salesman problem for cubic
graphs. In Proc. 8th Worksh. Algorithms and Data Structures(2003),
Dehne F., Sack J.R.,, Smid M., (Eds.), no. 2748 in Lecture Notes in
Computer Science, SpringerVerlag,pp. 307–318.
 E. M. Arkin, M. Held, J. S. B. Mitchell, and S. S. Skiena.
Hamiltonian triangulations for fast rendering. Visual Computing, 12(9):429–444,
1996.
 J. J. Bartholdi III and P. Goldsman. Multiresolution indexing
of triangulated irregular networks. IEEE Transactions on Visualization
and Computer Graphics, 10(3):1–12, 2004.
 J. J. Bartholdi III and P. Goldsman. The vertexadjacency
dual of a triangulated irregular network has a hamiltonian cycle. Operations
Research Letters, 32:304–308, 2004.
 Z. Chen, M. Grigni, and C. H. Papadimitriou. Map graphs.
Journal of the ACM (JACM), 49(2):127–138, 2002.
 E. D. Demaine, D. Eppstein, J. Erickson, G. W. Hart,
and J. O’Rourke. Vertexunfoldings of simplicial manifolds. In
Proceedings of the eighteenth annual symposium on Computational geometry,
pages 237–243, Barcelona, Spain, 2002.
 R. Flatland. On sequential triangulations of simple polygons.
In Proceedings of the 16th Canadian Conference on Computational Geometry,
pages 112–115, 1996.
 M. Gopi and D. Eppstein. Singlestrip triangulation of
manifolds with arbitrary topology. In Computer Graphics Forum (EUROGRAPHICS),
volume 23, 2004.
 F. Harary and A. Schwenk. Trees with hamiltonian square.
Mathematika, 18:138–140, 1971.
 M. Isenburg. Triangle strip compression. In Proceedings
of Graphics Interface 2000, pages 197–204, Montreal, Quebec, Canada,
May 2000.
 G. Taubin and J. Rossignac. Geometric compression through
topological surgery. ACM Transactions on Graphics, 17(2):84–115,
1998.
