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lar arguments hold for the horizontal half-planes. Therefore the intersection of K’(xi) over all con-

cave vertices xi must be non-zero. Denote this intersection by K*. Next we will show that the in-

tersection of K* with P is non-zero. First note that P cannot contain more than one of each of the
four types of tabs. For if this were not so one type would contain at least two tabs and this would
imply that there exist at least two concave vertices with external rays of support whose correspond-
ing complementary rays are not concurrent contradicting the hypothesis. Let K** denote the inter-
section of K* with the four interior half-planes determined by each of the four tabs. Each such half-
plane contains P and is bounded by the line collinear with the two convex vertices making up the
corresponding tab. It is a straight forward matter to show that if K* is bounded this intersection
operation will not change K* and if it is unbounded then K** will be bounded but non-zero. Note
also that the above discussion implies that each convex vertex of P not belonging to a tab must be
such that both of its adjacent vertices are concave. This in turn implies that K** is the intersection
of the interior half-planes determined by all the edges of P and therefore P has a non-zero kernel.
Therefore P is star-shaped.   Q.E.D.
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Theorem 3.1: (Krasnoselskii [Kr], 1946) If everythree points on the boundary of a simple polygon
P are visible from some common point in P then there exists a point in P from which the entire
boundary of P is visible.

Theorem 3.2: (Toussaint & ElGindy [TE], 1981) If everytwo points on the boundary of aniso-
thetic simple polygon P are visible from some common point in P then there exists a point in P from
which the entire boundary of P is visible.

In order to proceed straightforwardly we introduce some definitions for arbitrary simple
polygons.

Definition: The two closed rays of a line L which have only a point x∈ L in common are called
complementary rays. If R(x) is a ray with endpoint x, its complementary ray is denoted by R’(x).

Definition: A set of rays is said to beconcurrent if there exists a point of the plane that intersects
each and every ray in the set.

Definition: A ray R(x) with endpoint x∈ bd(P) is anexternal ray of support to int(P) if R(x) ∩
int(P) =∅.

Definition: If x ∈ bd(P) then K(x) is the union of all the external rays of support toint(P) at x. The
set K(x) is called anexternal cone of support. The union of all the complementary rays R’(x) where
R(x) ⊂ K(x) is denoted by K’(x).

 Valentine [Va2] proved the following result.

Theorem 3.3: (Valentine[Va2], 1965) Let P be a non-convex simple polygon. Suppose that for
each set ofthree (not necessarily distinct) concave vertices x1,x2,x3 of P, there exist three external

rays of support at x1,x2,x3 respectively toint(P) whose corresponding complementary rays are con-

current and meet in P. Then P is star-shaped.

We now prove the main result of this section.

Theorem 3.4:  Let P be a non-convex simpleisothetic polygon. Suppose that for each set oftwo
(not necessarily distinct) concave vertices x1,x2 of P, there exist two external rays of support at

x1,x2 respectively toint(P) whose corresponding complementary rays are concurrent and meet in

P. Then P is star-shaped.

Proof: Let x1 and x2 be two concave vertices of P. By hypothesis there exist two external rays of

support at x1,x2 respectively toint(P) whose corresponding complementary rays are concurrent and

meet in P at some point z. By construction it follows that [x1,z] ∈ K’(x 1) and [x2,z] ∈ K’(x 2). The-

refore z∈ [K’(x 1) ∩ K’(x 2)]. Since P is isothetic K’(x1) and K’(x2) can each be expressed as the

intersection of the half-planes (containing z) determined bybd[K’(x 1)], andbd[K’(x 2)]. Denote the

vertical and horizontal such half-planes by V(xi) and H(xi), respectively, where i=1,2. Clearly the

pair V(x1) and V(x2) must contain a non-zero intersection. Since the above arguments are true for

all pairs of concave vertices of P it follows that all pairs of vertical half-planes intersect. It follows
from Helly’s theorem [He] that all such vertical half-planes contain a non-zero intersection. Simi-
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placed that their extended visibility lines form a triangle that enclosesz. It is clear by observation
that for every unoriented directionθ there exists an internal chord of P with directionθ from which
P is weakly visible. Consider any chord of P with directionθ and passing throughz. If θ is not con-
tained in the set of directions determined by the three spikes then P is weakly visible from this
chord. On the other hand ifθ is contained in one such set, say that of spikea, then translate the
chord in a direction orthogonal toθ until it intersects the visibility cone of spikea. However, note
that P is not star-shaped. Therefore theorem 2.2 which concerns polygons with edges parallel to
two directions does not have its counterpart in the case of polygons with edges parallel to an infi-
nite number of directions. An obvious question arises. Does theorem 2.2 have a counterpart for a
finite fixed number of directions. In other words, if P is such that all its edges are parallel to k fixed
unoriented directions, where k is some fixed positive integer, is it true that P is star-shaped iff P is
weakly visible from some chord in each of the k directions? The answer to this question is also
negative and a counterexample for the case of three directions is shown in Fig. 2.3. This polygon
is weakly visible from each of the three dotted lines parallel to the three directions constraining the
edges of P and yet it is not star-shaped.

3.  Krasnoselskii-type Characterizations of Isothetic Star-shaped Polygons

In this section we present two characterizations of isothetic star-shaped polygons which re-
semble Krasnoselskii’s theorem [Kr] for arbitrary simple polygons in their combinatorial flavor.
First we state the original theorems for arbitrary and isothetic polygons.

Fig. 2.3 A non-star-shaped polygon with chords in
the three directions from which the polygon is weak-
ly visible.
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the right of [t,b] and the left tab of P must lie to the left of [t,b]. For assume this not to be the case
and, without loss of generality, let P contain a right tab to the left of [t,b]. This would imply that
P1 or P2 contains a top or bottom tab other than those determined by [t,b] which in turn would con-

tradict the fact that P is weakly visible from [t,b]. Therefore each horizontal chord that weakly sees
P will intersect each such vertical chord. It still remains to show that P is star-shaped. Let z be the
intersection point of [t,b] and [l,r]. We will show that P is star-shaped from z. Assume P is not star-
shaped from z. This implies that there exists a point w on bd(P) that is not visible from z. Without
loss of generality assume that w lies on that part of bd(P) between r and b as P is traversed in a
clockwise manner and denote this portion of P by Chain[r,...,b]. Let Pzrb= Chain[r,...,b] ∪ [b,z] ∪
[z,r] and let VP[Pzrb,z] be the visibility region of Pzrb from z. VP[Pzrb,z] cuts off regions of Pzrb
which are hidden from z and are either to the left or to the right of the cutting visibility rays ema-
nating from z. Clearly w must lie either in a left or a right such hidden region. In the former case w
is not visible from [l,r] and in the latter case w is not visible from [t,b]. In both cases we have a
contradiction and therefore P must be star-shaped from z. Q.E.D.

We have shown in theorem 2.2 that the point x in the conjecture could be disposed of and
that it was sufficient to impose weak visibility from some horizontal and some vertical chord in
order to characterize isothetic star-shaped polygons. This opens a similar question for the original
non-isothetic simple polygons. In other words, is it true that an arbitrary simple polygon P is star-
shaped iff for every unoriented direction θ there exists an internal chord of P with direction θ from
which P is weakly visible? The answer to this question is negative and a counterexample due to
ElGindy [El] is illustrated in Fig. 2.2. Apart from three thin spikes at a, b, and c the polygon in Fig.
2.2 has its remaining vertices on a circle with center z. Furthermore the spikes are so thin and so

a b

c

z

Fig. 2.2
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Conjecture: A simple isothetic polygon P is star-shaped iff there exists a point x ∈ P such that P
is weakly visible from both the horizontal and vertical internal chords traversing x.

As it turns out however we can prove a stronger result for isothetic polygons in the form of
the following theorem.

Theorem 2.2: A simple isothetic polygon P is star-shaped iff P is weakly visible from both some
horizontal and some vertical internal chord of P.

Proof: (only if) Let x be a point in the kernel of P. Clearly P is weakly visible from any internal
chord traversing point x. Therefore P is weakly visible from both some horizontal and some verti-
cal internal chord of P, namely the horizontal and vertical chords traversing point x.

(if) Let P be weakly visible from some vertical internal chord [t,b] where t and b are the upper and
lower endpoints, respectively, of the chord. It follows that t must occur on a top tab and b on a bot-
tom tab for otherwise there would exist at least one vertex of P not visible from [t,b]. Now [t,b]
decomposes P into two polygons P1 and P2. Furthermore, polygons P1 and P2 cannot themselves

contain any top or bottom tabs other than those determined by [t,b] or they would contain vertices
not visible from [t,b]. Therefore P must contain only one top tab and only one bottom tab and [t,b]
must connect these two tabs. Similar arguments show that P must contain precisely one left tab and
one right tab and that [l,r], the horizontal chord from which P is weakly visible must have its end-
points l,r on the unique left and right tabs, respectively. Furthermore, the right tab of P must lie to

Fig. 2.1 Illustrating an isothetic
polygon and its four types of tabs.

a

b c

d

top tab

bottom tab

right tab
left tab
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been shown that the numberthree can be reduced totwo [TE]. A polygon P is calledisothetic pro-
vided that all its edges are parallel to either the x or y axes. For additional Krasnoselskii-type char-
acterizations of star-shaped polygons the reader is referred to [Br],[Mo], [Ro], and [Va2].

2.  Weak Visibility Characterizations

In this section we present new characterizations of star-shaped and convex polygons based
on the notion of weak visibility.   A polygon P is said to beweakly visible [AT] from a subset S of
P if for every point x in P there exists a point y in S such that the line segment [x,y] lies in P.A
chord of a polygon P is a line segment [x,y] that intersects the boundarybd(P) only at x and y. If
the interior of [x,y] lies in the interior of P then we say the chord is aninterior chord.   If the interior
of [x,y] lies in the exterior of P then we say the chord is anexterior chord.

Theorem 2.1: A simple polygon P is star-shaped iff there exists a point x∈ P such that P is weakly
visible from every internal chord traversing x.

Proof: (only if) Choose x to be any point in the kernel of P. Since P is star-shaped from x it follows
that it is weakly visible from any internal chord of P that traverses x.

(if) Assume P contains a point x such that P is weakly visible from every internal chord traversing
x. We claim that P is in fact star-shaped from x. If this were not so it would imply the existence of
a point y in P that is not visible from x. Now construct a line through both x and y and let a,b denote
the first points of intersection of L withbd(P) as we traverse L in both directions starting at x. Let
L’ ∈ L denote the segment [a,b]. Since y, a and b all lie on L and y is not visible from x it follows
that y is not visible from any point on L’. Therefore P is not weakly visible from chord L’ which
is a contradiction.   Q.E.D.

Note that as a corollary we obtain a new characterization of convex polygons. The theorem
actually proves that if a point x exists such that P is weakly visible from every internal chord tra-
versing x then P is star-shaped from x. Thus if this property holds true for every point x∈ P it fol-
lows that P is star-shaped from with respect to every point in P and is thus convex. We thus have
the following result.

Corollary 2.1: A simple polygon P is convex iff it is weakly visible from every internal chord of P.

Consider now the case of isothetic polygons, i.e., polygons with all their edges parallel to
the coordinate axes. Such a polygon with its four types oftabs is illustrated in Fig. 2.1. Atab is a
set of two adjacent convex vertices along with the three edges of P incident on these two vertices.
There are four types of tabs. For example, in Fig. 2.1 [a,b,c,d] is atop tab. Recall that theorem 2.1
states that an arbitrary simple polygon P is star-shaped iff there exists a point x∈ P such that P is
weakly visible fromevery internal chord traversing x. The wordevery is highlighted to indicate
that for every (i.e., an infinite number) unoriented directionθ there exists such a chord. The term
unoriented direction θ refers to an equivalence class of parallel lines that make an angle ofθ with
respect to some agreed upon fixed axis. Also observe that in an arbitrary simple polygon P each of
its edges can occur in any one of an infinite number of unoriented directions. Return now to the
case of isothetic polygons. It is natural to conjecture the following result analogous to theorem 2.1.
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vertex of P in the order the vertices appear in P. If g(e) is unimodal we calle a unimodal edge. In
[To] it is shown that if P has all its edges unimodal in this sense then P is convex.

A very different type of unimodality to that discussed above was considered by Dharma-
dhikari and Jogdeo [DJ]. Let P be a simple polygon in R2. For a fixed non-zero vector u∈ R2 and
k ∈ R, let L(u,k) denote the lineu. x = k and letφu(k) denote the measure of P∩ L(u,k). If P is a

convex polygon thenφu(k), as a function of k, is first non-decreasing and then non-increasing for

every value of u. A non-negative function f on R is said to beunimodal if there is a v∈ R such that
f is non-decreasing on (-∞,v] and non-increasing on [v,∞). Furthermore such a number v need not
be unique. Consider now the following condition:

Condition A: For every fixed non-zero u∈ R2, the functionφu(k) is unimodal in k.

It is natural to ask whether condition A is sufficient for a simple polygon P to be convex. The
answer to this question is negative. Consider the following example found in [DJ] and refer to Fig.
1.1.   Let ABCD and A’B’C’D’ be parallelograms which are mirror images of each other and are
such that CD and C’D’ meet outside the polygon at some point z. It can easily be verified that this
polygon satisfies condition A but it is not even star-shaped. On the other hand in [DJ] it is shown
that if P is such that for every fixed u∈ R2, the functionφu(k) is continuous on the interior of its

support then P is convex.

The earliest characterization of star-shaped polygons is due to Krasnoselskii [Kr] and this re-
sult has become known as Krasnoselskii’s theorem [YB]. This theorem states that if for every set
of three points x,y,z∈ P there exists a point w∈ P (possibly dependent on x,y,z) such that the three
segments [w,x], [w,y], [w,z] all lie in P then P is star-shaped. If a polygon isisothetic then it has

Fig. 1.1
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in int(P) or wholly in ext(P); in the former case xj is a convex vertex whereas in the latter case it is

a concave vertex.

Definition: A simple polygon P is called star-shaped if there exists a point x in P such that for all
points y in P, [x,y] lies in P. The collection of all such points x is called the kernel of P.

Definition: (Grunbaum [Gr], 1975) A simple polygon P is called convex provided that all its ver-
tices are convex. Actually this is a special case of a well known theorem due to Tietze [Ti] which
states that if S is a closed connected set in a Euclidean space all of whose points are points of local
convexity, then S is convex. A point x ∈ S is a point of local convexity of S if there exists a neigh-
borhood N of x such that N ∩ S is convex; otherwise x is called a point of local non-convexity of S.

Characterizations of objects such as convex and star-shaped polygons as well as more general
sets are of interest for at least two reasons. Mathematicians are interested in broadening the under-
standing of geometric objects such as polygons. Different characterizations of an object provide
different views of the object and thus further this understanding [Fa],[Kl],[SV],[Va]. Computer
scientists on the other hand are interested in designing algorithms for recognizing such objects.
Different characterizations yield different algorithms with different complexities for solving such
problems [ATB],[BT],[To].

A simple polygon P is said to be convex if every pair of points x,y in P can be joined by a
line segment [x,y] that lies totally in P. This very well known characterization of convex polygons
is equivalent to the demand that all three of the segments determined by each triplet of pairwise
distinct points in P lie totally in P. One can relax this criterion and still obtain a characterization of
convex polygons. A simple polygon P is convex iff it contains two of the three segments deter-
mined by each triple of its points [MS]. Further weakening the criterion to the new demand that
only one of the three segments be contained in P does not lead to convexity but to the notion of P3-

convexity [Va1]. Valentine [Va1] has shown that a P3-convex polygon can be represented as the

union of three or fewer convex polygons.

Convex polygons have also been characterized in terms of nearest point properties [Va3], as
illustrated by the Theorem of Bunt-Motzkin [YB] which states that a simple polygon P is convex
iff for every point p not belonging to P there is exactly one point of P nearest to p.

There has also been interest in attempting to characterize convex polygons in terms of uni-
modality properties. There are several possibilities for definitions of the notion of unimodality de-
pending on the distance functions employed. For example, one can define for a vertex z of P a func-
tion f(z) which is the Euclidean distance between z and each vertex of P in the order in which the
vertices occur in P. If f(z) is unimodal then we call z a unimodal vertex. It was incorrectly assumed
for some time that a polygon was convex if all its vertices were unimodal in this sense. Furthermore
algorithms for computing geometric structures based on this assumption have been published.
However, counter examples to the claim [ATB] and to such algorithms [BT] have since appeared.
Just as we measured Euclidean distance between pairs of vertices to create f(z) we can instead con-
sider vertex-edge or edge-vertex pairs and measure the separation as the perpendicular distance be-
tween the vertex and the line collinear with the edge in question. In this way for an edge e of P we
can define a function g(e) which is the perpendicular distance from the line collinear with e to every
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ABSTRACT

A chord of a simple polygon P is a line segment [x,y] that intersects the boundary
of P only at both endpoints x and y. A chord of P is called an interior chord provided
the interior of [x,y] lies in the interior of P. P is said to be weakly visible from [x,y]
if for every point v in P there exists a point w in [x,y] such that [v,w] lies in P. In
this paper we characterize star-shaped and convex polygons in terms of weak visi-
bility properties of their internal chords. We also provide a new Krasnoselskii-type
characterization of isothetic star-shaped polygons

1.  Introduction

This paper is concerned primarily with new characterizations of star-shaped polygons. As a
corollary we also obtain a new characterization of convex polygons.

For any integer n ≥ 3, we define a polygon in the Euclidean plane E2 as the figure P =

[x1,x2,...,xn] formed by n points x1,x2,...,xn in E2 and n line segments [xi,xi+1], i=1,2,...,n-1, and

[xn,x1]. The points xi are called the vertices of the polygon and the line segments are termed its

edges. We assume the vertices of P are in general position, i.e., no three vertices are collinear.

Definition: A polygon P is called a simple polygon provided that no point of the plane belongs to
more than two edges of P and the only points of the plane that belong to precisely two edges are
the vertices of P.

A simple polygon has a well defined interior (denoted by int(P)) and exterior (denoted by ext(P)).
We will follow the convention of including the interior of a polygon when referring to P. The ver-
tices of a simple polygon are of two types: convex and concave. In the mathematics literature the
terminologies reentrant vertex or local non-convexity point are often used for concave vertex
whereas in the computational geometry literature the word reflex vertex is preferred. However we
shall use the more natural term concave. For a given vertex xj let y = λxj-1 + (1-λ)xj and z = µxj+1

+ (1-µ)xj. For all sufficiently small positive values of µ and λ we have that int[y,z] lies either totally


