
Near-Entropy Hotlink Assignments

Karim Douïeb⋆ and Stefan Langerman⋆⋆

Département d’Informatique, Université Libre de Bruxelles, Belgique.
{kdouieb,stefan.langerman}@ulb.ac.be

Abstract. Consider a rooted tree T of arbitrary maximum degree d
representing a collection of n web pages connected via a set of links,
all reachable from a source home page represented by the root of T .
Each web page i carries a weight wi representative of the frequency with
which it is visited. By adding hotlinks — shortcuts from a node to one
of its descendents — we wish to minimize the expected number of steps l
needed to visit pages from the home page, expressed as a function of the
entropy H(p) of the access probabilities p. This paper introduces several
new strategies for effectively assigning hotlinks in a tree. For assigning
exactly one hotlink per node, our method guarantees an upper bound on
l of 1.141H(p)+1 if d > 2 and 1.08H(p)+2/3 if d = 2. We also present the
first efficient general methods for assigning at most k hotlinks per node
in trees of arbitrary maximum degree, achieving bounds on l of at most

2H(p)
log(k+1)

and H(p)
log(k+d)−log d

, respectively. Finally, we present an algorithm

implementing these methods in O(n log n) time, an improvement over
the previous O(n2) time algorithms.

1 Introduction

There are many ways to speed up the access to information on the Web. The
solution discussed in this paper doesn’t change the original hyperlink structure
but enhances it with additional hyperlinks in order to speed up the access to
a destination. This addition of hyperlinks is called a hotlink assignment. The
problem of the hotlink assignment was originally introduced by Perkowitz and
Etzioni [13] to improve the search in Web sites.

The hotlinks are defined as additional pointers to a structure with the goal
of improving its design by reducing the expected number of steps to reach an
element. A hotlink can be seen as a shortcut from a web page to another one
that is accessible from it (see Fig. 1.b).
The problem: Formally, a web site can be modeled as a directed graph G =
(V, E) where the nodes V correspond to the web pages and the edges E represent
the links. Each node carries a weight representative of its access frequency. We
assume that all web pages are reached starting from the homepage r. Our goal
in adding hotlinks (one or up to k directed edges from a node to one accessible

⋆ Boursier FRIA
⋆⋆ Chercheur qualifié du FNRS



Pages

a. b.Hotlinks

Hyperlinks

Fig. 1. a. Modeled site web, b. Example
of hotlink assignment.

Hotlinks

Hyperlinks

i

i

Fig. 2. Consequence due to the greedy
user model assumption.

from it) is to minimize the expected number of steps to reach a page from the
homepage r.

We restrict our attention to the case when G is a rooted directed tree T with
n nodes and maximum degree d (maximum number of children for a node). The
stated results extend to general graphs by taking T to be the shortest-path tree
of G from the homepage r. Every leaf i in T is associated with a weight wi

representative of its access frequency, and W =
∑

i∈T wi. We thus assume that
only the leaves of the tree are accessed. This restriction can easily be removed
by adding a leaf child to all nodes, with a weight corresponding to the access
frequency of the node. This transformation only increases the length of the search
paths by 1. We use Tx to denote the subtree rooted at x and W (Tx) to denote
its weight, i.e. the sum of the weights of its leaves.

Following the greedy user model assumption [9], we assume that from a node
the user always takes the pointer that leads him as close as possible to the desired
destination. Due to that assumption, the assignment of one hotlink which points
to a node i can be seen as the deletion of the other hyperlink that ends in i
(i.e. an adoption) because if the user doesn’t follow the hotlink then he will not
access this subtree (see Fig. 2).

Let T A be the tree resulting from an assignment A of hotlinks. A measure of
the average access time to the nodes is E[T A, p] =

∑n
i=1 dA(i)pi, where dA(i) is

the distance of the node i from the root, and p = 〈pi = wi/W : i = 1, . . . , n〉 is
the probability distribution on the nodes of the original tree T . We are interested
in finding an assignment A which minimizes E[T A, p].

A lower bound on the average access time E[T A, p] was given in [2] using
information theory [12]. Let H(p) be the entropy of the probability distribution
p, defined by H(p) =

∑n
i=1 pi log(1/pi), then for any assignment of at most k

hotlinks per node the expected number of steps to reach a node from the root
of a tree of maximum degree d is at least H(p)/log(d + k) in the best case. The
tree could be a list, in which case we have a lower bound of H(p)/log(1 + k).

We focus on recursive algorithms which first choose the hotlink(s) of the root
of the tree T , perform the adoption (see Fig. 2), and recursively assign hotlinks to
the children of the root (including the hotlink). We characterize these algorithms
as top-down if the hotlink assignment of a subtree only depends on the subtree
itself minus the subtrees adopted by its own ancestors.



Related work: The idea of hotlinks was suggested by Perkowitz and Etzioni [13]
to improve the search in Web sites (seen as DAGs). Later Bose et al. [2] proved
that finding the optimal hotlink assignment for a DAG is NP-hard, and analyzed
several heuristics for assigning hotlinks.

The problem might become easier when the graph considered is a rooted tree.
Kranakis, Krizanc and Shende [11] give a O(n2) time algorithm for assigning one
hotlink per node so that the expected number of steps to search a node from
the root of the tree attains the entropy bound within a constant factor. Several
results on adding hotlinks to nodes of d-regular complete trees are also reported
by Fuhrmann et al. [8]. Recently, Gerstel et al.[9], and A.A. Pessoa et al. [14]
independently discovered a polynomial time dynamic programming algorithms
for finding the optimal placement of hotlinks on a tree whose depth is logarithmic
in the number of nodes, the running time of the algorithm of Gerstel et al. is
O(n3D) where D is the height of the tree. Experimental results showing the
validity of the hotlinks approach are given in [5], and a software tool to structure
websites efficiently by automatic assignment of hotlinks has been developed [10].

The concept of hotlinks can be applied to other problems than that of web
structuring. For instance, Bose et al.[3] use hotlink assignments to design efficient
asymmetric communication protocols. Hotlinks can also be used to design data
structures as was demonstrated by Brönnimann, Cazals and Durand [4] with
their jumplist dynamic dictionary data structure. The jumplist structure can be
seen as randomized hotlink assignment on a list, and is meant as a simplification
of the skiplist structure [15]. A deterministic version of the randomized jumplist
was developed by Elmasry [7] and by Douïeb and Langerman [6], independently.

Using this deterministic jumplist, we recently introduced a linear time
algorithm [6] to allow the assignment of one hotlink per node in such a way that
the number of steps to reach a node i from the root of a tree is bounded by the
entropy, namely by (3 + ǫ)H(p) for any ǫ > 0. The method was then dynamized
to maintain hotlinks when nodes are added, deleted or their weights modified,
in amortized time O(log W/wi) per update.

Our results: Known exact algorithms [9,14] for finding the optimal assign-
ment of hotlinks have a polynomial running time only for trees of logarith-
mic depth, and are slow, so our work was focused on finding an assign-
ment approaching the entropy bound. The best previous algorithm, the KKS
method [11], guarantees that the average access time to the elements is at most

H(p)
log(d+1)−(d/(d+1)) log d + d+1

d , its asymptotic behavior is H(p) d
log d for sufficiently

large values of d (maximum degree of the tree). The running time of this algo-
rithm is O(n2) where n is the number of elements in the tree.

After showing some preliminary lemmas in the next section, a new top-down
method for assigning one hotlink per node is presented in Section 3. The h/ph

method guarantees an average access time of at most 1.141H(p)+ 1. This near-
entropy bound, in contrast to that of KKS, is completely independent of the
maximum degree of the tree and is better than KKS for all values of d > 2.
Furthermore, h/ph method matches the bound of KKS for d = 2.



In Section 4, we present a natural generalization of the algorithm of Bose et
al. [3] for assigning k hotlinks per node of trees of arbitrary maximum degree d
instead of binary trees, it guarantees an upper bound on the average access time

of H(p)
log(k+d)−log d . As the performance guarantee of this method degrades when d

grows, we show a second method whose average access cost is at most 2H(p)
log(k+1)

constituting the first multiple hotlink assignment method giving a near-entropy
bound that is independent of the degree.

Finally in the Section 5 we develop a fast algorithm for the methods seen
in the preceding section; it uses an enhanced version of the link-cut trees of
Sleator and Tarjan [16] and performs the hotlink assignment in O(n log n) time
for all our methods and the KKS method [11]. This is an improvement over the
previous O(n2) algorithms. Omitted proofs appear in the full version.

2 Top-Down Methods

Before giving some hotlinks assignment methods and their analysis we present
a useful Lemma concerning entropy. Consider a probability distribution p =
〈p1, p2, . . . , pn〉 and a partition A1, A2, . . . , Ak of the index set {1, 2, . . . , n} into
k non-empty subsets. Define Si =

∑
j∈Ai

pj for i = 1, 2, . . . , k. Consider the new

distributions: p(i) = 〈p(i)
j :=

pj

Si
: j ∈ Ai〉 for i = 1, 2, . . . , k. Kranakis, Krizanc

and Shende [11] proved the following lemma:

Lemma 1. For any partition A1, A2, . . . , Ak of the index set of the probability
distribution we have the identity H(p) =

∑k
i=1 SiH(p(i))−∑k

i=1 Si log Si, where
Si and p(i) are defined in the above equations.

A hotlink method A determines the hotlink assignment A = A(T ) to be
applied on any tree T . Let T A be the tree T enhanced by the hotlink assignment
A and TA = TA(T ). Consider that a selection of successive hotlinks starting from
the root node partitions the leaves of the tree TA into several subsets or subtrees
TA

1 , TA
2 , . . . , TA

k with corresponding weights S1, S2, . . . , Sk. These subtrees have
a depth in the tree corresponding to the number of pointers that we must follow
to reach them, called d(TA

i ).
We defined a top-down hotlink assignment method A to be a method be-

ginning by the assignment of the hotlink of the root of a tree and where the
hotlink assignment of any subtree Ti only depends on the subtree itself minus
the subtrees adopted by its own ancestors.

Lemma 2. Given a top-down hotlink assignment method A, if we can fix a
constant a such that for all tree T there exists a partition in the subtrees

TA
1 , TA

2 , . . . , TA
k of weights S1, S2, . . . , Sk which satisfies a ≥ −

Pk
i=1 Sid(TA

i )
P

k
i=1 Si log Si

, then

the expected number of steps needed to reach a leaf from the root of a tree TA is
E[TA, p] ≤ aH(p) + 1.

Finally we generalize Lemma 5 of [11]:



Lemma 3. For any fixed constant 0 ≤ α ≤ 1/2, the solutions of the optimiza-

tion problem maximize f(s1, s2, . . . , sk) =
∑k

i=1 si log si subject to {0 ≤ si∀i,
∑k

i=1 si = 1, α ≤ sk ≤ 1 − α} are obtained, when sk = α and one among the
quantities s1, s2, . . . , sk−1 attains the value 1− α and all the rest are equal to 0.

3 Single hotlink assignment: h/ph method

The KKS method [11] assigns one hotlink per node for trees with a constant
maximum degree d. It is a top-down method which simply chooses as hotlink of

the root of the tree a node h defining a subtree Th of weight satisfying W (T )
(d+1) ≤

W (Th) ≤ dW (T )
(d+1) .

The running time of this algorithm is quadratic in the number of vertices of
the tree and assigns for any probability distribution p = 〈p1, p2, . . . , pn〉 on the
n leaves of a tree one hotlink per node such a way that the expected number of

steps to reach a leaf of the tree from the root is at most H(p)
log(d+1)−(d/(d+1)) log d +

d+1
d (see [11]). This bound is asymptotically tight for the KKS method, and is

achieved by a caterpillar with uniform distribution on its leaves.
The problem of this method is that its average access time degrades as the

maximum degree d of the trees considered grows. To avoid this increase in the
expected number of steps to reach a leaf from the root of a tree, we introduce a
new method in the next section. The h/ph Method :

The idea of this hotlink assignment method remains the same, the difference
lies on the number of candidate nodes that we consider for the choice of the
hotlink of the root of a subtree T . Namely, the candidates are firstly the node
h of weight w1/2 the nearest to W (T )/2 and secondly the parent node of h,
denoted ph. The method that determines how to choose among those candidates

is called the h/ph method : Let α be the unique solution of α
1−α = α

1
2(1−α) (i.e.

α ≈ 0.2965), if the weight w1/2 of the node h is greater than the threshold α we
take h as the hotlink of the root and we take ph otherwise.

Before beginning the analysis of the method, we give a property of the nodes
of weight w1/2. Define the heavy path of a tree to be the path from the root to
a leaf such that each node on the path is the heaviest child of its parent.

Lemma 4. If w1/2 is the weight nearest to W (T )/2 among all nodes in the
subtree T , then there is a node of weight w1/2 on its heavy path.

We can now begin to analyze the expected access time to reach a leaf from
the root of a tree after the hotlink assignment according to the h/phmethod.

Theorem 1 Consider a tree T of arbitrary maximum degree and T A the same
tree after the hotlink assignment of the h/ph method. The maximum average

access time to the leaves of T A is at most H(p)
log 3−(2/3) + 2/3 if d = 2 and

H(p) 2
log 1/α + 1 ≈ 1.141H(p) + 1 if d > 2.



ph

h

w1/2≤ w1/2

≤ w1/2

≥ 1 − w1/2

ph

h

w1/2

≤ w1/2

≤ w1/2

≥ 1 − w1/2

≤ w1/2

≤ w1/2
≤ w1/2 h h

= w1/2
= w1/2

≤ 1 − w1/2

≤ 1 − w1/2

≤ 1 − w1/2

≤ 1 − w1/2

≤ 1 − w1/2

≤ 1 − w1/2

≤ 1 − w1/2

≤ 1 − w1/2

≤ 1 − w1/2

a. b.

Fig. 3. Before and after assigning the hotlink of the root to the node ph (a.) or h (b.)

Proof. We can make an analysis of the worst average access time by selecting 3
ranges for the value of w1/2:

1. 0 ≤ w1/2 < α, we are in the case where we must choose ph as hotlink of
the root. We know that the node h defines a subtree of weight w1/2 nearest
to 1/2, thus the weight of the subtree defined by its parent node ph is greater
than 1−w1/2 and the brother nodes of h define subtrees of weight smaller than
w1/2. After the assignment of the hotlink of the root to the node ph, we know
that none of the direct children of the root can have a weight greater than
1 − W (Tph

) ≤ w1/2.

That guarantees that after two steps of search from the root of the tree
after the hotlink assignment we can not reach a subtree of weight greater than
w1/2 ≤ α (see Fig. 3.a). Using the notation of Lemma 2, we can express the
worst expected number of steps to reach a leaf from the root of the tree in the
case where we choose the ph node as hotlink of the root in the current range:
E[T A, p] ≤ aH(p) + 1 with a ≥ − 2

log α .

2. α ≤ w1/2 < 1 − α, we are in a range where we must choose the node h
as hotlink of the root. Note that the children {c1, c2, . . . , ck} of the root of
T A other then h have a weight of at most (1 − w1/2) and the node h has
weight w1/2. All subtrees of the root have a depth of 1. This partition gives
a worst average access time to the leaves equal to E[T A, p] ≤ aH(p) + 1
with a ≥ − 1

(w1/2) log(w1/2)+
Pk

i=1(W (Tci
)) log W (Tci

)
(see Lemma 2). The maxi-

mum value of this this last function subject to the constraints {α ≤ w1/2 ≤
1 − α,

∑k
i=1 W (Tci) = 1 − w1/2} is given by Lemma 3, i.e. when w1/2 = α,

W (Tc1) = 1−α and W (Tci) = 0 for all 2 ≤ i ≤ k. Thus the maximum expected

number of steps to reach a leaf in this current range is H(p)
−(α log α+(1−α) log(1−α)) +1.

3. 1 − α ≤ w1/2 ≤ 1, we choose h as hotlink of the root. The node h defines a
subtree of weight w1/2 nearest to 1/2, thus its heaviest child has a weight smaller
than 1 − w1/2 ≤ α, and the weight of the direct children of the root of the tree
after the hotlink assignment can not exceed 1−w1/2 ≤ α (see Fig. 3.b). By those
facts, we know that none of the subtrees reachable after two steps of search can
have a weight greater than α. That is exactly the same situation as in the first
case where 0 ≤ w1/2 ≤ α, thus the worst average access time to the leaves will

be the same, i.e. − 2H(p)
log α + 1.



We saw that if α ≤ w1/2 ≤ 1 − α then the worst access time is equal to
H(p)

−(α log α+(1−α) log(1−α)) + 1, and for any other value of w1/2 we have − 2H(p)
log α + 1.

Thus we can compute the value of α for which both expressions are equal, i.e.
for which value of α the choice of h or ph is equivalent. This occurs when α

1−α =

α
1

2(1−α) (i.e. α ≈ 0.2965), and the maximum expected number of steps needed
to reach a leaf from the root of a tree T A is no more than H(p) 2

log 1
α

+ 1 ≈
1.141H(p) + 1.

Thus for any tree with a maximum degree d > 2, the h/ph method gives
a better ratio for the approximation of the optimum hotlink assignment than
the KKS method. But we can remark that if d = 2 then the h/ph method
cannot be worse than the KKS method. Indeed, in this case the value of w1/2

is bounded above by 1/3 and below by 2/3, that implies that the h/ph method
always chooses the node h as hotlink of the root. This choice will be better or
at least equivalent to the choice of the KKS hotlink assignment. So the h/ph

method is better in all the cases. ⊓⊔

4 Multiple hotlink assignment

In the preceding sections we saw the hotlink assignment problem in the case
where just one hotlink per node of a tree is allowed. Now we consider the addition
of k hotlinks for each node. Some studies have already been done on this topic,
namely S. Fuhrmann et al. [8] present algorithms to reduce the height of a
tree by a constant factor. The algorithms for optimal hotlink assignment by
dynamic programming allow k hotlinks assignments per node [9,14]. The KKS
method [11] has been generalized by Bose et al. [3] to assign k hotlinks per node,
but is restricted to binary trees, it guarantees an average access time at most

H(p)
log(k+2)−1 + 1.

We introduce in this paper a recursive top-down method which performs up
to k hotlink assignments, seen as adoptions, to the root of a tree T of arbitrary
degree d to obtain an enhanced tree T ′. Then the procedure is iterated for each
child of the root in T ′. This method is a natural generalization of the algorithm
of Bose et al. [3] for trees of arbitrary maximum degree. When processing a node
x, we perform hotlink assignments of the node x until each original child y of
x is either a leaf or its weight satisfies W (Ty) ≤ dW (Tx)/(k + d). To determine
which descendant z to assign next for a hotlink of the node x, we start at the
non-leaf original heaviest child of x and we traverse its heavy path until reaching
the node z of maximum weight smaller than dW (Tx)/(k + d).

Thus all the hotlink nodes hi of x have a weight greater than W (Tx)/(k + d)
implying that at most k hotlinks can be assigned by node, indeed the original
non-leaf children of x after k assignments cannot have a weight greater than
W (Tx) − kW (Tx)/(k + d) = dW (Tx)/(k + d) which is the condition to stop.

Theorem 2 Consider a tree T of maximum degree d and T A the same tree after
the hotlink assignment of the generalized method of [3]. The maximum average

access time to the leaves of T A is at most H(p)
log(k+d)−log d .



The performances of this generalized method degrades as d grows. The next
method avoids this dependence on d. Here, we perform hotlink assignments for
the node x until each original child y of x is either a leaf or its weight sat-
isfies W (Ty) ≤ W (Tx)/(k + 1). To determine which descendant z to assign
next for a hotlink of x, we start at the non-leaf original heaviest child of x
and we traverse its heavy path until reaching the node z of minimum weight
greater than W (Tx)/(k + 1). While processing a node x, at most k hotlinks
are assigned. Indeed the assignment stops when each original child of x is ei-
ther a leaf or its weight is smaller than W (Tx)/(k + 1). After k hotlink as-
signments, a non-leaf child of the node x cannot have a weight greater than
W (Tx) − kW (Tx)/(k + 1) = W (Tx)/(k + 1).

Theorem 3 Consider a tree T of maximum degree d and T A the same tree after
the hotlink assignment of the above multiple hotlink assignment method. The
maximum average access time to the leaves of T A is at most 2H(p)/log(k + 1)
for d >

√
k + 1, and H(p)/(log(k + 1) − log d) otherwise.

5 Fast hotlink assignment algorithm

In order to perform the hotlink assignment according to the methods introduced
previously, a naive O(n2) running time algorithm can be easily found. Here we
present an O(n log n) running time algorithm which uses an enhanced version of
the Link-Cut Trees.

The Link-Cut Trees or ST Trees of D.D.Sleator and R.E.Tarjan is a data
structure for the Dynamic trees problem [16]. Namely, we are given a collection of
vertex-disjoint rooted trees. We want to represent the trees by a data structure
that allows us to easily extract certain informations (the cost of an edge, the
minimum cost on a precise path, the parent of an node, the root of an node)
about the trees and to easily update the structure to reflect changes in the trees
caused by these two kinds of operations: link the root of a tree to any node of
an other tree making this node the parent of the root, and cut a tree into two
trees by deleting the edge from a selected node to its parent.

They develop a solution to the dynamic trees problem by using an implicit
representation of the forest, which sees dynamic trees as sets of solid paths con-
nected together with dashed edges (see Fig. 5.a). Each tree operation is carried
out by means of one or more path operations. These dynamic solid paths are
represented as biased binary trees(BBT) [1] (or splay trees [17]) whose external
nodes correspond to the vertices of the solid paths and internal nodes correspond
to subpaths (see Fig. 5.b). This data structure guarantees that each dynamic tree
operation takes O(log n) time in the worst-case but only if the partition in solid
paths is done by size (number of leaves inside the tree defined by a node), i.e. if
the solid paths are defined to be the paths from the root of a subtree to a leaf
where each node is the child of its parents which has the greatest size.

The remainder of this section modifies the Link-Cut tree structure, we refer
the reader to [16] for more details.



Enhanced Link-Cut trees: Remember that the weight W (Tv) of a vertex v is
the sum of the weight of its children in the original tree T , where each leaf i in
T is associated with a weight wi representative of its access frequency.

Now we shall see how to enhance the Link-Cut Trees to use it for the hotlink
assignment. First we add an extra part to the structure. For each vertex v on
a solid path, we maintain a vertex set containing the children of v excepted
the child corresponding to the next vertex next[v] on the solid path of v (if it
exists). We allow three kinds of operations on the vertex sets: (1) maxw(vertex
v), return the vertex of maximum weight in the vertex set of v; return null if
the vertex set is empty. (2) insert(vertex u,vertex v), insert vertex u into the
vertex set of v. (3) delete(vertex u,vertex v), delete vertex u from the vertex
set of v. We represent the vertex set of a vertex by a globally biased binary
tree [1], the vertices appearing as external nodes, exactly as for the structures
used in the original Link-Cut trees.

Finally we add one more field to each internal node or leaf x in the associated
BBT of the solid paths: If the node x is a leaf of a BBT then the value wtx is
set to the sum of the weights of its children in the original tree excepted its next
vertex on the solid path. Else the node x is an internal node of the BBT and
wtx is set to the sum of the value wt of its children in the BBT. We note that
this information can be updated in a constant time after any rotation operation.

If the node x in the original tree T is contained in the solid path S, then
the weight W (Tx) can be computed with the value wt stored in the nodes of
the BBT associated to the solid path S, i.e. W (Tx) =

∑
i∈R(x) wti where R(x)

represent the right siblings (set of right child of nodes) on the path to the root
of the BBT associated to S.

Note that these two extra structures, i.e. for the vertex sets and the values
wt, are nearly identical to some structures present in the original Link-Cut trees,
used to maintain the solid paths and to compute the size (in number of nodes)
of the subtree of a node. Thus the added structures will be updated using the
same techniques, achieving the same performances.

h

Solid paths

Dashed edges

Heavy path

Fig. 4. The heavy path
could intersect several
solid paths.

Search:Consider now the hotlink assignment and
see how to use the enhanced Link-Cut tree to per-
form the search of the candidate node which will be
pointed to by one of the k hotlinks of the root of the
original tree. For all methods presented here, this
candidate node will be found from a node h which
defines a subtree of minimum weight greater than
W (T )/c for any fixed constant c ≥ 1 depending on
the method used. We can deduce from Lemma 4 or
from the method itself that this node h is always lo-
cated on the heavy path, this heavy path is defined as
the path from the root of T to a leaf connecting each
node on the path to its heaviest child. But in the
Link-Cut tree, the decomposition of the initial tree
is done by solid paths (decomposition by size), thus



the heavy path could traverse several solid paths
(see Fig. 4). The search of the node h is thus a succession of searches in multiple
BBTs each associated to a solid path which intersects the heavy path.

The search is performed as follows: we begin from the BBT associated with
the solid path containing the root of the original tree T , and use it to locate the
lowest vertex v greater than W (T )/c. In order to perform this search efficiently
we use the information wt stored in the nodes of this associated BBT. We walk
down the BBT from its root r and we maintain a value Z =

∑
i∈R(j) wti where j

is the current node, i.e. Z is equal to the sum of the value wt of the right siblings
of nodes on the path from the current node j to the root r. Thus Z + wtj is
the maximum weight of any leaf reachable from the node j. We initially start
from the root r and we set Z = 0. If Z + wtright[r] ≥ W (T )/c we go down by
the right child rigth[r] of the root else we go by the left child and we update
Z = Z + wtright[r]. We iterate the process until we find the vertex v on the solid
path of minimum weight greater than W (T )/c. Note that the value Z is equal
to W (Tnext[v]) when the node v is found. An illustration of this search is shown
in Fig. 5.b.

If the the weight of the next vertex of v in its solid path is greater than
maxw(v), i.e. if W (Tnext[v]) ≥ maxw(v) then v corresponds to the node h that
we are looking for. Else we must check if the node h is present in the next solid
path beginning by the vertex of weight maxw(v). For that, we perform the same
search in the associated BBT of this next solid path. We iterate the process until
we find the node h.

According to the Link-Cut tree performance, we can find a node i contained

in an associated BBT rooted at r in O(log Size(r)
Size(i) ) time, corresponding to the

height of the BBT. The sum of the running times of the successive searches

in the different solid paths is log Size(T )
Size(x1) + log Size(x1)

Size(x2) + · · · + log Size(xk)
Size(h) ≤

log Size(T )
Size(h) ≤ log n, where x1, x2, . . . , xk are vertices leading to the successive

solid paths traversed by a search. We must add to that the number of times that
we use maxw() for a vertex set to check if the node h is deeper in the tree (takes
O(1) time), this number is bounded by log n because of the definition of the solid
path. Thus the maximum total running time needed to find the node h which
gives the necessary information to find the candidate for the hotlink assignment
of the root is O(log n).

Cut: To perform the hotlink assignment, we just need the Cut operation which
consists in cuting a tree T into two trees by deleting the edge from a selected
node to its parent. The cut operation with an enhanced Link-Cut tree is done
as in the original structure excepted that the extra structures (vertex sets and
fields wt) have to be updated.

Cutting a subtree rooted at a node h consists first in making an expose
operation on the node h. That operation creates a single solid path, ending in
h and beginning at the root of the original tree T , by converting dashed edges
(connecting two distinct solid paths) to solid (connecting two vertices of the
same solid path) along the tree path from h to the root of the original tree T
and converting solid edges incident to this path to dashed.



Those kinds of edge conversions may change the vertex sets associated to
several vertices of the original tree T . The dashed edges converted in solid must
be deleted from the corresponding vertex set and respectively the solid edges
converted in dashed must be inserted in their corresponding vertex set. The
value wt of the nodes is also affected by those changes and have to be updated
following the Link-Cut tree methods.

After the expose of the node h, we have to cut the subtree rooted at h
and update the values of some nodes in the associated BBT of the solid path
containing h, i.e. all nodes i where we walk to their right child during a search
for h in the associated BBT have to update their value wti to wti − W (Th).
Once this is done, we restructure the associated BBT and we repair the damage
caused by the expose. Namely after the cut, the decomposition into solid paths
could have changed and we must update the structure by an operation which
can be seen as an expose running backwards. This operation is fully described
in [16].

Thus the cut in a enhanced Link-Cut tree has the same asymptotic running
time than in the original structure, i.e. each cut operation takes O(log n) time,
where n is the number of nodes in the initial tree.

Lemma 5. The hotlink assignment of a tree T according to the methods de-
scribed in the previous sections can be done in O(n log n) time using the enhanced
Link-Cut trees data structure seen above.

Proof. Consider that we use an enhanced Link-Cut tree data structure as de-
scribed above for a tree T . The hotlink assignment consists in finding a node h
for one hotlink of the root according to the desired method. We have seen above
that this search is performed in O(log n) time (Fig. 5.b). Once h is found, we
cut the edge between h and its parent. This cut takes O(log n) time using the
enhanced Link-Cut trees. For the multiple assignment methods we carry out the
same operation as long as necessary. Once all the hotinks of the root has been
assigned we cut all the edges connecting the root to its children, those cuts are
done in O(log n) (Fig. 5.c), thus we obtain at most d + k subtrees for which we
iterate the same process recursively (Fig. 5.d).

a. b. c.
d.

h h

h

Biased binary tree associ-

ated to the solid path.

Fig. 5. a. Decomposition of a tree T in solid paths. b. A search in the biased binary
tree representing the solid path. c. Cut of the node h and the children of the root. d.
Resulting trees.



Although each node could have up to k hotlinks, the total number of hotlinks
assigned is smaller than n because there cannot be more than one hotlink point-
ing to each node. Thus the enhanced link-cut trees allow to perform a hotlink
assignment for a node in O(log n) time, this must be done at most n times which
implies that the entire hotlink assignment takes O(n log n) time. ⊓⊔

References

1. S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased seach trees. SIAM J. Comput.,
14 , number 3:545–568, 1985.

2. P. Bose, E. Kranakis, D. Krizanc, M. V. Martin, J. Czyzowicz, A. Pelc, and
L. Gasieniec. Strategies for hotlink assignments. In Proc. 11th Ann. Int. Symp. on
Algorithms and Computation, volume 1969 of LNCS, pages 23–34, 2000.

3. P. Bose, D. Krizanc, S. Langerman, and P. Morin. Asymmetric communication
protocols via hotlink assignments. In Proc. 9th Int. Coll. on Structural Information
and Communication Complexity (SIROCCO 2002), pages 33–40, 2002.

4. H. Brönnimann, F. Cazals, and M. Durand. Randomized jumplists : A jump-and-
walk dictionary data structure. Proc. 20th Ann. Symp. on Theoretical Aspects of
Computer Science (STACS 2003), 2607 of LNCS, 2003.

5. J. Czyzowicz, E. Kranakis, D. Krizanc, A. Pelc, and M. Martin. Evaluation of
hotlink assignment heuristics for improving web access. In Proc. 2nd Int. Conf. on
Internet Computing (IC’2001), pages 793–799, 2001.

6. K. Douïeb and S. Langerman. Dynamic hotlinks. In Proc. of the Workshop on
Algorithms and Data Structures (WADS 2005), volume 3608 of LNCS, pages 271–
280, 2005.

7. A. Elmasry. Deterministic jumplists. Nordic Journal of Computing, 12:27–39, 2005.
8. S. Fuhrmann, S. O. Krumke, and H.-C. Wirth. Multiple hotlink assignment. In

27th Int. Workshop on Graph-Theoric Concepts in Computer Science, volume 2204
of LNCS, pages 189–200, 2001.

9. O. Gerstel, S. Kutten, R. Matichin, and D. Peleg. Hotlink enhancement algorithms
for web directories. In Proc. 14th Ann. Int. Symp. on Algorithms and Computation,
volume 2906 of LNCS, pages 68–77, 2003.

10. E. Kranakis, D. Krizanc, and M. V. Martin. The hotlink optimizer. In Proc. 3rd
Int.Conf. on Internet Computing (IC’2002), pages 33–40, 2002.

11. E. Kranakis, D. Krizanc, and S. Shende. Approximate hotlink assignment. In Proc.
12th Ann. Int. Symp. on Algorithms and Computation, volume 2223 of LNCS,
pages 756–767, 2001.

12. N.Abramson. Information theory and coding. McGraw Hill, 1963.
13. M. Perkowitz and O. Etzioni. Towards adaptive Web sites: conceptual framework

and case study. Computer Networks, 31(11-16):1245–1258, 1999.
14. A. Pessoa, E. Laber, and C. de Souza. Efficient algorithms for the hotlink assign-

ment problem: The worst case search. In Proc. 15th Ann. Int. Symp. on Algorithms
and Computation, volume 3341 of LNCS, page 778, 2004.

15. W. Pugh. Skip lists: a probabilistic alternative to balanced trees. In F. Dehne, J.-R.
Sack, and N. Santoro, editors, Proc. Workshop on Algorithms and Data Structures,
volume 382 of LNCS, pages 437–449, 1989.

16. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–381, 1983.

17. D. D. Sleator and R. E. Tarjan. Self-adjusting binary trees. Proc. 15th Ann. ACM
Symp. on Theory of Computing, pages 235–245, 1983.


