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In [9] Thomassen proved that a 239k

-connected graph either contains k vertex disjoint
odd cycles or an odd cycle cover containing at most 2k−2 vertices, i.e. he showed that
the Erdős–Pósa property holds for odd cycles in highly connected graphs. In this paper,
we will show that the above statement is still valid for 576k-connected graphs which is
essentially best possible.

1. Introduction

A family F of graphs is said to have the Erdős–Pósa property, if for every
integer k there is an integer f(k,F) such that every graph G either contains
k vertex disjoint subgraphs each isomorphic to a graph in F or a set C of at
most f(k,F) vertices such that G−C has no subgraph isomorphic to a graph
in F . The term Erdős–Pósa property arose because in [3] Erdős and Pósa
proved that the family of cycles has this property. The family of odd cycles
does not have the Erdős–Pósa property, as we now show. For a graph G an
odd cycle cover is a set of vertices C⊆V (G) such that G−C is bipartite.

An elementary wall of height eight is depicted in Figure 1. An elementary
wall of height h for h≥3 is similar. It consists of h levels each containing h
bricks, where a brick is a cycle of length six. A wall of height h is obtained
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Fig. 1. An elementary wall of height 8

from an elementary wall of height h by subdividing some of the edges, i.e.
replacing the edges with internally vertex disjoint paths with the same end-
points (see Fig. 2).
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Fig. 2. A wall of height 3

An Escher wall of height h consists of a wall of height h: W , and h vertex
disjoint paths P1,. . . ,Ph such that:

(i) Each Pi has both endpoints on W but is otherwise disjoint from W .
(ii) One endpoint of Pi is in the ith brick of the top row of bricks of W , the

other is in the (h+1− i)th brick of the bottom row of W . Furthermore,
both of these vertices are in only one brick of W .

(iii) W is bipartite but for each i, W ∪Pi contains an odd cycle.

See Figure 3 for an example.

We remark that, as pointed out by Lovász and Schrijver [5], an Escher
wall W of height h contains neither 2 vertex disjoint odd cycles nor an odd
cycle cover with fewer than h vertices (the first fact follows from the fact
that for any Escher wall W,P1, . . .,Pk, the planar embedding of W can be
extended to an embedding of the Escher wall in the projective plane so that
every odd cycle is non-null homotopic by routing the Pi through a cross-cap;
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Fig. 3. An Escher wall of height 4

the fact that there is no odd cycle cover of size h−1 follows from the fact
that if X is a set of h−1 vertices then X fails to intersect some path along
the top of a level of bricks of W and then, as is easily verified, there is some
i such that Pi is disjoint from X and both endpoints of Pi are connected to
this row in W −X. Hence the two endpoints of this Pi are connected by a
path Q in W−X and then Pi+Q is an odd cycle in G−X). This shows that
the Erdős–Pósa property does not hold for odd cycles (in fact, it holds for
the cycles of length p mod m if and only if p is congruent to 0 mod m see
[2] and [8]).

In [9] Thomassen proved, amongst other results, that for any integer k a
239k

-connected graph either contains k vertex disjoint odd cycles or an odd
cycle cover of size at most 2k−2. The size of the odd cycle cover in his result
is best possible as can be seen by considering a large complete bipartite
graph in which we add a complete graph on 2k− 1 vertices in one of the
partite sets. This construction shows that no condition on the connectivity
can lead to smaller odd cycle covers in graphs without k vertex disjoint odd
cycles.

In this paper we will improve on Thomassen’s result showing that the
above statement is still valid for 576k-connected graphs. This is essentially
best possible in the sense that we need to impose connectivity of Ω(k) to
obtain this result. Our approach is to split each vertex of a minimum odd
cycle cover into two, thereby producing bipartite auxiliary graphs and then
to analyze the set of paths in the auxiliary graphs corresponding to odd
cycles in the original graph.

This approach was first adopted in [7]. In that paper Reed proved,
amongst other results, that for all k there is an nk such that a graph ei-
ther contains a set of 2k odd cycles such that every vertex is in at most two
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of these odd cycles or an odd cycle cover of size at most nk. Much of our
introductory discussion was taken from that paper.

We now define precisely the auxiliary graphs we study. We define for every
graph G and odd cycle cover C={c1, . . ., cl} of G, a first auxiliary (bipartite)
graph G′ = G′(G,C). To do so, we first choose an arbitrary partition of
G−C into two stable sets A′ and B′ (note that we have only one choice,
if G−C is connected). We set V (G′) = (V (G)−C)∪ {cA, cB |c ∈ C} and
E(G′) =E(G−C)∪{cAy|c ∈C,y ∈B′, cy ∈E(G)}∪{cBy|c ∈C,y ∈A′, cy ∈
E(G)}∪{cAi cBj |ci, cj ∈C,cicj ∈E(G), i<j}. We note that G′ is bipartite with
bipartition (A=A′∪{cA|c∈C},B=B′∪{cB |c∈C}). For any vertex c in C
we define image(c) as {cA, cB} and preimage(cA) = preimage(cB) = c. For
any vertex x in G−C, we set image(x) = preimage(x) = x. For any set S
of vertices of G, the image of S is the union of the images of its elements.
Similarily, for any set S of vertices of G′, the preimage of S is the union of the
preimages of its elements. Now, each edge e of G′ corresponds to an edge of
G whose endpoints are the preimages of the endpoints of e. We call this edge
the preimage of e. The preimage function extends to subgraphs in a natural
manner. For any vertex c∈ image(C) we define the partner p(c) of c as the
unique vertex different from c such that preimage(c)=preimage(p(c)) and
c and p(c) will be called partners. For any set S of vertices in image(C), the
set p(S) of partners of S is the union of the partners of its elements.

Now, for any subset X = {x1, . . .,xk} of C, if there are k vertex disjoint
paths P1, . . .,Pk in G′− image(C−X), such that Pi links xA

i with xB
i , then

the preimages of these paths form k vertex disjoint odd cycles of G. In
the proof of our main result we will look for such sets of paths as well as
similar more complicated structures using a second auxiliary bipartite graph
G′′=G′′(G′).

The graph G′′ arises from G′ by deleting for all c ∈ C one of the two
vertices in image(c). If for any subset X = {x1, . . .,xk} of C we can find k
vertex disjoint paths P ′

1, . . .,P
′
k in the graph G′[image(X)∪V (G′′)] such that

P ′
i links xA

i and xB
i , then these paths use at most one of the partners in

image(c) for any c∈C−X. Hence the preimages of these paths will form
k vertex disjoint odd cycles of G. We will find such paths using a highly
connected subgraph F of G′′. If G′′ has large average degree, then there are
several results that imply the existence of such a highly connected subgraph.
Since we are not interested in optimizing our constants, we use the following
result due to Mader [6] which is one of the first and simplest of those results.

Theorem 1 (Mader [6]). Every graph G of order n(G)≥2k−1 with more
than (2k−3)(n(G)−(k−1)) edges contains a k-connected subgraph.
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The next lemma shows that we can choose for all c∈C one of the partners
in image(c) to be deleted from G′ in such a way that G′′ has large average
degree.

Lemma 1. Let G be a 576k-connected graph, C={c1, c2, . . ., cl} be an odd
cycle cover of G and G′ be the first auxiliary graph.

There is a partition image(C)=C1∪C2 such that for 1≤ i≤ l the set C1

(and hence C2) contains exactly one of the vertices in image(ci) and such
that G′′=G′−C2 has average degree at least 144k.

Proof. For every c∈C we choose uniformly at random either cA or cB to
belong to C1 and set C2 = image(C)−C1 and G′′ = G′ −C2. Let c ∈ C1

be any fixed vertex. The expected number of edges of G′′ that are incident
with c and a vertex in V (G)−C is exactly half of the number of edges that
are incident with preimage(c) and a vertex in V (G)−C. Furthermore, the
expected number of edges of G′′ that are incident with c and another vertex
in C1 is exactly a quarter of the number of edges that are incident with
preimage(c) and another vertex in C. Let mC and mC1 denote the number
of edges in G and G′′ incident with vertices in C and C1, respectively. Now,
by linearity of expectation, E[mC1 ] ≥ 1

4mC . Hence there is a choice of C1

such that mC1 ≥ 1
4mC . This implies m(G′′) ≥ 1

4m(G). Since the minimum
degree in G is at least 576k, we have 2m(G)

n(G) ≥ 576k. As n(G) = n(G′′), this

yields 2m(G′′)
n(G′′) ≥144k.

Applying Theorem 1, we get the following.

Corollary 1. Let G,C,G′,C1,C2 and G′′ be as in Lemma 1, then G′′ con-
tains a 36k-connected subgraph F .

During the proof we will have to link different pairs of vertices in F by
vertex disjoint paths in F . The existence of such paths is guaranteed by the
following result due to Bollobás and Thomason [1].

A graph G of order at least 2k is k-linked, if for any two disjoint sets
{x1,x2, . . .,xk} and {y1,y2, . . .,yk} of k vertices there are k vertex disjoint
paths P1, . . .,Pk such that for 1 ≤ i ≤ k the path Pi has endpoints xi and
yi. The following result ensures that a highly connected graph is also highly
linked.

Theorem 2 (Bollobás and Thomason [1]). Every 22k-connected graph
is k-linked.
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2. Result

Having constructed the two auxiliary graphs we are now in a position to
prove the theorem.

Theorem 3. Let G be a 576k-connected graph. Then G either contains k
vertex disjoint odd cycles or an odd cycle cover of at most 2k−2 vertices.

Remark. The constant 576 is certainly not best possible. We have made
no attempt to minimize it.

Proof. Clearly k ≥ 2. Let G be a 576k-connected graph and let C be a
minimum odd cycle cover of G. We assume that |C|≥2k−1 and prove the
existence of k vertex disjoint odd cycles in G. We consider two cases.

Case 1. |C|≤15k
We prove that every 500k-connected graph G with a minimum odd cycle

C of size exactly 2k−1 contains k vertex disjoint odd cycles. The statement
of the theorem then follows by deleting all but 2k−1 vertices from C.

Note that the graph G−C is 450k-connected. Let A′,B′ be a bipartition
of G−C. Since G is 500k-connected, every vertex has degree at least 500k
and we can partition C in two sets CA and CB such that every vertex
of CA has at least 200k neighbours in A′ and every vertex in CB has at
least 200k neighbours in B′. We may assume that CA = {c1, . . ., c2l} and
CB ={c2l+1, . . ., c2k−1} for some 0≤ l≤k−1.

If we can find a matching MA in the graph G[CA∪B′] that covers all of
CA and a matching MB in G[CB ∪A′] that covers all of CB , then we can
find k vertex disjoint odd cycles in G as follows.

First, we choose different vertices a1, . . .,a2l ∈A′ and b2l+1, . . ., b2k−1∈B′

such that for 1≤ i≤2l the vertex ai is a neighbour of ci, for 2l+1≤ i≤2k−1
the vertex bi is a neighbour of ci and none of these vertices is incident with
an edge in MA∪MB . Such a choice is possible, since the vertices in CA and
CB have at least 200k neighbours in A′ and B′, respectively.

For every vertex ci in CA that is matched to a vertex b in B, we can find
an odd cycle through it by joining the vertices b and ai by a path in G−C.

For every vertex ci in CA that is matched to a vertex cj in CA, we can
find an odd cycle through these two vertices by joining their two neighbours
ai and aj in A by a path in G−C. The cycles through vertices in CB are
constructed similarly.

We use at most 2k−1 paths in G−C. Theorem 2 implies that we can
choose these paths vertex disjoint. Since we need at most two vertices of C
for one of these cycles, the graph G contains k vertex disjoint odd cycles.
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Hence we can assume that there is no matching in G[CA∪B′], say, that
covers all of CA. Using a small extension of Tutte’s matching theorem (see
for instance [4]), this implies the existence of a set Z of vertices such that
the graph G[CA ∪B′]− Z has at least |Z|+ 1 odd components that are
contained in CA. Let the set Z ′ contain exactly one vertex from each of
these components. Then the graph H=G− ((C−Z ′)∪Z) is bipartite with
bipartition ((A∩V (H)),((B∪Z ′)∩V (H))). Hence the set (C−Z ′)∪Z is an
odd cycle cover of size |C|− |Z ′|+ |Z|< |C| which contradicts the choice of
C. This completes the proof of this case.

Case 2. |C|>15k.
We consider the first auxiliary graphs G′ choose a partition image(C)=

C1 ∪ C2 and the second auxiliary graph G′′ containing a 36k-connected
subgraph F according to Lemma 1 and Corollary 1. For a set X ⊆ C let
G′

X =G′[V (G′′)∪ image(X)].
We choose a maximum size set X⊆C such that there is no set of fewer

than 2|X| vertices separating image(X) and F in G′
X (note that in a graph

H a set S⊆V (H) is said to separate two sets A,B⊆V (H), if in H−S there
is no path joining a vertex in A and a vertex in B).

By Menger’s Theorem, there are 2|X| vertex disjoint paths joining
image(X) to F in G′

X which are internally disjoint from F . If r := |X|≥k,
then we choose k vertices x1, . . .,xk ∈X. For 1≤ i≤ j let fA

i and fB
i be the

endpoints of the paths joining xA
i and xB

i to F , respectively. Let Pi be a
path from fA

i to fB
i in F . Since F is k-linked, we can assume that the paths

P1, . . .,Pk are vertex disjoint. For 1≤ i≤k we can now join the path from xA
i

to F , Pi and the path from xB
i to F and get k vertex disjoint paths that are

internally disjoint from C2 and which correspond to k vertex disjoint odd
cycles in G. Hence r<k.

We choose a set Z0 of size 2r that separates image(X) and F in G′
X

such that the component U0 of G′
X −Z0 that contains F −Z0 is as small as

possible (note that F −Z0 is still at least 34k-connected.)

(2.1) There is a set Z∗ of size at most 7k such that Z0 ⊆ Z∗ and the
component U∗ of G′

X −Z∗ that contains F −Z∗ contains no vertex in C1

whose partner is adjacent to a vertex in U∗.

Proof. Let x1,x2, . . .,xj ∈C1 be the vertices in U0 whose partners are ad-
jacent to a vertex in U0. We assume j > 0, since otherwise we can choose
Z0=Z∗.

By the choice of X, for 1≤ i≤j there is a set of at most 2r+1 vertices that
separates image(X)∪{xi,p(xi)} and F in G′

X∪{preimage(xi)}. We choose one
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such set Zi such that the component Ui of G′
X∪{preimage(xi)}−Zi that contains

F −Zi is as small as possible. Note that this choice implies |Zi|=2r+1.

(2.1.1) p(xi) �∈Zi for 1≤ i≤j.
Proof. We assume that p(xi)∈Zi for some 1≤ i≤j and derive a contradic-
tion to the choice of Z0. Let Z ′

i =Zi−{p(xi)} and let U ′
i be the component

of G′
X−(Z0∪Z ′

i) that contains F−(Z0∪Z ′
i). Let A1 be the set of vertices in

Z0∪Z ′
i that are adjacent to a vertex in U ′

i and let A2 be the set of vertices in
Z0∪Z ′

i that are either in image(X) or adjacent to a vertex in a component
of G′

X−(Z0∪Z ′
i) containing a vertex of image(X). Since U ′

i ⊆U0, U ′
i ⊆Ui and

Z0 and Z ′
i separate image(X) and F in G′

X , we obtain that A1∩A2⊆Z0∩Z ′
i.

This implies |A1|+ |A2|≤ |Z0|+ |Z ′
i|=2r+(2r+1−1)=4r. As A2 separates

image(X) and F in G′
X , we have |A2|≥2r, by the choice of X, and therefore

|A1|≤2r. Now A1 separates image(X) and F in G′
X and since U ′

i ⊆U0 and
xi∈U0−U ′

i we obtain a contradiction to the choice of Z0.

By (2.1.1), we see that Zi separates

image(X) ∪ {xi} ∪N(p(xi), G′
X∪{preimage(xi)}) and F in G′

X .

Further, by definition, the component Ui of G′
X −Zi is as small as possible

given this condition.

(2.1.2) For 1≤ i≤j we have Zi⊆Z0∪U0 and Zi separates Z0 and F in G′
X .

Proof. As in the proof of (2.1.1), let U ′
i be the component of G′

X−(Z0∪Zi)
that contains F−(Z0∪Zi). We choose the sets A1 and A2 as above and get
|A1|+ |A2|≤ |Z0|+ |Zi|=4r+1 and |A2|≥2r. Hence |A1|≤2r+1. Since A1

separates Zi and F in G′
X , we obtain, by the choice of Zi, that A1=Zi and

(2.1.2) is proved.

(2.1.3) For any 1≤s<t≤j either Zs =Zt or Z0⊆Zs∪Zt.

Proof. We assume that Zs �=Zt. Note that Us contains a vertex of Zt and Ut

contains a vertex of Zs. Otherwise, we assume that Us∩Zt =∅ which implies
that Zs separates Zt from F in G′

X and therefore Us ⊆Ut. As Zs �=Zt, we
have Us �= Ut and we get a contradiction to the choice of Zt. Let Us,t be
the component of G′

X − (Zs ∪Zt) that contains F − (Zs ∪Zt). Let A1 be
the set of vertices in Zs ∪Zt that are adjacent to a vertex in Us,t and let
A2 be the set of vertices that are in Z0 or are adjacent to a vertex in a
component of G′

X − (Zs ∪Zt) containing a vertex of Z0. Since Zs and Zt

separate Z0 from F in G′
X , we have that A1 ∩A2 ⊆ Zs ∩Zt and therefore

|A1|+|A2|≤|Zs|+|Zt|=4r+2. As Us,t is stricly contained in Us and Ut and
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A1 separates Zs and Zt from F in G′
X , we see that |A1|≥2r+2 or we get a

contradiction to the choice of Zs or Zt. Hence |A2|≤2r and, as A2 separates
Z0 and F in G′

X , we get A2 =Z0, by the choice of Z0. This proves (2.1.3).

We may assume that Z0 ⊆ Zi for 1 ≤ i ≤ j′ and that Z0 −Zi �= ∅ for
j′ + 1 ≤ i ≤ j. For every 1 ≤ i ≤ j′ there is a vertex yi ∈ U0 such that
Zi =Z0∪{yi}. Furthermore, we may assume that all sets Zj′+1, . . .,Zj′′ are
different and that for every j′′ +1≤ i≤ j there is some j′+1≤ i′ ≤ j′′ such
that Zi =Zi′ .

(2.1.4) G contains k vertex disjoint odd cycles or |{y1,y2, . . .,yj′}|≤k−1.

Proof. We consider the block-structure of U0. There is one block B0 of U0

that contains F−Z0. By the choice of Zi, we see that yi is a cutvertex in B0

such that {yi} separates {xi}∪N(p(xi),G′
X∪{preimage(xi)}) and F in U0. This

implies that the vertices in {xi}∪N(p(xi),G′
X∪{preimage(xi)}) are contained

in one component of U0 −{yi}. We assume now that |{y1,y2, . . .,yj′}| ≥ k.
Then there is a set Y of k cutvertices in B0 such that there are k components
in U0−Y each of which contains a path from some xi to a neighbour of its
partner. Hence there are k vertex disjoint paths in G′ from some xi’s to their
partners and all these paths are internally disjoint from C2. Thus there is a
set of k vertex disjoint odd cycles in G. This completes the proof of (2.1.4).

We may assume now that |{y1,y2, . . .,yj′}| ≤ k− 1. For all 1 ≤ i ≤ j we
have that |Zi−Z0|= |Z0−Zi|+1 and since, by (2.1.3), every vertex of Z0 is
missing from at most one Zi for j′+1≤ i≤j′′, we have j′′−j′≤2r<2k. This
implies

| ∪j
i=0 Zi| ≤ |Z0|+ |{y1, y2, . . ., yj′}| +

j′′∑

i=j′+1

|Zi − Z0|

< 2k + k + 2k +
j′′∑

i=j′+1

|Z0 − Zi| ≤ 7k.

Hence the set Z∗ :=∪j
i=0Zi satisfies |Z∗| ≤ 7k, Z0 ⊆Z∗ and the component

U∗ of G′
X−Z∗ that contains F−Z∗ contains no vertex in C1 whose partner

is adjacent to a vertex of U∗. This proves (2.1).

Let X∗ =X ∪ preimage({x1, . . .,xj}). The set Z∗ separates image(X∗)
and F in G′

X∗ . Otherwise there is a path P in G′
X∗−Z∗ from u∈ image(X∗)

to F that is internally disjoint from image(X∗). Since u ∈ {xi,p(xi)} for
some 1≤ i≤ j and Zi⊆Z∗, the path P is contained in G′

X∪preimage{xi}−Zi.
This is a contradiction to the choice of Zi.
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Let C∗
1 =U∗∩C1. By the construction of Z∗, the vertices in p(C∗

1 )⊆C2

are not adjacent to a vertex in U∗.

(2.2) |C∗
1 |≤7k.

Proof. We can partition the components of G′ − (image(C)∪Z∗ − (C∗
1 ∪

p(C∗
1 ))) in two sets in such a way that for every vertex in C∗

1 its partner
lies in a component on the other side of this partition. Hence we can find
a bipartition of G′ − (image(C) ∪Z∗ − (C∗

1 ∪ p(C∗
1 ))) such that G− (C ∪

preimage(Z∗)− preimage(C∗
1 )) arises by identifying vertices on the same

side of this bipartition and is therefore bipartite. Hence C∪preimage(Z∗)−
preimage(C∗

1 ) is an odd cycle cover of G of size at most |C|+|Z∗|−|C∗
1 |. By

the choice of C, we have |C|≤|C|+ |Z∗|−|C∗
1 | which yields (2.2).

Let Z∗∗ =Z∗∪C∗
1 and let U∗∗ be the component of G′

X∗ that contains
F −Z∗∗.

(2.3) There are 16k vertex disjoint paths from C2 − image(X∗) to F in
G′−Z∗∗.

Proof. If there are no such paths, then there is a set W of size less than
16k that separates C2 − image(X∗) and F in G′−Z∗∗. Since |W ∪Z∗∗| <
16k+14k=30k< |image(C)|, the set W∪Z∗∗ is a cutset of G′ such that the
component of G′− (W ∪Z∗∗) that contains F − (W ∪Z∗∗) �= ∅ contains no
vertex of image(C)−(W ∪Z∗∗) �=∅. Hence preimage(W ∪Z∗∗) is a cutset of
G of size at most 30k which is a contradiction to the connectivity of G.

Hence there is a set of 16k vertex disjoint paths from C2−image(X∗) to
F in G′−Z∗∗. If we choose these paths minimal, then there is a set Y with
Y ⊆C2− image(X∗) of 16k vertices which are endpoints of these paths and
the paths are internally contained in U∗∗ and internally disjoint from F . Let
Y ={y1, . . .,y16k} and for 1≤ i≤16k let fi be the endpoint of the path that
joins yi to F .

(2.4) There are |Y | vertex disjoint paths from Y to p(Y ) in G′
preimage(Y ).

Proof. If there are no such paths, then there is a set W ′ of size less than |Y |
that separates Y and p(Y ) in G′

preimage(Y ). As above, we can now partition
the components of G′− ((image(C)− (Y ∪p(Y )))∪W ′) in two sets in such
a way that for every vertex in Y its partner lies in a component on the
other side of this partition. Hence G−((C−preimage(Y ))∪preimage(W ′))
is bipartite and (C−preimage(Y ))∪preimage(W ′) is an odd cycle cover of
G of size less than |C|−|Y |+ |Y |= |C| which is a contradiction.

By the last claim, there is a set of 2k vertex disjoint paths from Y to
p(Y ) in G′

preimage(Y )−Z∗∗. If we choose these paths P1, . . .,P2k minimal, then
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they are internally disjoint from Y ∪p(Y )∪U∗∗. For 1≤ i≤ 2k let the path
Pi join p(ysi)∈ p(Y ) to yti ∈ Y . We can now define k vertex disjoint paths
P ′

1, . . .,P
′
k in G′ that correspond to vertex disjoint odd cycles in G.

Let P ′
1 consist of the path P1 from p(ys1) to yt1 , the path from yt1 to ft1 ,

a path from ft1 to fs1 contained in F −Z∗∗ and the path from fs1 to ys1.
Proceeding in this manner, we see that for one of the paths P ′

i we have to use
at most two of the 2k paths Pj . Since F−Z∗∗ is (36−14)k=22k-connected
and, by Theorem 2, k-linked, we can choose the k paths that are contained
in F−Z∗∗ to be vertex disjoint. We have therefore proved the existence of k
vertex disjoint odd cycles in G and the proof of the theorem is completed.

A result similar to Theorem 3 cannot be obtained, if the condition on the
connectivity is replaced by a condition on the minimum degree. To see this,
idenfity each vertex v of an Escher wall with a vertex in a large complete
bipartite graph Gv .

Furthermore, to obtain Theorem 3, we have to impose a connectivity of
Ω(k) on the graph which can be seen by the following example. Take a graph
G with no two vertex disjoint odd cycles and no odd cycle cover of size 2k−1.
Add k

2 vertices that are joined to each vertex of G. The constructed graph is
at least k

2 -connected, has at most k
2 +1 vertex disjoint odd cycles but has no

odd cycle cover of size 2k−1. In view of this construction, it is concievable
that the statement of Theorem 3 holds for k-connected graphs.

Acknowledgement. We want to thank the referee for his careful reading
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