
Pattern Analysis & Applications (2000)3:19–30
! 2000 Springer-Verlag London Limited

Nearest Neighbour Editing and Condensing
Tools–Synergy Exploitation
B. V. Dasarathy1, J. S. Sánchez2 and S. Townsend1

1Dynetics, Inc., Huntsville, AL, USA; 2Department d’Informàtica, Universitat Jaume I, Castelló, Spain

Abstract: The objective of this study has been to explore and exploit the synergy among the Nearest Neighbour (NN) editing and
condensing tools previously reported in the literature in order to facilitate the use of NN techniques in near real-time applications. The
extraordinary progress in the computer field has made NN techniques, once considered impractical from a computational viewpoint,
feasible for consideration in time-constrained, real-world applications. This study accordingly addresses the issue of minimising the
computational resource requirements of NN techniques, memory as well as time, through the use of prototype reduction techniques such
as Minimal Consistent Set (MCS) selection while preserving the performance quality through suitable editing techniques, such as Proximity
Graphs (PG). The tools employed in this investigation are first described briefly. Results of experiments conducted on well known data
sets in the literature with various combinations of editing and condensing tools are then presented and discussed to assess the benefits of
synergy among these tools. These results demonstrate the potential benefits of such synergy, and highlight the desirability of a more
thorough exploration of combinations of other alternative editing and condensing tools that have been reported in the literature over the
past few decades.

Keywords: Editing and condensing tools; Nearest neighbour; Synergy exploitation

1. INTRODUCTION

The advent of the computer revolution of the 1990s, in
terms of inexpensive memory and high processing speeds,
has created a resurgence of interest in Nearest Neighbour
(NN) techniques, and has brought the NN rule to the
forefront as a popular non-parametric classification tech-
nique. Given a set of N previously labelled prototypes (a
training set), this rule assigns a sample to the same class as
the closest prototype in the set, according to a measure of
dissimilarity in the feature space. Apart from other advan-
tages common to most non-parametric classification
approaches, the NN rule and its extension to k neighbours
(or the k-NN rule, in which the k closest neighbours ‘vote’
for the label of the sample) combine their conceptual sim-
plicity with the fact that their asymptotic or infinite sample
size error is less than twice the Bayes classification error [1].

Unfortunately, the NN rules are also saddled with some
significant drawbacks. First, for a large set of prototypes of
high dimensionality, the use of these approaches in real-

Received: 18 January 1999
Received in revised form: 17 May 1999
Accepted: 8 June 1999

time applications becomes computationally burdensome
(although less so than before with the advances made in
the computer industry), due to the large number of distances
to be computed for each test sample. Secondly, the training
set may contain noisy or erroneously labelled prototypes
which usually lead to a decrease in performance.

Two distinct methodologies have been proposed to mini-
mise these problems. The first, which is prototype gener-
ation, creates a new prototype set by using suitably weighted
averages of the original training set. The second category,
Prototype Selection (PS), represents the techniques that are
studied in this paper. PS consists of selecting a particular
subset of prototypes and applying the NN rule using only
the samples selected. Two different families of PS methods
exist in the literature [2,3]. First, the reducing or condensing
algorithms aim at selecting the minimal subset of prototypes
that lead to (approximately) the same performance as the
NN rule using the whole training set [4–8]. Secondly, editing
algorithms eliminate erroneously labelled prototypes from
the original set and ‘clean’ the overlapping among regions
from different classes. These techniques tend to offer
improvements in performance [9–12].

Although the two PS perspectives are not always distinct,
and are indeed largely merged in many studies, it is worth

20 B. V. Dasarathy et al.

mentioning that the heuristic nature of most condensing
algorithms contrasts with the strong statistical foundation of
the most popular edited NN rules. Nevertheless, it has been
observed that asymptotically optimal edited NN rules, such
as the well known Multiedit algorithm [3], may lead to
arbitrarily bad classification results if the number of proto-
types is not large enough compared to the intrinsic dimen-
sionality of the feature space. This makes editing a more
critical problem than condensing. This fact has motivated
a number of improvements and alternatives to classical
editing algorithms for finite sample size problems [13,14].

Another distinction between editing and condensing arises
from the subtle differences in purpose. Since editing is used
to clean erroneously labelled samples from the training set,
the main goal is to improve recognition accuracy by produc-
ing a sterilised set. The fact that a computational advantage
may be gained is a secondary benefit. Condensing, however,
is used primarily for the purpose of reducing the number of
samples to gain a computational advantage. Even though it
is done in a manner that attempts to minimise the change
in recognition accuracy, an unfortunate characteristic of
many condensing procedures is that they can often result
in marginally poorer recognition performance. As a result,
the amount of data set reduction due to editing is often small
when compared to condensing methods, but the recognition
accuracy for edited training sets is better. It is because of
these distinctions that, while editing is often preferable to
the analyst, condensing is of the most practical importance
to the engineer developing a pattern recognition system for
deployment in applications with real-time constraints.

This distinction in purpose and performance between
editing and condensing suggests a synergistic relationship
between them that begs to be exploited. The idea is that,
by using them in conjunction, the improved recognition
induced by editing can be combined with the larger
reduction provided by condensing tools to produce a training
set that is significantly smaller than the original with similar
or better recognition capabilities. This composite approach
improves performance both computationally and in terms of
recognition. In short, it offers the best of both worlds.

The focus of this paper is therefore primarily on exploring
the joint use of editing and condensing methods for the
NN rule, and not on increasing the theoretical knowledge
of NN techniques. An investigation of the practical impli-
cations of jointly using editing and condensing methods is
needed to consider applying the techniques to real-world
problems. The goal is thus to help practitioners in evaluating
the practical use of prototype selection to increase the use
of the NN rule.

More specifically, this work concentrates on the joint
application of the MCS algorithm [8] with the methods
based on Proximity Graphs (PG) [14]. The two methods
appear to be a natural fit, because the MCS algorithm has
been shown to be a robust means of condensing data, with
minimal reductions in accuracy, while the PG-based editing
schemes have been able to produce training sets with
improved accuracy and decent reduction rates for editing.

Another point of investigation in this paper is the

ordering of methods, especially when multiple condensing
methods are used. Normally, editing is applied followed by
condensing, which is the natural order based upon the goals
of cleaning and reduction. The questions arise as to whether
this order matters, and can multiple condensing methods be
used to better improve performance. We investigate these
questions by using one editing and one condensing method,
as well as two condensing methods (a PG-based condensing
method and MCS) in varied sequences. The details of the
PG-based methods and the MCS algorithm are provided in
Sections 2 and 3, respectively. Section 4 provides a descrip-
tion of our experiments, with their results in Section 5.
The final section presents some conclusions and directions
for further research. An appendix detailing the PG method-
ology is also included.

2. PROTOTYPE SELECTION USING
PROXIMITY GRAPHS

Some special cases of PG, such as the Gabriel Graph (GG)
or the Relative Neighbourhood Graph (RNG), have recently
been used to introduce a set of editing and editing-condens-
ing methods [14] for the NN rule. These approaches try to
set a geometrical relation between a sample and some of its

Table 1. Editing/condensing experimental combinations

Experiment Description

TRN No Preprocessing
TRN MCS MCS Only
GG1 GG1 Editing
GG1 MCS GG1 Editing and MCS Condensing
MCS GG1 MCS Condensing and GG1 Editing
GG1C GG1 Editing and PG-condensing
GG1C MCS GG1 Editing, PG-condensing, and MCS Condensing
MCS GG1C MCS Condensing, GG1 Editing, and PG-condensing
GG2 GG2 Editing
GG2 MCS GG2 Editing and MCS Condensing
MCS GG2 MCS Condensing and GG2 Editing
GG2C GG2 Editing and PG-condensing
GG2C MCS GG2 Editing, PG-condensing, and MCS Condensing
MCS GG2C MCS Condensing, GG2 Editing, and PG-condensing
RNG1 RNG1 Editing
RNG1 MCS RNG1 Editing and MCS Condensing
MCS RNG1 MCS Condensing and RNG1 Editing
RNG1C RNG1 Editing and PG-condensing
RNG1C MCS RNG1 Editing, PG-condensing, and MCS Condensing
MCS RNG1C MCS Condensing, RNG1 Editing, and PG-condensing
RNG2 RNG2 Editing
RNG2 MCS RNG2 Editing and MCS Condensing
MCS RNG2 MCS Condensing and RNG2 Editing
RNG2C RNG2 Editing and PG-condensing
RNG2C MCS RNG2 Editing, PG-condensing, and MCS Condensing
MCS RNG2C MCS Condensing, RNG2 Editing, and PG-condensing

21Nearest Neighbour Editing and Condensing Tools–Synergy Exploitation

neighbours in order to improve the performance of the NN
rule by using a suitably reduced set of prototypes.

PG editing consists of applying the general idea of Wil-
son’s algorithm [9], but using the graph neighbours of each
sample instead of the Euclidean or other norm-based dis-
tance neighbourhood. Two samples x and y are graph neigh-
bours in a PG, G = (V,E) if there exists an edge (x, y) !
E between them. Taking into account the definitions of
GG and RNG [15,16], the graph neighbourhood of a given
point requires that no other point lies inside the union of
the zones of influence (i.e. hypersphere or lune of influence)
corresponding to all its graph neighbours. (See Appendix I
for a careful definition of GG and RNG, along with an
algorithm to generate these graph structures.) From this
neighbourhood relation, it seems possible to completely sur-
round a prototype by means of a variable number of neigh-
bours (that is, all its graph neighbours).

The application of PG to editing has some additional
properties as compared to the conventional methods: first,
they consider the number of neighbours as a variable feature
which depends upon every prototype. Secondly, since the
graph neighbourhood of a sample always tends to be widely

Table 2. Recognition accuracies for the Iris database

Recognition accuracy (%)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

TRN 94.67 92.00 96.00 94.67 93.33 94.13
TRN MCS 92.00 90.67 92.00 94.67 94.67 92.80
GG1 94.67 92.00 98.67 94.67 90.67 94.14
GG1 MCS 92.00 97.33 97.33 93.33 92.00 94.40
MCS GG1 61.33 58.67 65.33 33.33 57.33 55.20
GG1C 94.67 92.00 98.67 94.67 90.67 94.14
GG1C MCS 92.00 92.00 97.33 92.00 90.67 92.80
MCS GG1C 61.33 58.67 65.33 0.00 57.33 48.53
GG2 94.67 92.00 98.67 94.67 93.33 94.67
GG2 MCS 92.00 90.67 97.33 94.67 94.67 93.87
MCS GG2 58.67 57.33 65.33 33.33 61.33 55.20
GG2C 94.67 92.00 98.67 94.67 92.00 94.40
GG2C MCS 90.67 89.33 97.33 93.33 90.67 92.27
MCS GG2C 56.00 57.33 65.33 0.00 58.67 47.47
RNG1 94.67 92.00 98.67 94.67 90.67 94.14
RNG1 MCS 97.33 97.33 94.67 94.67 90.67 94.93
MCS RNG1 58.67 57.33 65.33 60.00 58.67 60.00
RNG1C 93.33 90.67 96.00 93.33 92.00 93.07
RNG1C MCS 90.67 89.33 96.00 92.00 90.67 91.73
MCS RNG1C 58.67 57.33 65.33 62.67 58.67 60.53
RNG2 94.67 92.00 98.67 94.67 93.33 94.67
RNG2 MCS 97.33 97.33 96.00 94.67 94.67 96.00
MCS RNG2 52.00 57.33 65.33 61.33 60.00 59.20
RNG2C 92.00 90.67 93.33 93.33 90.67 92.00
RNG2C MCS 93.33 89.33 93.33 92.00 89.33 91.47
MCS RNG2C 52.00 57.33 65.33 61.33 58.67 58.93

distributed around it, the information extracted from samples
close to decision boundaries (where uncertainty is much
higher) may be richer in the sense of the distribution
of prototypes.

The simplest PG editing approach [14] can be summarised
as follows: after computing the graph neighbourhood of every
sample in the input training set, all the graph neighbours of
a sample (instead of just its k nearest neighbours) ‘vote’ for
its class. In other words, all prototypes around a sample
take part in the process of estimating whether it is an outlier
or not, regardless of their actual distance to the sample.

1st order graph neighbourhood editing
Step 1 Construct the corresponding PG by means of the

heuristic approach described in Appendix I.
Step 2 Discard those prototypes that are misclassified by

their graph neighbours (by the usual voting
criterion).

A further refinement of this general idea consists of taking
not only the graph neighbours of a point, but also the
neighbours of the graph neighbours from its same class (i.e.

22 B. V. Dasarathy et al.

some of the second level graph neighbours). Therefore, the
previous algorithm can be modified in the following way:

2nd order graph neighbourhood editing
Step 1 Construct the corresponding PG by means of the

heuristic approach described in Appendix I.
Step 2 For each sample, p, misclassified by its graph neigh-

bours:
Step 2.1 Consider the subgraph, S, given by p

and all its graph neighbours from its
same class.

Step 2.2 Discard p if the graph neighbourhood of
S has a majority of neighbours from a
class other than p.

These editing algorithms have been combined with PG-
based condensing [16] to define an editing-condensing
approach using the same graph [14]. In fact, editing and
condensing are two closely related and complementary tech-
niques [3], and there exist some practical advantages if we
are to apply both editing and condensing using PG
approaches. In particular, computation can be saved if part

Table 3. Training set reduction for the Iris database

Training set reduction (%)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

TRN 0.00 0.00 0.00 0.00 0.00 0.00
TRN MCS 89.33 88.00 84.00 89.33 90.67 88.27
GG1 5.33 5.33 6.67 6.67 4.00 5.60
GG1 MCS 96.00 96.00 93.33 93.33 94.67 94.67
MCS GG1 93.33 92.00 94.67 94.67 94.67 93.87
GG1C 73.33 72.00 82.67 74.67 74.67 75.47
GG1C MCS 94.67 94.67 93.33 93.33 94.67 94.13
MCS GG1C 93.33 92.00 97.33 100.00 94.67 95.47
GG2 0.00 1.33 5.33 2.67 0.00 1.87
GG2 MCS 89.33 88.00 93.33 92.00 90.67 90.67
MCS GG2 92.00 89.33 90.67 94.67 92.00 91.73
GG2C 65.33 65.33 81.33 66.67 68.00 69.33
GG2C MCS 89.33 89.33 93.33 92.00 90.67 90.93
MCS GG2C 93.33 89.33 94.67 100.00 93.33 94.13
RNG1 4.00 4.00 8.00 1.33 1.33 3.73
RNG1 MCS 96.00 96.00 94.67 92.00 96.00 94.93
MCS RNG1 97.33 97.33 93.33 94.67 94.67 95.47
RNG1C 88.00 89.33 94.67 89.33 89.33 90.13
RNG1C MCS 92.00 92.00 94.67 92.00 92.00 92.53
MCS RNG1C 97.33 97.33 97.33 96.00 94.67 96.53
RNG2 2.67 4.00 6.67 1.33 0.00 2.93
RNG2 MCS 96.00 96.00 94.67 92.00 90.67 93.87
MCS RNG2 96.00 97.33 93.33 92.00 93.33 94.40
RNG2C 89.33 89.33 94.67 89.33 89.33 90.40
RNG2C MCS 93.33 92.00 94.67 92.00 92.00 92.80
MCS RNG2C 97.33 97.33 97.33 93.33 94.67 96.00

of the proximity information used for editing can be reused
for condensing.

Note that, to apply PG-based condensing [16] after the
editing algorithms using the same graph structure, the edges
must be recomputed when the discarded prototypes, along
with all their edges, are removed from the graph. After this
obvious step, it may be necessary to add new edges between
pairs of non-neighbouring nodes. Nevertheless, from the
definition of graph neighbours, it seems clear that only pairs
of nodes whose zone of influence held an eliminated node
can have a new edge. Otherwise, the reason which made a
pair of samples non-neighbours still holds after editing.

Bearing this in mind, it is possible to store for each pair
of non-neighbouring nodes the first detected node (hereafter
called the marked node) inside its zone of influence, when
the graph was computed for the first time (that is, before
editing). This makes the selection of new edges much faster,
because only the (few) pairs of nodes whose marked proto-
type has been discarded during editing need to make a
search through the whole set. Thus, the combined editing-
condensing algorithm can be written as follows:

23Nearest Neighbour Editing and Condensing Tools–Synergy Exploitation

Graph neighbourhood editing-condensing
Step 1 Construct the corresponding PG, G = (V,E) and,

for each pair of points (pi, pj) ! E, mark the first
node that lies inside its zone of influence.

Step 2 PG-based editing.
Step 3 Construct the subgraph, G! = (V!, E!), correspond-

ing to non-discarded nodes.
Step 4 For each pair from V!, (pi, pj) ! E! and whose

stored node is not in V! put an edge if no other
node from V! lies inside its zone of influence.

Step 5 PG-based condensing [16] with the recomputed
graph.

3. MINIMAL CONSISTENT SET
SELECTION

MCS selection [8] is based on the concepts of NUNS, the
Nearest Unlike Neighbour Subset [17], which can be looked
upon as an optimal descriptor of the inter-class boundaries.
The NUN subset is defined as the unique set of all samples
which are the nearest unlike neighbours of one or more of

Table 4. Distance measure for the Iris database

Distance measure

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Avg

TRN 0.4733 0.4600 0.4800 0.4733 0.4667 0.4707
TRN MCS 0.6412 0.6318 0.6229 0.6508 0.6554 0.6404
GG1 0.4741 0.4608 0.4945 0.4745 0.4538 0.4715
GG1 MCS 0.6648 0.6836 0.6743 0.6600 0.6600 0.6685
MCS GG1 0.5584 0.5456 0.5751 0.5018 0.5534 0.5445
GG1C 0.5988 0.5841 0.6436 0.6029 0.5873 0.6033
GG1C MCS 0.6600 0.6600 0.6743 0.6553 0.6554 0.6609
MCS GG1C 0.5584 0.5456 0.5861 0.5000 0.5534 0.5355
GG2 0.4734 0.4600 0.4941 0.4735 0.4667 0.4734
GG2 MCS 0.6412 0.6318 0.6743 0.6600 0.6554 0.6525
MCS GG2 0.5456 0.5307 0.5588 0.5018 0.5528 0.5353
GG2C 0.5751 0.5642 0.6394 0.5789 0.5720 0.5856
GG2C MCS 0.6364 0.6317 0.6743 0.6553 0.6411 0.6477
MCS GG2C 0.5442 0.5307 0.5751 0.5000 0.5512 0.5271
RNG1 0.4738 0.4604 0.4950 0.4734 0.4534 0.4711
RNG1 MCS 0.6836 0.6836 0.6694 0.6600 0.6602 0.6713
MCS RNG1 0.5682 0.5648 0.5696 0.5604 0.5569 0.5638
RNG1C 0.6414 0.6364 0.6741 0.6460 0.6412 0.6478
RNG1C MCS 0.6458 0.6412 0.6741 0.6505 0.6458 0.6515
MCS RNG1C 0.5682 0.5648 0.5861 0.5732 0.5569 0.5697
RNG2 0.4735 0.4604 0.4945 0.4734 0.4667 0.4736
RNG2 MCS 0.6836 0.6836 0.6741 0.6600 0.6554 0.6713
MCS RNG2 0.5459 0.5648 0.5696 0.5528 0.5548 0.5571
RNG2C 0.6412 0.6364 0.6647 0.6460 0.6364 0.6449
RNG2C MCS 0.6600 0.6412 0.6647 0.6505 0.6412 0.6515
MCS RNG2C 0.5518 0.5648 0.5861 0.5584 0.5569 0.5632

the given samples. The nearest unlike neighbour of a sample
x ! class A is the sample y " class A of the shortest
distance from x. The properties of NUN sets and other
related topics are covered elsewhere [2,8].

Based on this concept, we can see that for every given
sample, the sufficient condition for its correct classification
(i.e. for consistency) is the presence within MCS of a
sample from its own class that is closer than its NUN
(nearest unlike neighbour). Obviously, many samples inde-
pendently satisfy this sufficiency condition for each given
sample under consideration. This can be looked upon as a
vote of confidence cast by the given sample and received
by such closer-than-NUN samples. The sample with the
most such votes (i.e. the sample that satisfies the consistency
conditions for the most number of samples) therefore rep-
resents the prime candidate for inclusion in a MCS. Once
this is picked, all the samples which were the voters con-
tributing to the selection of the candidate for MCS can be
disregarded from further consideration, and the vote counts
of other candidates are reduced to reflect this. The candidate
with the maximum votes after this update becomes the next
most effective MCS sample. This process is repeated until
all the voters have been taken into account, i.e. until full

24 B. V. Dasarathy et al.

Fig. 1. Plot of average (recognition, reduction) – pairs for the Iris database.

consistency is achieved. It is of course possible that in some
cases, the samples may have only one vote, i.e. of itself. In
such cases, these automatically become MCS candidates. It
is also possible that the voters to another sample may
themselves become candidates for MCS.

Once a candidate MCS set has been identified, it is
necessary to reexamine the problem as the effective NUN
distances are now likely to be larger than before, as some
NUNs are no longer in the subset under consideration.
Thus, there is now scope for reducing the candidate MCS
further. However, for the process to be monotonically reduc-
ing, we have to ensure that the candidate list will only
include samples (other than the last MCS candidates) that
will not create any new inconsistencies (see step 5 under
the algorithmic procedure). This process is thus repeated
until the set size can no longer be reduced.

MCS algorithmic procedure
Step 1 Define an initial consistent set to be the given

training data set.
Step 2 For a specific sample, identify the associated nearest

unlike neighbour and store the distance between
the two samples.

Step 3 For this sample, identify all the neighbouring
samples from its own class in the given data set
which are closer than this NUN distance, and
cast an approval vote to each of these samples in
the given set by incrementing the corresponding
vote registers, while noting this voter’s (sample)
identity by updating the corresponding voter lists.

Step 4 Repeat Steps 2 and 3 for all samples in the given
training set, which results in a list of the number
of votes received by each sample in the given set
along with the records of identity of its voters.

Step 5 Create a potential candidate consistent set con-
sisting of all samples in the given set which are
either (a) already present in the current consistent
set, or (b) whose inclusion will not create an
inconsistency, i.e. the sample should not be nearer
to any member of any other class than that mem-
ber’s current NUN distance.

Step 6 Identify the most voted sample in this candidate
consistent list, designate it as a member of a newly
selected consistent set, and identify all of its con-
tributing voters.

Step 7 Delete these voters from all the voter lists wherein
they currently appear, and correspondingly dec-
rement the appropriate vote counts.

Step 8 Repeat Steps 6 and 7 until all the voters have
been accounted for by the selected consistent set.

Step 9 Now with this selected consistent set, the NUN
distances of the input samples are likely to be
greater than before, as some of the original NUN
samples may no longer be in the selected consistent
set. Accordingly, repeat Step 2 using this selected
consistent set to determine the NUN distance
thresholds for each sample in the given set.

Step 10 Repeat Steps 3 through 8 using all the samples
in the given set to identify a new consistent set.

25Nearest Neighbour Editing and Condensing Tools–Synergy Exploitation

This process of recursive application of Steps 2
through 8 is continued until the selected set is
no longer getting smaller.

4. EXPERIMENTAL INVESTIGATION

To test the hypothesis, trials were conducted based on two
data sets available in the literature. The first was the famous
Iris data set, which consisted of three classes, each with 50
four-dimensional samples. Five unique experimental sets were
created from the Iris data; each was created by partitioning
the 150 samples into 75 training samples and 75 test
samples. The second data set was the phoneme database
used in the ROARS project [18]. The phoneme samples
represent vowels that are divided into nasal (3818 samples)
and oral (1586 samples) classes. Similar to the Iris data,
five unique experimental sets were created. The experiment
consisted of applying the NN rule to each of the ten
experimental sets, where the training portion had been
preprocessed using the editing and condensing combinations
shown in Table 1.

Table 5. Recognition accuracies for the Phoneme database

Recognition accuracy (%)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

TRN 88.56 88.82 88.75 88.27 88.19 88.52
TRN MCS 84.75 85.38 85.86 85.31 85.12 85.28
GG1 87.56 87.12 87.79 87.49 86.27 87.25
GG1 MCS 86.01 86.23 86.71 85.79 85.83 86.11
MCS GG1 83.53 83.90 82.72 83.53 82.72 83.28
GG1C 87.53 86.97 87.79 87.53 86.31 87.23
GG1C MCS 82.83 85.71 86.71 86.64 85.46 85.47
MCS GG1C 83.35 83.79 82.12 83.31 82.38 82.99
GG2 87.97 87.68 87.75 87.56 86.94 87.58
GG2 MCS 85.94 86.82 86.31 86.60 86.38 86.41
MCS GG2 83.90 84.64 83.53 83.97 84.05 84.02
GG2C 87.90 87.64 87.75 87.60 87.05 87.59
GG2C MCS 81.01 86.60 85.79 87.05 86.23 85.34
MCS GG2C 83.60 84.53 82.94 83.79 83.97 83.77
RNG1 88.64 87.82 88.97 87.49 86.05 87.79
RNG1 MCS 85.86 85.90 86.38 84.79 84.01 85.39
MCS RNG1 82.68 82.20 82.27 81.68 81.16 82.00
RNG1C 86.60 85.53 86.64 85.46 83.42 85.53
RNG1C MCS 84.90 73.02 76.39 83.05 82.28 79.93
MCS RNG1C 80.46 80.83 80.72 77.46 78.72 79.64
RNG2 88.71 88.42 88.93 87.71 86.60 88.07
RNG2 MCS 86.49 86.45 86.38 84.97 84.16 85.69
MCS RNG2 82.72 82.57 82.16 82.46 82.31 82.44
RNG2C 86.94 85.71 87.01 86.08 84.23 85.99
RNG2C MCS 80.31 73.61 78.05 83.97 82.53 79.69
MCS RNG2C 80.94 79.68 78.76 75.35 80.38 79.02

From each trial, the reduction in the number of training
samples and the recognition accuracy were recorded. The
percentage reduction of training samples gives a direct meas-
ure of the amount of computational saving, which is the
main goal. However, this reduction must not be made by
compromising the ability of the NN technique to correctly
classify the test set. The recognition accuracy provides a
check on this trade-off. To balance these two competing
goals, a normalised Euclidean distance between each
(Reduction, Recognition) pair and the origin (0% reduction,
0% recognition) was calculated. (Note that this is really a
weighted distance with the weights set to 1. As a conse-
quence, if one of the measures of merit were to be of more
importance in a particular application, then the correspond-
ing weights could be adjusted appropriately to reflect this
bias.) Using this measure, the ‘best’ combination was the
one that produced the largest distance. Another way of
visualising this is to plot the recognition accuracy versus
the reduction percentage, and look for the point that is
closest to the (100%, 100%) corner. For each data set,
tables of the percentage reduction, reduction accuracy and
normalised distance for each trial and an average for each

26 B. V. Dasarathy et al.

of these values over all five experimental sets have been
provided. A plot of the percentage reduction verses
reduction accuracy for the average values are also given.

5. EXPERIMENTAL RESULTS

For the Iris data (see Tables 2–4 and Fig. 1), the editing-
condensing combinations provide 50–80% more reduction
than editing alone. Of the individual combinations, the PG
editing and MCS condensing provide a greater reduction
than PG-based editing and condensing. These techniques
also provide comparable recognition accuracies, so that over-
all they provide the best performance (using the normalised
distance as the measure). By applying the condensing first,
in the form of MCS, or by using both forms of condensing,
slightly higher reduction rates can be obtained, but the
associated loss in recognition accuracy more than offsets the
advantage. This can be seen with a direct comparison of
normalised distances, or in the plot, where the PG editing-
condensing-MCS and MCS first symbols are offset from the
associated PG-editing-MCS symbols. The results also indi-
cate that condensing alone provides ‘better’ results than

Table 6. Training set reduction for the Phoneme database

Training set reduction (%)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

TRN 0.00 0.00 0.00 0.00 0.00 0.00
TRN MCS 78.05 78.16 78.05 77.68 77.65 77.92
GG1 12.73 13.29 12.92 13.06 13.62 13.12
GG1 MCS 90.93 91.08 90.93 90.86 91.67 91.10
MCS GG1 88.38 88.16 88.93 87.97 87.19 88.13
GG1C 67.25 68.17 67.73 67.58 70.32 68.21
GG1C MCS 91.04 90.82 90.64 90.86 91.78 91.03
MCS GG1C 91.97 90.82 91.27 90.60 90.16 90.96
GG2 8.88 8.96 9.03 9.07 9.66 9.12
GG2 MCS 88.42 89.05 89.23 88.79 89.67 89.03
MCS GG2 86.27 85.83 86.68 85.83 85.34 85.99
GG2C 62.69 63.47 63.21 63.40 65.80 63.72
GG2C MCS 88.79 88.79 89.16 89.12 89.93 89.16
MCS GG2C 90.04 89.08 89.53 88.79 88.19 89.13
RNG1 10.36 10.47 9.81 9.47 8.85 9.79
RNG1 MCS 89.79 89.90 89.16 89.45 88.90 89.44
MCS RNG1 90.38 91.15 90.86 89.75 88.79 90.19
RNG1C 82.20 82.16 82.27 82.31 81.64 82.12
RNG1C MCS 89.86 90.04 89.60 89.53 89.30 89.67
MCS RNG1C 95.08 95.78 95.26 94.45 94.19 94.95
RNG2 6.55 6.62 5.88 6.14 5.85 6.21
RNG2 MCS 87.64 87.71 86.82 87.45 86.68 87.26
MCS RNG2 88.53 89.45 88.56 87.16 86.23 87.99
RNG2C 79.39 79.31 78.13 79.09 79.02 78.99
RNG2C MCS 87.93 88.19 87.27 87.53 87.64 87.71
MCS RNG2C 93.93 94.93 94.15 93.30 92.30 93.72

editing alone, underscoring why condensing is of such impor-
tance to engineers building real world pattern recognition
systems.

The phoneme data (see Tables 5–7 and Fig. 2) indicates
similar results with a couple of interesting differences. Any
of the editing condensing combinations provide more
reduction than editing alone (65–90% addition reduction)
with comparable recognition accuracies. In fact, condensing
often provides better recognition than editing alone. Again,
the PG editing and MCS condensing achieve a higher
reduction rate with similar recognition accuracies to the PG
editing and condensing, and thus achieve the best results
in terms of normalised distance. Also like the Iris data, the
use of multiple condensing methods produced degraded
results as compared to using only PG editing and MCS. In
the phoneme data, however, this degradation is in terms of
not only lower recognition accuracies, but also lower
reduction rates. At first glance, this does not make sense
because it would be expected that additional condensing
would reduce the number of samples even more. The reason,
however, is that when one of the condensing methods is
applied, it changes the structure of the set on which the
other method will work. For example, when PG condensing

27Nearest Neighbour Editing and Condensing Tools–Synergy Exploitation

Table 7. Distance measure for Phoneme database

Distance measure

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Avg

TRN 0.4428 0.4441 0.4438 0.4414 0.4410 0.4426
TRN MCS 0.5761 0.5788 0.5802 0.5769 0.5761 0.5776
GG1 0.4424 0.4406 0.4437 0.4423 0.4367 0.4411
GG1 MCS 0.6258 0.6271 0.6282 0.6248 0.6279 0.6268
MCS GG1 0.6080 0.6085 0.6073 0.6066 0.6009 0.6063
GG1C 0.5519 0.5525 0.5544 0.5529 0.5566 0.5537
GG1C MCS 0.6154 0.6244 0.6272 0.6277 0.6271 0.6244
MCS GG1C 0.6206 0.6178 0.6139 0.6154 0.6106 0.6157
GG2 0.4421 0.4407 0.4411 0.4401 0.4374 0.4403
GG2 MCS 0.6165 0.6218 0.6207 0.6201 0.6226 0.6203
MCS GG2 0.6017 0.6027 0.6019 0.6004 0.5989 0.6011
GG2C 0.5398 0.5410 0.5407 0.5407 0.5456 0.5416
GG2C MCS 0.6009 0.6201 0.6186 0.6229 0.6230 0.6171
MCS GG2C 0.6143 0.6140 0.6102 0.6104 0.6089 0.6116
RNG1 0.4462 0.4422 0.4475 0.4400 0.4325 0.4417
RNG1 MCS 0.6212 0.6217 0.6207 0.6163 0.6116 0.6183
MCS RNG1 0.6125 0.6137 0.6129 0.6068 0.6015 0.6094
RNG1C 0.5970 0.5930 0.5974 0.5933 0.5836 0.5929
RNG1C MCS 0.6181 0.5797 0.5887 0.6106 0.6071 0.6008
MCS RNG1C 0.6228 0.6266 0.6243 0.6107 0.6138 0.6196
RNG2 0.4448 0.4433 0.4456 0.4396 0.4340 0.4415
RNG2C MCS 0.6157 0.6158 0.6124 0.6097 0.6041 0.6115
MCS RNG2 0.6058 0.6087 0.6040 0.5999 0.5960 0.6029
RNG2C 0.5887 0.5839 0.5847 0.5845 0.5775 0.5838
RNG2C MCS 0.5954 0.5744 0.5854 0.6065 0.6019 0.5927
MCS RNG2C 0.6200 0.6197 0.6138 0.5996 0.6120 0.6130

is applied to a set it ‘cleans’ up the set by removing
erroneous samples. Since the ‘clean set’ and the original set
have different internal structures (especially the NUN set),
MCS may produce different consistent sets for them, with
the ‘clean’ version being larger due to the altered NUN set
inducing less removals. Another difference that should be
pointed out is the significant degradation in recognition
accuracy that occurs when MCS is applied first.

6. CONCLUDING REMARKS

The enormous progress in the computer industry over the
past decade has made the deployment of nearest neighbour
techniques in real-time applications a feasible proposition.
However, making what is feasible truly practical requires
additional creative thinking in the use of NN methodology.
It is therefore advisable, from a practical viewpoint of min-
imising storage space and classification time, to identify the
smallest possible sized prototype set. Nevertheless, theory
dictates large training sets in order to approach optimal
recognition accuracy. On the other hand, the presence of
mislabelled prototypes can strongly degrade the classification
accuracy. Thus, a trade-off between classification accuracy

and training set size would offer the best compromise. Taking
into account both issues, some preliminary conclusions can
be drawn from the experiments. In general, PG-based editing
achieves a high enough classification accuracy, but retains
a very large number of prototypes. It seems that the use of
PG without any condensing is of no practical value, since
it would not meet the underlying real-world requirements
for NN deployment in terms of a significant reduction in
computational demands.

For both databases, the experiments indicated that the
combination of PG editing with MCS condensing produce
the best results in terms of balancing data set reduction for
implementation purposes with recognition accuracy. While
the choice of the particular PG editing technique is
important when using combined PG editing-condensing, its
effect is minimal when used in conjunction with MCS
condensing. In fact, different ‘best’ performers were observed
for each data set. All four were comparable, however, for
both databases.

The results for the Iris and phoneme data sets both
supported the conjecture that editing should be done before
condensing. While the phoneme data results indicated the
difference is only marginal, the Iris data showed the perform-
ance loss could be significant. This provides not only a

28 B. V. Dasarathy et al.

Fig. 2. Plot of the average (recognition, reduction) – pairs for the Phoneme database.

conceptual, but an experimental validation for using the
editing-condensing order of application.

A final indication from the experiments, and perhaps the
most surprising, is that using PG condensing and MCS
condensing together not only fails to improve results, but
can make them worse. A drop in recognition accuracy would
have been foreseen, although probably not at the levels
observed in the data, but the drop in the reduction rate
that occurred with the Iris data was a surprise. This under-
scores the delicate balance that exists in using editing and
condensing methods. The choice of methods must be studied
to determine which are the best for a given application.

As a final comment, it should be pointed out that the
computational run-time performance of the training phase
algorithms has not been discussed. This was ignored, since
PS is carried out just once prior to the implementation of
a recognition system using the NN rule. Once the system
has been trained, these computations need not be repeated.
Hence, as long as the algorithms are computationally feas-
ible, these relative orders of magnitude are unimportant.
The computational requirements may be of relevance if
an adaptive training of the pattern recognition system is
contemplated. Hence, it should be pointed out that the PG
method is much more computationally intense (by orders of
magnitude) than MCS condensing. While it may be feasible
to implement MCS condensing in a real or near real-time
system, PG editing could not be used due to the O(dn2)
expected complexity in calculating the initial PG (where n
is the number of samples and d is the dimensionality).

While this work had focused on examining the benefits
of using specific editing and condensing techniques in com-
bination, there are other combinations that could be investi-

gated. The results presented here should be viewed as a first
step toward a more complete understanding of how to
exploit the synergy between editing and condensing, through
the identification of the optimal techniques for such exploi-
tation.

References

1. Cover TM, Hart PE. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory 1967; 13:21–27

2. Dasarathy BV. Nearest neighbor (NN) norms: NN pattern
classification techniques. IEEE Press, Los Alamitos, CA, 1990

3. Devijver PA, Kittler J. Pattern Recognition: A statistical
approach. Prentice Hall, Englewood Cliffs, NJ, 1982

4. Hart PE. The condensed nearest neighbor rule. IEEE Trans-
actions on Information Theory 1968; 14(3):515–516

5. Swonger CW. Sample set condensation for a condensed nearest
neighbor decision rule for pattern recognition. Frontiers of
Pattern Recognition Ed. S. Watanabe, Academic Press. 1972:
511–519

6. Gowda KC, Krishna G. The condensed nearest neighbor rule
using the concept of mutual nearest neighborhood. IEEE Trans-
actions on Information Theory 1979; 24(4):488–490

7. Fukunaga K, Mantock JM. Nonparametric data reduction. IEEE
Transactions on Pattern Analysis and Machine Intelligence
1984; 6(1):115–118

8. Dasarathy BV. Minimal consistent subset (MCS) identification
for optimal nearest neighbor decision systems design. IEEE
Transactions on Systems, Man and Cybernetics 1994; 24:511–
517

9. Wilson DL. Asymptotic properties of nearest neighbor rules
using edited data. IEEE Transactions on Systems, Man and
Cybernetics 1972; 2:408–421

29Nearest Neighbour Editing and Condensing Tools–Synergy Exploitation

10. Tomek I. An experiment with the edited nearest-neighbor rule.
IEEE Transactions on Systems, Man and Cybernetics 1976;
6(6):448–452

11. Penrod CS, Wagner TJ. Another look at the edited nearest
neighbor rule. IEEE Transactions on Systems, Man and Cyber-
netics 1977; 7(2):92–94

12. Broder AZ, Bruckstein AM, Koplowitz J. On the performance
of edited nearest neighbor rules in high dimensions. IEEE Trans-
actions on Systems, Man and Cybernetics 1985; 15(1):136–139

13. Kuncheva L. Editing for the k-nearest neighbors rule by a
genetic algorithm. Pattern Recognition Letters 1995; 16:809–814

14. Sánchez JS, Pla F, Ferri FJ. Prototype selection for the nearest
neighbor rule through proximity graphs. Pattern Recognition
Letters 1997; 18:507–513

15. Jaromczyk JW, Tourssaint GT. Relative neighborhood graphs
and their relatives. Proceedings of the IEEE 1992; 80:1502–1517

16. Toussaint GT, Bhattacharya BK, Poulsen RS. The application
of Voronoi diagrams to nonparametric decision rules. Computer
Science and Statistics 1985:97–108

17. Dasarathy BV. Nearest unlike neighbor (NUN) – an aid to
decision confidence estimation. Optical Engineering 1995; 34(9):
2785–2792

18. Alinat P. Periodic progress report 4: ROARS project ESPRIT
II 5516. Thomson Report 1993

Belur V. Dasarathy, Senior Principal Engineer at Dynetics, Inc., Huntsville,
Alabama, USA, is engaged in R&D in the areas of pattern recognition, infor-
mation fusion and related topics for the design and development of automated
intelligent decision systems in defence and civilian applications. He is the editor-
in-chief of Information Fusion, being launched in 1999 by Elsevier Science. He
was the editor of several special issues on sensor fusion in the Optical Engineering
Journal. He earned his PhD at the Indian Institute of Science, Bangalore, India,
where he later served as one of the founding faculty at the School of Automation
under the Electrical Sciences Division. He was honored in 1997 as the IEEE
Region 3 Outstanding Engineer. Dr Dasarathy has over 170 publications and is
the author of three IEEE Computer Society Press books: Decision Fusion, Nearest
Neighbor (NN) Norms: NN Pattern Classification Techniques, and Image Data
Compression: Block Truncation Coding.

J.S. Sánchez received his MSc in computer science from the Technical University
of Valencia in 1990, and his PhD in computer science engineering from the
University Jaume I in 1998. Dr Sánchez is currently an Assistant Professor at
the Department of Computer Science of the University Jaume I. His main
research interests include pattern recognition, machine learning and computational
geometry, particularly as applied to neighbourhood-based classification.

Sean Townsend received his masters degree in mathematics from the University
of Kentucky in 1997. Mr Townsend is presently employed at Dynetics, Inc.,
Huntsville, Alabama, USA, as a Systems Analyst. His interests include pattern
recognition, graph theory, coding theory, and sparse linear systems.

Correspondence and offprint requests to: Dr B.V. Dasarathy, Dynetics Inc., PO
Box 5500, Huntsville, AL 35814–5500, USA. Email: belur.d!dynetics.com

APPENDIX I

Let X = {x1, %, xn} be a set of points in Rd, where n is
the number of prototypes and d is the dimensionality of the
feature space. A proximity graph, G(V,E), is an undirected
graph with the set of vertices V = X, and a set of edges,

E, such that (xi, xj) ! E if and only if xi and xj satisfy
some neighbourhood relation. In this case, we say that xi

and xj are graph neighbours. The graph neighbours of a
given point constitute its graph neighbourhood. The graph
neighbourhood of a subset, S ! V, consists of the union of
the graph neighbours of every node in S.

The proximity graphs used in this work are the GG and
the RNG. Only essential concepts needed in this paper are
reproduced here. Definitions for and properties of these
structures are widely available in the literature [15,16].

Let d(·,·) be the Euclidean distance in Rd. The GG is a
proximity graph with the set of edges defined as follows:

(xi, xj) ! E ⇔ d2(xi, xj)
" d2(xi, xk) + d2(xj, xk) "xk ! X, k # i, j

In this case, xi, xj are said to be Gabriel neighbours. Its
geometric interpretation is based on the concept of the
hypersphere of influence between xi and xj: that is, two
points are Gabriel neighbours if and only if there is no
other point from X laying in the hypersphere centred at
their middle point, and whose diameter is the distance
between them.

On the other hand, the set of edges in the RNG is
defined as follows:

(xi, xj) ! E ⇔ d(xi, xj)
" max [d(xi, xk), d(xj, xk)] "xk ! X, k # i

Now, xi, xj are said to be relative neighbours. An equivalent
definition is based on the concept of lune [7], defined as
the disjoint intersection between two hyperspheres centred
at xi and xj, and whose radii are equal to the distance
between them. Two points are relative neighbours if and
only if their lune does not contain other points from X.

It is always possible to construct any of these graphs once
all the graph neighbours of the input data set are known.
These graph neighbours can be computed exhaustively by
using the brute-force method (i.e. by testing all pairs of
prototypes), with a complexity of O(dn3).

Nevertheless, in the case of the GG and RNG, the
number of pairs of graph neighbours in a set of n points is,
in general, very much less than the total number of pairs
n(n#1)/2 considered in the brute-force method. Thus, if by
some means we can reduce the number of pairs to be tested
for graph neighbours, then the brute-force method will be
even more efficient. This goal can be achieved with a
heuristic approach [16], which considerably reduces the num-
ber of pairs to be tested, and whose computational cost is
believed to be closer to O(dn2).

Let us consider a set of points X. Let p be a point of the
set whose graph neighbours we are interested in. Consider a
point q ! X. Draw a line B(p,q) through q, which is
perpendicular to the line joining p to q. Let LH(B, p) be
the half-space determined by B(p,q), which contains the
point p. Let RH(B,p) be the half-space which does not
contain the point p. Then, no point of the set in RH(B,p)
can be a graph neighbour of p.

Using the above heuristic, the algorithm to generate the
GG or the RNG can be written as follows:

30 B. V. Dasarathy et al.

Heuristic algorithm
For each point pi of the given input set X do:.

Step 1 Start with Ni = {p1, p2, %, pi#1, pi$1, %, pn}
as the set of potential graph neighbours of the
point pi.

Step 2 For each potential graph neighbour pr ! Ni do
Step 3.

Step 3 For each point pk ! X, pk # pi # pr do:
(i) Test whether pk lies inside the hyper-

sphere (or lune) of influence determ-
ined by pi and pr. If so, remove pr

from the set Ni and go to Step 2
with a new potential graph neighbour.

(ii) If pk is contained in Ni, then test
whether pr lies inside the hypersphere
(or lune) of influence between pi and
pk. If so, remove pk from the set Ni.

Step 4 Accept the remaining points of the set Ni as the
graph neighbours of pi.

