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ABSTRACT

Hough proposed an algorithm for detecting lines in pictures. His algorithm, based on

a slope-intercept parameterization of lines, was improved by Duda and Hart through

the use of angle-radius parameterization. When pictures contain random noise that

cannot be removed, the Duda-Hart procedure can yield unsatisfactory results. This

paper presents two modifications of that procedure which compensate for noise. One

method is applicable when the distribution of the noise is known and the other can be

used when it is not. The proposed modification is also illustrated for circle detection.

Picture processing, Pattern recognition, Detection in noise, Geometrical probability.

1.  Introduction

An important and frequently occurring problem in digital image processing is the detection

of straight lines. In a simple version of this problem the digitized image contains a set of black

points, representing one or more lines, lying on a white background. The problem is then one of

detecting the presence of collinear points.

Rosenfeld(1) described an interesting method proposed earlier by Hough(2) in which the black

points are transformed into lines in a slope-intercept parameter space. Duda and Hart(3) showed

that the unboundedness of the slope and intercept complicates the application of Hough’s tech-

nique and suggested the angle-radius parameterization as a solution to this problem.

Duda and Hart’s procedure works acceptably well with pictures that are relatively noise-free.

Furthermore, with pictures that contain essentially unbroken lines, spurious noise can be removed

by standard techniques before the procedure is applied. However, when pictures contain discontin-

uous lines or lines composed of non-adjacent black points (as in the case of bubble-chamber pho-

tographs of particle tracks) the noise removal techniques fail because they remove the dotted lines

as well.
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2.  The Duda-Hart Procedure

Before describing our modifications it is instructive to review the procedure of Duda and

Hart(3). Their procedure, as well as ours, is based on the normal parameterization of a line. Such a

parametrization specifies a straight line by its distance ! from the origin and the angle " of its nor-

mal.

Computational efficiency is realized by specifying an acceptable tolerance in ! and " and

quantizing the !-" plane into a quadruled grid. If we quantize ! to take on m values and " to take

n values, then the !-" plane has the capacity to specify n x m different lines. The line detection

procedure is implemented by considering the quadruled grid as a two-dimensional histogram or ar-

ray of accumulators. The procedure is illustrated in Fig. 1 where the original picture, in this case a

dotted line and some noise, is displayed on a circular retina of radius one, centered at the origin.

In Fig. 1 ! is quantized uniformly into 10 levels which are marked off on the !-axis. For each

quantized value of " a one-dimensional histogram is obtained by projecting all the picture points

to the !-axis of the corresponding " value and counting the number of points that fall in each cell.

Fig. 1 illustrates this process for two values of ": "i in Fig. 1(a) and "j in Fig. 1(b). To complete the

line detection procedure we need only specify a suitable threshold for the histogram counts. If the

count in a particular cell in the !-" histogram exceeds the threshold, a line is detected and specified

by the ! and " values of the corresponding cell.

Duda and Hart suggested that their line detection procedure could be extended to detect other

curves. As an example they consider detecting circles by choosing a parametric representation, a-

b-r, for the family of all circles having centers within the retina, where a and b are the Cartesian

coordinates of the center point of a circle, and r is the radius. The process can be implemented ef-

ficiently by using a three-dimensional array of accumulators representing the three-dimensional

parameter space. A circle can be detected by looking for a high count in the accumulator array,

where the counts are obtained by going to each quantized value of (a,b), computing all the distanc-

es from the picture points to (a,b), and recording these distances on a quantized r axis. Kimme et

al.(4) applied a similar procedure to the detection of chest tumors.

3.  The Modification When Noise is of Known Distribution

Consider first the problem of detecting lines on a circular retina with independent, additive,

uniformly distributed random noise, and suppose we were to apply Duda and Hart’s procedure to

a picture containing only noise and no lines. For any given angle ", the counts for the small-mag-

nitude ! values will be considerably higher than for those further away from the center because

larger regions of the retina project to the middle portions of the !-axis. This is undesirable, for if

high histogram counts are used to indicate the presence of lines, we would hope that a retina con-

taining nothing but noise would yield a histogram with roughly equal counts for each sub-interval.

In fact, the high counts near the center can actually overshadow the increased counts that result

from a line near the outskirts of the retina, as illustrated by the histogram for uniform quantization

in Fig. 2.

This tendency of ! to assume values close to zero is explicitly described by its probability

density function:    -1 < y < 1.f ! y( )
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Fig. 1 A picture abd corresponding histograms for two angles illus-

trating the Duda-Hart line detection procedure. (cont. next page)
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Fig. 1 continued)
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It is knowledge of this density that enables us to compensate for the noise, by changing the

quantization of the !-axis from equal-length sub-intervals to equal probability sub-intervals. This

is maximum entropy quantization.

To partition the interval (-1, +1) into m equal-probability sub-intervals, we should obtain the

sub-interval endpoints -1 = x0 < x1 < x2 <...< xm-1 < xm = 1 for which the probability P(xi-1 < ! <

xi) = 1/m, or equivalently, for which F!(xi) = i/m i = 0, 1,..., m, where F!(x) is the cumulative dis-

tribution function of !. To actually determine in which sub-interval a particular !j occurs, we need

not search through the above-mentioned xi’s. Instead, the sub-interval 0, 1,..., m-1 can be directly

obtained by computing the greatest integer less than mF!(y) for y - !j. With this technique the com-

putation involved does not grow as the number of sub-intervals used increases and it can be faster

than searching through a large number of sub-interval end-points.

Now consider the problem of detecting circles, also against a background of uniform noise.

For each point (a,b) the noise induces a distribution for r that depends on the distance

of (a,b) from the origin. The density function of r is given by

where W = (1 - z2 - d2)/2d and q = (1 - z2 + d2)/2d. This density function is illustrated in Fig. 3 and

is quite peaked for some values of d. These peaks might well overshadow the presence of some

circles, and can be compensated for by using a maximum entropy quantization of r.

4.  The Modification When Noise is of Unknown Distribution

For a given quantization, the count, h, observed in any cell can be standardized by replacing

h with (h - µ)/" where µ and " are the mean and standard deviation, respectively, of h. By doing

this we give each cell a more equal opportunity to “show off” any high count it may have.

Given # or (a,b) in the case of the line or circle detection, respectively, estimate for each

quantization interval the probability, p, that a picture point is projected to that interval. This esti-

mate, p, can be obtained from pictures containing only background or noise and no lines nor cir-

cles. Then for that cell, h has µ = Np and " = [Np(1-p)]1/2 where N is the number of points in the

picture.

It should be noted that this second modification can also be used when the distribution of the

noise is known, in which case p is obtained from the distribution induced on ! or r.

5.  Discussion and Conclusions

From a statistical standpoint the count for each histogram cell can be viewed as a binomial

random variable with parameters N and p. Detecting a structure then becomes a matter of rejecting

the null hypothesis that a particular accumulator count is indeed binomial (N,p). The threshold used
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Fig. 2(a) 1000 noise points and a line consisting of 50

points at ! = -0.65 and " = 2.356 radians.
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Fig. 2(b) Histograms for picture in (a), when ! = 2.356 radi-

ans, for uniform and maximum entropy quantization.
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to distinguish high counts then determines the confidence level with which we reject the null hy-

pothesis. With maximum entropy quantization each cell count has the same binomial distribution

and, hence, the same threshold applied to different cells reflects the same confidence level. With

the second compensation method each cell count, h, can have a different binomial distribution.

However, as N gets large, the modified counts (h - µ)/! all approach the standard normal distribu-

tion. Hence, in our second procedure, the same threshold applied to different cells reflects the same

confidence level in the limit.

It is clear that the procedures in this paper can be extended to the detection of any structure

or pattern for which a parameterization exists. The effects of noise on the parameters can be deter-

mined theoretically, or the probabilities associated with each of the cells can be estimated from da-

ta. In either case, once these effects have been characterized the detection procedure can be made

to compensate for them.

6.  Summary

Hough proposed an algorithm for detecting lines in pictures. His algorithm, based on a slope-

intercept parameterization of lines, was improved by Duda and Hart through the use of an angle-

radius parameterization. Duda and Hart’s procedure works acceptable well with pictures that are

relatively noise-free. When pictures contain noise that cannot be removed, however it can yield un-

satisfactory results. This paper presents two approaches to compensate for noise. One approach is

applicable when the distribution of the noise is known. Knowledge of the distribution allows us to

compensate for the noise by producing a histogram through maximum entropy quantization. The

second approach can be used when nothing is known about the noise. In this case histogram counts

are first estimated with pictures containing only background or noise. These estimates are then sub-

sequently used for standardizing the counts obtained in regular pictures. The proposed approach is

illustrated for the case of line and circle detection on a circular retina containing independent, ad-

ditive, uniformly distributed random noise.

7.  Acknowledgment

The second author proposed the Duda-Hart procedure as a test for random number genera-

tors. George Marsaglia pointed out that such a test was inadequate because it did not take into ac-

count the distribution of ", and suggested that the Duda-Hart procedure could be improved. This

was the motivation for the work presented here.

8.  References

1. A. Rosenfeld, Picture Processing by Computer, Academic Press, NY (1969).

2. P. V. C. Hough, Method and means for recognizing complex patterns, U.S. Patent

3,069,654. Dec. (1962).

3. R. O. Duda and P. E. Hart, Use of the Hough transformation to detect lines and curves in

pictures, Comm. ACM 15, 11-15 (1972).

4. C. Kimme, Finding circles by an array of accumulators, Comm. ACM 18, 120-122 (1975).



- 9 -

Fig. 3 The density function governing r for six values of d.


