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Abstract

Non-parametric decision rules, such as the nearest neighbor (NN) rule, are attractive

because no a priori knowledge is required concerning the underlying distributions

of the data. Two traditional criticisms directed at the NN-rule concern the large

amounts of storage and computation involved due to the apparent necessity to store

all the sample (training) data. Thus there has been considerable interest in “editing”

or “thinning” the training data in an attempt to store only a fraction of it. Previous

editing algorithms suffered from the drawback that they delivered edited sets that

were not decision-boundary consistent, i.e., the decision boundary determined by

the edited set differed from that specified by the entire original training data. In this

paper several geometric methods based on proximity graphs are proposed for edit-

ing the training data for use in the NN-rule. Most notably, one of the methods yields

a decision-boundary consistent edited set and therefore a decision rule that pre-

serves all the desirable convergence properties of the NN-rule that is based on the

original entire training data. The methods are all derived from the Voronoi diagram

of the sample data and make use of subgraphs of the Delaunay triangulation. The

methods are compared empirically through experiments on synthetic data as well as

real world data in the automatic detection of cervical cancer. Finally, algorithms for

the efficient implementation of these techniques are discussed.

1. Introduction

In computer vision and pattern recognition problems it is often required to make a decision

of class membership for a given unknown object on the basis of some numerical information ob-

tained by making measurements (observing features) on the object at hand. Let each of the objects

to be classified belong to one of M classes denoted by Ci, i=1, 2,..., M. Let P(Ci) denote the a priori

probability of occurrence of objects belonging to class Ci. Let X = (x1, x2,..., xd), X ! Rd, denote
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the set of d measurements made on an object and let p(X|Ci) denote the probability density function

of X given that the pattern on which X was observed belongs to class Ci. Then it is well known that

the decision rule that minimizes the expected probability of error (miss-classification) in making a

decision on X is to choose class Ci if: p(X|Ci)P(Ci) > p(X|Cj)P(Cj) for all j " i. It is also well known

that the resulting Bayes (optimal) probability of error, denoted by Pe is given by the expression:

To be able to use the above Bayes (optimal) decision rule it is required to know the a priori

probabilities P(Ci) and the class conditional probability density functions p(X|Ci) for all i. When

these are not known one may resort to the use of non-parametric decision rules such as the nearest

neighbor decision rule (NN-rule).

In the non-parametric classification problem we have available a set of n feature vectors

taken from a collected data set of n objects (patterns) denoted by {X,#} = {(X1,$1), (X2,$2),...,

(Xn,$n)}, where Xi and $i denote, respectively, the feature vector on the ith object and the class

label of the ith object. The labels $i are assumed to be correct and are taken from the integers

{1,2,...,M}, i.e., the patterns may belong to one of M classes. One of the most attractive non-para-

metric decision rules is the so-called nearest-neighbor rule (NN-rule) [CH67], [De81]. Let X be a

new object (feature vector) to be classified and let Xk
*!{X1, X2,..., Xn} be the feature vector closest

to X, where closeness is measured by, say, the Euclidean distance between X and Xk
* in Rd. The

nearest neighbor decision rule classifies the unknown object X as belonging to class $k
*. Let Pe

n

(NN) = Pr{$!"!$k
*} denote the resulting probability of misclassification (error), where $ is the

true class of X, and let Pe (NN) denote the limit of Pe
n (NN) as n approaches infinity. It has been

shown by Cover and Hart [CH67] that as n goes to infinity the asymptotic nearest neighbor error

is bounded in terms of the Bayes error by:

Therefore the asymptotic probability of error of the nearest neighbor rule is close to opti-

mal. Furthermore, with a suitable modification of the NN-rule we can obtain a probability of error

as close to optimal as desired. Such a modification (the k-NN rule) will be discussed in the conclu-

sion.

 In proving the above result Cover and Hart [CH67] had some restrictions on the underlying

distributions but more recently Devroye [De81] and Stone [St77] proved the above results for all

distributions. These bounds, together with the transparent simplicity of the rule, make the rule very

attractive. However, the apparent necessity to store all the data {X,#} and the resulting excessive

computational requirements, have discouraged many researchers from using the rule in practice.

     In order to combat the storage problem, and resulting computation, many researchers,

starting with Hart [Ha68], proposed schemes for “editing” the original data {X,#} (also referred

to as “reducing,” “thinning,” “condensing,” “pre-processing” and “prototype selection”) so that

fewer feature vectors need be stored. Denote the edited subset of {X,#} by {X,#}E. At least a doz-

P
e

1 max
i

p X C
i

!" # P C
i

" #$ % dX

%–

%

&–=

P
e

P
e

NN" # P
e

2 M
P

e

M 1–
--------------' (

) *
–+ +



- 3 -

en other examples of editing schemes have been proposed [Ri75], [To76a], [To76b], [Sw72],

[GK79], [FP70], [Ul74], [Ga72], [Ch74], [FM84], [Ol79]. Most recently neural networks have

been used to select the prototypes to be used in the nearest neighbor rules [Ya93], [YM91]. All

these techniques have several properties in common. For one, most are sequential in nature and the

resulting {X,#}E is a function of the order in which {X,#} is processed. Secondly they all attempt

to obtain an edited set that will determine only approximately the original decision boundary in Rd

that is determined by {X,#}. To this end they use heuristics which complicate the algorithms, in

some cases requiring a great deal of computation if a minimal-size edited set is required, and gen-

erally result in rather involved procedures that are very difficult to analyze theoretically. Further-

more, it has been shown that obtaining minimal size edited sets with some of these editing algo-

rithms is NP-complete [Wi92]. While some of the schemes [Ha68] result in an edited set that is

training-set consistent (i.e., {X,#}E classifies all objects in {X,#} correctly), none of them yield

an edited set which is decision-boundary consistent (i.e., {X,#}E defines precisely the same deci-

sion boundary in Rd as {X,#}). Thus with these editing schemes we have not only the disconcert-

ing fact that {X,#}E does not implement the originally intended decision boundary, but we do not

even know the relationship that exists, if any, between the resulting {X,#}E and one that is deci-

sion-boundary consistent.

In this paper we propose several new methods for editing the data for the NN-rule and com-

pare them theoretically and experimentally, with respect to (1) storage requirements, (2) computa-

tion time and (3) resulting probability of misclassification, to the exhaustive (full training set) rule.

The proposed approaches are based on well-known graph structures that are first computed on

{X,#}. The graph structures are proximity graphs obtained from the Voronoi diagram of {X,#}.

The methods have the merit that they are exact and yield edited sets independent of the order in

which the data are processed. Furthermore, one method yields edited sets which are not only both

training-set and decision-boundary consistent, but also of minimal size when the input data {X,#}

is given in general position. The methods are compared empirically through experiments on syn-

thetic data as well as real world data for the problem of the automatic detection of cervical cancer.

Finally algorithms are given for obtaining the edited sets efficiently.

2. The Voronoi Diagram Approach

2.1 A Geometric Look at the Nearest Neighbor Rule

     We shall explain and illustrate most concepts in the plane for simplicity of notation and

in the interest of clarity. However, the arguments extend to higher dimensions. Indeed, the crucial

theorems will be proved in Rd. Let {X,#} consist of the 20 planar points which are correctly clas-

sified as either class 1 or class 2 points (see Fig. 1). The points denoted by solid dots belong to class

1 and those denoted by empty squares belong to class 2. The nearest-neighbor decision boundary

(NN-boundary) is defined as the boundary of a subdivision of space which separates the data points

of {X,#} into two sets associated with each of the two classes in such a way that any point on the

NN-boundary is nearest (and equally close) to at least two data points of {X,#} that belong to dif-

ferent classes. Fig. 1 shows the NN-boundary determined by the 20 data points shown. The plane

is thus partitioned, for the data points shown in Fig. 1, into two disjoint regions such that all the

data points in one region belong to one and the same class. Note that in general the region associ-

ated with a single class may consist of several (disjoint) connected components. A new unknown
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point that is to be classified and is contained in the class 1 region will have a data point of {X,#}

belonging to class 1 as its nearest neighbor. Therefore, using the NN-rule, the unknown point would

be classified into class 1. Similarly, any unknown point, lying in the class 2 region, is classified

into class 2. Thus, the problem of classifying an unknown point, using the NN-rule, reduces to the

problem of determining the connected open region of the planar subdivision generated by the NN-

boundary, in which the given unknown point lies [DW78].

     It should be pointed out that when the NN-rule is used in practice the NN-boundary is

usually not computed explicitly. Instead distances are calculated to all the data points in {X,#} and

the nearest neighbor is found by selecting the smallest distance encountered. We mention in pass-

ing that finding the nearest neighbor of X among {X,#} does not require that distances must be

computed from X to all elements of {X,#}, as is often believed. Indeed there are several efficient

methods for computing very few distances. These methods can be used once the data is edited with

the methods proposed in this paper. For the best such methods the reader is referred to [AM93].

Fig. 1: The decision boundary ob-

tained with the nearest neighbor rule.
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The algorithm of Dasarathy and White [DW78] is the only known algorithm which generates the

NN-boundary explicitly and directly from the reference set {X,#} using the fact that any arbitrary

point on the NN-boundary is nearest to at least two data points of the reference set belonging to

different classes. They consider generating the NN-boundary as an application of a maximin opti-

mization problem. The worst-case complexity of their algorithm, to find the NN-boundary deter-

mined by a reference set {X,#} containing n data points in d-space, is O(dnd+2). Even for a mod-

erate size problem the computation time is phenomenal. The authors also claim that the average

complexity of their algorithm for d=3 is O(n3.85). However this version of their algorithm does not

appear to extend to higher dimensions.

      The Voronoi editing algorithm described below is the only algorithm which reduces the

reference set {X,#} in such a way that the NN-boundaries, defined by the reduced set and the ref-

erence set {X,#}, are exactly the same, i.e., the reduced set is decision boundary consistent and

therefore, also reference set consistent. Furthermore it is the minimal-size such edited set when the

input data consist of points in general position.

2.2 The Voronoi Editing Algorithm

     The Voronoi editing algorithm finds a reduced reference set by using the Voronoi dia-

gram of the reference set {X,#}.

     Let us consider the same reference set as shown in Fig. 1. The Voronoi diagram of the

reference set is shown in Fig. 2. The early work on the Voronoi diagram, its construction, and other

associated properties are discussed in detail in [Bo81], [BR79], [Br79a], [Br79b], [BDF78],

[GS78], [Sh78], [Kl80], and [AB83]. More recent work on Voronoi diagrams can be found in the

book by Edelsbrunner [Ed87]. An entire book on the subject was written by Klein [Kl89]. An ex-

haustive and unified exposition of the mathematical and algorithmic properties of Voronoi dia-

grams was recently published by Aurenhammer [Au91].

From Fig. 2 it is noticed that the NN-boundary (shown in thick lines) is contained in the

Voronoi diagram. This is due to the fact that the Voronoi diagram, by definition, is a partition of

space into regions which are the loci of points of space closer to each data point than to any other

data point and therefore it contains all the proximity information determined by a given set of data

points necessary by the NN-rule [Sh78]. We now present the Voronoi editing algorithm.

Algorithm-Voronoi Editing

Begin

Step 1: Construct the Voronoi diagram of {X,#}.

Step 2: Visit each data point of {X,#}, find all its Voronoi neighbors and mark the data point if

all its Voronoi neighbors are not from the same class as that of the visited point.

Step 3: Discard all points that are not marked.

Step 4: Exit with the marked points as the Voronoi edited set.

End

The marked (circled) points in Fig. 2 are shown with their Voronoi diagram in Fig. 3 and



- 6 -

constitute the Voronoi edited set of the data points of Fig. 1. For this example we see in Fig. 3 that

the Voronoi edited set, which is a subset of the reference set {X,#}, maintains the original NN-

boundary exactly. When the NN-rule based on an edited set implements the same decision bound-

ary as the NN-rule based on the full training set {X,#}, we say that the edited set is decision-

boundary consistent. We now prove that for Voronoi editing this is always the case.

Let {D} denote the set of points of {X,#} which are discarded and let {X,#}V denote the

resulting Voronoi edited set.

Theorem 1: The Voronoi edited set of {X,#} is decision-boundary consistent.

Proof: (by contradiction) Assume that {X,#}V is not decision-boundary consistent. This means

Fig. 2: The Voronoi diagram of the data points of Fig. 1 contains the NN-boundary. Each

circled point indicates that at least one of its Voronoi neighbors belongs to a different

class. The thick lines form the exact NN-boundary. A connected component of the union

of Voronoi regions of data points from one class that are to be discarded is shown shaded.
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that there exists a point y ! Rd that is classified into different classes with {X,#} and {X,#}V.

Let q !{X,#} be the nearest neighbor of y among {X,#} and p!{X,#} be the nearest neighbor

of y among {X,#}V. Let C denote the hypersphere with center y and radius yp. Note that only el-

ements of {D} may lie in C. We now determine another hypersphere C’ which has the following

properties:

(1) C’ is contained in C,

(2) the center of C lies on the line segment yp,

(3) C’ contains no points of {X,#} in its interior,

(4) C’ passes through p and r, where r is an element of {D}.

Note that, by assumption, r must exist because {D} contains at least the element q. Because of (3)

and (4), p and r are Voronoi neighbors. It follows that if the labels of p and r were different r could

not have been discarded, thus contradicting the fact that r is an element of {D}. Therefore we con-

clude that p and r have the same class labels. Note that if r=q we have a contradiction because q

and p have different class labels by the assumption that {X,#}V is not decision boundary consis-

Fig. 3: The Voronoi diagram of the Voronoi ed-

ited set shown in Fig. 1. The exact NN-bounda-

ry of Fig.1 is maintained.
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tent. Therefore we must have that r is a data point different from q.

Let us now consider the hypersphere C* with y as its center and yr as its radius. Since q is the near-

est neighbor of y among {D}, it must lie in C*. Since C* , C, only data points in {D} may lie in

C*. We have established above that the labels of p and r are the same but the labels of q and p are

different. Therefore the labels of r and q are different.

We now repeat the above process, i.e., we determine another empty hypersphere which now passes

through r and another data point, say s, and that is contained in C*. By the same arguments as above

s will have the same class label as r and therefore p. If s=q, we thus arrive at a contradiction for the

class labels. We are therefore forced to conclude that s is different from q. If we continue this pro-

cess we will eventually run out of data points of {D} and will eventually choose a point equal to q

resulting in the final contradiction. Q.E.D.

The following two corollaries are immediately implied by the above theorem.

Corollary 1: The Voronoi edited set is reference-set consistent.

Corollary 2: The Voronoi edited set is independent of the order in which the data is processed.

The worst-case complexity of the algorithm to obtain the Voronoi edited set from the ref-

erence set containing n data points in d-space is O(n[d/2]+1) + O(d3n[d/2]log n) where [d/2] = k when

d=2k or 2k-1 using the algorithm of Avis and Bhattacharya [AB83]. A more efficient but compli-

cated algorithm exists [Se86]. This compares favorably with the algorithm of Dasarathy and White

[DW78] whose worst-case complexity to generate the NN-boundary is O(dnd+2). However, the

Voronoi thinned set is not minimal as is illustrated in Fig. 4. Let the points denoted by ’&’ belong

to class 1 and the points denoted by ’!’ belong to class 2. The Voronoi diagram of this set is also

shown in Fig. 4. It is easy to see that the Voronoi edited set keeps all the data points in {X,#} but

no more than two points are sufficient to implement the same decision boundary. It should be

pointed out however that the data in Fig. 4 is pathological. Indeed, when the points are in general

position, Voronoi editing yields a minimal decision boundary consistent set. The points of S in Rd

are said to be in general position provided that the following conditions are satisfied: (1) at most d

data points may lie in a d-dimensional hyperplane, (2) at most d+1 data points may lie in a d-di-

mensional hypersphere, and (3) the perpendicular bisecting hyperplanes between each two distinct

pairs of data points, are also distinct.

Theorem 2: If the data {X,#} are in general position then the Voronoi edited set {X,#}V is a min-

imal-size decision-boundary consistent set.

Proof: Consider a point (Xk,$k) belonging to class Ci in the Voronoi edited set {X,#}V. It must

therefore have at least one Voronoi neighbor, say (Xl,$l) belonging to class Cj, for j not equal to i,

and a portion of the bisecting hyperplane between Xk and Xl must be in the NN-decision boundary

implied by {X,#}V. Assume {X,#}V is not a minimal size set. This implies that a face (a portion

of the bisecting hyperplane between Xk and Xl) of the NN-decision boundary can be linearly ex-

tended to cover an adjacent face. But this implies that {X,#} is not in general position Q.E.D.

It is worth emphasizing that the above results imply that the performance of the nearest
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neighbor classifier using the reduced set {X,#}V is identical to that which uses the full training set

{X,#} and contrary to claims often made in the literature. For example Yan [Ya93] states that "un-

fortunately, a reduction in the number of training samples used as prototypes always causes a deg-

radation of the performance of the classifier."

2.3  Drawbacks of the Voronoi Editing Algorithm

     If we look at Fig. 2 it is observed that the two top-most marked data points, one from

each class, are kept in the Voronoi edited set, even though they are well separated. This situation

is more clearly illustrated in Fig. 5, where 30 data points were uniformly distributed in the unit

square between the circles

and

           After the application of the Voronoi editing algorithm, the marked data points were

kept in the Voronoi edited set. Note that the Voronoi edited set also maintains the NN-boundary

outside the region of interest which, for all practical purposes, is not necessary. Thus, the Voronoi

editing algorithm treats all regions of the feature space with equal importance. If the unknown data

point to be classified comes from the same distribution as the sample points of the reference set,

x 0.5–" #
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y
2

+ 0.4" #
2

=

x 0.5–" #
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y 1–" #
2

+ 0.4" #
2

=

Fig. 4: A pathological example illustrating that the

Voronoi edited set need not be minimal.
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the NN-boundary outside the region of interest is of very little importance. Therefore, all those data

points in the Voronoi edited set, which only maintain the NN-boundary outside the “region of in-

terest”, could be neglected.

     Furthermore, the construction of the Voronoi diagram in high dimensions is still a time

consuming process [AB83]. Any algorithm in the worst case will take at least O(n[d/2]) time

[Kl80]. These drawbacks of Voronoi editing from the practical point of view lead us to consider

Fig. 5: Illustrating the situation when Voronoi editing keeps more

data points than are necessary for good performance in practice.
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alternative approximate methods to which we now turn.

3. Gabriel Editing

3.1 The Gabriel Editing Algorithm

    The Gabriel editing algorithm is similar in spirit to the Voronoi editing algorithm except

for the fact that the Gabriel editing algorithm, as the name suggests, uses the Gabriel graph of the

reference set {X,#} instead of the Voronoi diagram. The Gabriel graph is defined as follows. For

each pair of points (pi, pj) in the reference set {X,#}, construct the diametral sphere, denoted by,

S(pi, pj), i.e., the sphere such that (pi, pj) forms the diameter of S(pi, pj). Two points (pi, pj) are said

to be Gabriel neighbors if S(pi, pj) is empty, i.e., if no other points of {X,#} other than pi and pj

lie in S(pi, pj). The Gabriel graph is obtained by joining a pair of points with an edge if they are

Gabriel neighbors. For further properties and algorithms for computing the Gabriel graph the read-

er is referred to [MS80] and [Ur83]. We now describe the Gabriel editing algorithm.

Algorithm Gabriel Editing

Begin

Step 1: Construct the Gabriel graph of the reference set GG{X,#}.

Step 2: Visit each node of GG{X,#} and mark the visited node if all its Gabriel neighbors are

not from the same class as the node visited.

Step 3: Discard all data points in {X,#} corresponding to nodes in GG{X,#} that are not

marked.

Step 4: Exit with the marked data points as the Gabriel edited set.

End

Figures 6 and 7 illustrate the results obtained with this algorithm. Fig. 7 also shows the NN-

boundary determined by the Gabriel edited set. This boundary, when compared with the NN-

boundary determined by the original reference set {X,#}, differs mainly in the region outside of

the convex hull of {X,#}, which is usually of not much interest for the classification problem. For

comparison the Gabriel editing algorithm is also applied to the reference set given in Fig. 5. The

Gabriel edited set and the corresponding NN-boundary are shown in Fig. 8. It is observed that the

Gabriel editing algorithm has completely ignored those points of the reference set which maintain

the NN-boundary outside the region of interest.

The Gabriel edited set is always a subset of the Voronoi edited set because of the fact that

a pair of data points which are Gabriel neighbors are also Voronoi neighbors [MS80]. Therefore,

it can be said that the Gabriel editing algorithm reduces the Voronoi edited set further. However it

is clear that the Gabriel edited set is not decision boundary consistent. From Fig. 9, it is seen that

the Gabriel edited set is also not reference-set consistent. On the other hand, as we shall see later,
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this phenomenon does not appear to degrade the performance of the Gabriel edited set in practice.

3.2  Construction of the Gabriel Graph in d-Space

3.2.1 The brute force method

       The construction of the Gabriel graph of a planar set of points has been described in

[MS80]. This method uses the Voronoi diagram construct as the preprocessing step. Since our main

intention is to construct the Gabriel graph efficiently in higher dimensions, the use of the Voronoi

diagram construct is not desirable. Therefore, we present an algorithm to construct the Gabriel

graph in d-space which does not require computing the Voronoi diagram.

       By definition, two data points of a set are Gabriel neighbors if and only if their sphere

of influence (the diametral sphere) is empty. We can always construct the Gabriel graph once all

the Gabriel neighbors of the set are known. The Gabriel neighbors of a set can be determined ex-

haustively by using the brute-force method. Let our given set of data points be {X} = {Xl, X2,...,

Fig. 6: The Gabriel graph of the data set shown in Fig. 1. Each

marked data point indicates that at least one of its Gabriel neighbors

is from a class different than its own.
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Xn}. Then the key steps of the brute-force method are:

Step 1: Consider all the pairs of points (Xi, Xj), for i,j=1,2,...,n; i < j.

Step 2: For each such pair (Xi, Xj) test whether there exists a point Xk, k " i,j, belonging to {X}

such that:

If such a point does not exist, Xi and Xj are Gabriel neighbors.

 Step 1 of the algorithm requires O(n2) operations to yield O(n2) pairs. For each such pair

of points (Xi, Xj), step 2 requires O(nd) operations. Hence the overall complexity of the algorithm

is O(dn3).

     Thus the complexity of the brute-force method is primarily dependent on the number of

data points of the set. This is not so when the Voronoi diagram is used to compute the Gabriel graph

because in that situation the worst-case complexity is at least O(n[d/2]). Thus, for large d the brute

d
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force method, with a complexity of O(dn3), is much faster than the method that uses the Voronoi

diagram. However, if n is very large O(dn3) may still be prohibitive. Therefore we now present a

heuristic method which is practical. The expected complexity of the heuristic method is believed

to be closer to O(dn2) although a theoretical analysis has yet to be carried out.

3.2.2 A heuristic method

     The number of pairs of Gabriel neighbors in a set of n points is, in general, very much

less than the total number of pairs, n(n-1)/2, considered in the brute-force method. For example, in

Fig. 5 there are 31 pairs of Gabriel neighbors out of 190 possible pairs. Thus if by some means we

can reduce the number of pairs to be tested for Gabriel neighbors then the brute-force method will

Fig. 8: The Gabriel edited set of the data points used in Fig. 5 consists of

only four points which are marked. The NN-boundary determined by this set

maintains the exact NN-boundary in the region of interest only.

NN-boundary determined
by the Gabriel edited set
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be more efficient. A heuristic approach to achieve this goal is described below.

     For simplicity we describe the method for the two dimensional case. Generalization to

higher dimensions is straight forward. Let us consider the set of points shown in Fig. 10. Let p be

a data point of the set whose Gabriel neighbors we are interested in computing. Consider a point q

belonging to {X}. Draw a line B(p,q) through q, which is perpendicular to the line joining p to q.

Let LH(B,p) be the half-space, determined by B(p,q), which contains the point p. Let RH(B,p) be

the half-space which does not contain the point p. We then have the following lemma.

Lemma: No data point contained in the set in RH(B,p) can be a Gabriel neighbor of p.

Proof: Consider the point p and some point r in RH(B,p). Let D(p,r) denote the diametral disc de-

termined by p and r. Since point r is contained in RH(B,p) it follows that angle p,q,r is greater than

90 degrees. Therefore point q is contained in D(p,r) and r cannot be a Gabriel neighbor of p. Q.E.D.

     Using the above heuristic, the brute-force method can then be improved as follows.

Algorithm Gabriel Editing

Begin

Consider each point pi of the given set {X} separately and do the following:

Step 1: Start with Ni = {p1, p2,..., pi-1, pi+1,..., pn} as the set of potential Gabriel neighbors of the

point pi.

Step 2: For each potential Gabriel neighbor pr belonging to Ni do the following:

For every point pk of {X}, pk " pi " pr:

i) Test whether pk lies inside the sphere of influence determined by pi and pr. If so, re-

Fig. 9: Illustrating an instance when the Gabriel

edited set is not reference-set consistent. The ref-

erence set consists of four data points where

those denoted by ’"’ are from class 1 and the one

denoted by ’!’ belongs to class 2. The circled

data points constitute the Gabriel edited set.
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move pr from the set Ni and go to Step 3 with a new potential Gabriel neighbor.

ii) If pk is contained in Ni, then test whether pr lies inside the circle of influence deter-

mined by pi and pk. If so, remove pk from the set Ni.

Step 3: Accept the remaining points of the set Ni as the Gabriel neighbors of pi.

End

3.2.3 Monte Carlo Simulation

A Monte Carlo simulation was carried out to determine the extent to which the heuristic

method rejects pairs of data points. The experiment was performed by generating sets of data points

of sizes 100, 300, 500, 700 and 1000 uniformly distributed in the unit d-cube, d=2, 3 or 4. Each

case was repeated 20 times and the average value is shown in Table 1. Let T denote the total num-

ber of pairs rejected. The percent of pairs rejected, in a set of n points, denoted by Pr (n), was cal-

culated as follows:

      From Table 1, it is observed that most of the pairs are rejected before they are tested.

For example, when n=500 and d=3, on the average, 119,120 pairs (out of 124,750) need not be con-

sidered at all for the Gabriel neighborhood test. For a particular dimension, the percent of pairs re-

jected increases as n increases, while for a particular number of points, the percent of pairs rejected

decreases as the dimension of the points increases.

Therefore it can be concluded that for high dimensions the brute force method of computing

the Gabriel neighbors when modified heuristically, saves a lot of computation over the naive brute

P
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------------------------------' (
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Fig. 10: When testing q to determine if it is

a Gabriel neighbor of p a point r is first test-

ed for containment in RH(B,p). All such

points are deleted from the list of candi-

dates for possible Gabriel neighbors of p

because q lies in their discs.
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force method and the method via the Voronoi diagram.

4. Relative Neighborhood Graph Editing

4.1 Introduction

     We have seen that the Gabriel editing algorithm reduces the Voronoi edited set. It is thus

logical to extend this concept further, i.e., to further reduce the Gabriel edited set. One way of ac-

complishing this is to use the same idea on a subgraph of the Gabriel graph. The editing algorithm

discussed in this section is based on the geometrical construct known as the relative neighborhood

graph (RNG), a graph first investigated in [To80] for the purpose of extracting the shape of a set

of points in the plane. Since then much work has been done on relative neighborhood graphs and

their relatives in two and higher dimensions. For a survey of the results known about RNG’s the

reader is referred to [JT92].

4.2 The Relative Neighborhood Graph

     Let {X} be a set of n points in d-space: {X} = {X1, X2,..., Xn}. Two points Xi and Xj are

defined as being “relatively close” if for k=1,2,...,n; k not equal to i:

The relative neighborhood graph is obtained by constructing an edge between points Xi and

Xj for all i,j = 1,2,...,n; i not equal to j, if Xi and Xj are relatively close. Fig. 11 shows the RNG of

d X
i

X
j

'" # max d X
i

X
k

'" # d X
j

X
k

'" #[ , ]+

100 91.37 86.01 80.51

300 96.23 93.45 90.41

500 97.46 95.49 93.30

700 98.04 96.49 94.67

1000 98.43 97.31 95.92

Table 1: Monte Carlo simulation result to determine the percent of

pairs of data points not considered for the Gabriel neighborhood test.

Percent of Pairs Rejected

d = 2 d = 3 d = 4
Number of Points
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the set of points given in Fig. 1.

4.3 The RNG Editing Algorithm

     The RNG editing algorithm is similar to the Gabriel algorithm and thus we leave out the

details. When it is applied to the reference set, given in Fig. 1, the edited reference set obtained is

shown in Fig. 12. This reduced set, called the RNG edited set, is a subset of the Gabriel set [Figs.

7 and 12]. Therefore, we notice that

RNG edited set - Gabriel edited set - Voronoi edited set - {X,#}

The NN-boundary generated by the RNG edited set, when compared with the NN-bound-

ary, determined by the Voronoi edited set (and hence by the original reference set) [Fig. 12], differs

considerably. Since the RNG edited set is contained in the Gabriel edited set, the RNG edited set

is neither decision boundary consistent nor reference set consistent.

 The RNG of a set can be constructed by first computing the set of all relative neighbors

exhaustively. The brute-force method similar to the one for the Gabriel graph can be used. The

Fig. 11: The RNG of the data points of Fig. 1.
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brute-force method can also be improved using a similar heuristic described earlier.

5. Experimental Results

5.1 Introduction

     The three editing algorithms were compared experimentally to determine the number of

points deleted and the resulting error rate in each case. Several Monte Carlo simulations were per-

formed with different distributions and varying dimensions for both synthetic and real world data

sets. We report here only two experiments with real world data in the interest of brevity. The con-

clusions for synthetic data are strong and the same as those reported here.

5.2 Iris Data

     The so called Iris data consist of four measurements made on each of 150 flowers. There

are three pattern classes, Virginica, Setosa, and Versicolor corresponding to three different types

of Iris. Therefore, in this case the reference set consists of 150 feature vectors in 4-space each of

NN-boundary of the original
reference set {X,#}

NN-boundary of RNG edit-
ed set

Fig. 12: Four points constitute the

RNG edited set of the original refer-

ence set given in Fig. 1.



- 20 -

which is assigned to one of the three above mentioned classes. This data was first collected by R.A.

Fisher [Fi36] in 1936 and since then have become somewhat of a classic “text book” example on

which to try out ideas and algorithms. Obtaining an estimate of the performance or error rate of a

decision rule is a field unto itself [To74], [RJ91]. In these experiments, the NN-error rate was esti-

mated using Effron’s [Ef79] bootstrap method with a uniform window. We first select a feature

vector p !{X,#} at random. We place a rectangular window with p at its center. The size of the

window is determined by the nearest neighbor of p. We then generate a random point uniformly

distributed inside the window and the true class of the generated point is assumed to be that of p.

In this way a new testing data set is generated. Finally 200 such generated data sets are created and

the results for each are averaged. The variance serving as a confidence interval is also comput-

ed.The bootstrap methods are considered the best estimators of the performance of a classifier in

the sense that not only do they provide estimates that are unbiased and have a low variance but

they give an estimate (or confidence interval) for the variance as well. This allows for easy com-

parison of different experiments in a statistically significant manner [JDC87].

     Table 2 shows the results when the editing algorithms are applied to the Iris data. As

expected the NN-error rate using the Voronoi edited set is the same as the exact NN-error rate. 109

Table 2 Original Voronoi Edited Gabriel Edited RNG Edited

Set Set Set Set

Size 150 109 39 21

NN-error 1.3% 1.3% 1.3% 2.1%

Variance 0.31E-4 0.31E-4 0.31E-4 0.81E-4

Table 3 Original Voronoi Edited Gabriel Edited RNG Edited

Set Set Set Set

Size 1999 1313 820 452

NN-error 5.9% 5.9% 6.0% 9.7%

Variance 0.71E-4 0.71E-4 0.67E-4 0.45E-4

Table 2: The Iris Data: 150 data points in 4-space

Table 3: The Cervical Cell Data: 1999 points in 4-space
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sample data points were selected by the algorithm to maintain the original NN-boundary exactly.

The size of the Gabriel edited set is only 39, almost one third of the size of the Voronoi edited set.

But the number of miss-classifications of the NN-rule on the unknown boot-strapped data using the

Voronoi edited set (and hence the original reference set) and the Gabriel edited set are the same.

On the other hand the RNG edited set increases the NN-error rate by almost 100%. Thus by remov-

ing 70 additional sample points from the Voronoi edited set, the performance of the NN-classifier

remains the same, but if we remove only 18 additional sample data points from the Gabriel edited

set the NN-error rate doubles. Therefore, the Gabriel edited set appears to contain sufficient infor-

mation for discrimination of the Iris data with the NN-rule.

5.3 Cervical Cell Data

     The Biomedical Image Processing Laboratory at McGill University has a data base of

about 2000 cervical cell images which are assigned to one of 13 cell types (sub-classes). Eight of

the types are considered to be subclasses of the normal cell class and the other five types are sub-

classes of the abnormal cell class [CPT77], [POCLT77], [OPTL79] and [OPT77].

     The images were subjected to the preprocessing and feature extraction methods de-

scribed in [POCLT77], [OPTL79] and [OPT77]. Each cell is represented by a four-dimensional

feature vector using the features

(l) log (cytoplasm diameter/nucleus diameter),

(2) log (nucleus area),

(3) average cytoplasm density, and

(4) average nucleus density.

We have only considered the two-class problem - normal and abnormal classes. Thus our

reference set contains 1999 samples in 4-space labelled either as normal or abnormal. The results

of the editing algorithms are shown in Table 3.

As in the previous experiments, the Gabriel edited set contains fewer sample points than

the Voronoi edited set even though the corresponding NN-error rates are not significantly different.

The RNG edited set increases the NN-error rate considerably.

6.  Concluding Remarks

     We have exhibited in this paper several new methods for editing the data with the nearest

neighbor decision rule (NN-rule) and compared them experimentally, with respect to (1) storage

requirements, (2) computation time and (3) resulting probability of misclassification, to the ex-

haustive (full training set) rule. The new methods have several advantages over previous methods.

The proposed approaches are based on well-known graph structures that are first computed on

{X,#}. The graph structures are proximity graphs obtained from the Voronoi diagram of {X,#}.

The methods have the merit that they are exact and yield edited sets independent of the order in

which the data are processed. Furthermore, one method yields edited sets which are not only both

training-set and decision-boundary consistent but are minimal in size when {X,#} is in general po-

sition. The methods were compared empirically through experiments on synthetic data as well as

real world data in the automatic detection of cervical cancer. Algorithms were given for obtaining
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the edited sets efficiently in practice.

Experiments have shown that by sacrificing the properties of reference set and decision

boundary consistency, editing schemes can be obtained, such as Gabriel-graph-editing, that in

practice keep far fewer data points with negligible deterioration in performance. It is tempting to

be greedy here by further exploiting this idea and the RNG editing scheme is an unsatisfactory out-

come of this greediness. However there may exist other graphs sparser than the Gabriel graph that

will discard additional points without deterioration in performance. Such graphs have recently

been explored in other contexts [Ur82], [KR85] and may well be fruitful for the editing problem in

nonparametric decision rules. These graphs are presently being explored.

A final word concerning the performance of the NN-rule (1-NN rule) is in order. Some re-

searchers may require a performance closer to the optimal Bayes error. It it known that the k-NN

rule (when k is suitably chosen) will approximate the Bayes error. Some researchers may consider

finding the k nearest neighbors computationally undesirable. We mention here that there is a simple

method of approximating the k-NN rule with the 1-NN rule that gives excellent performance in

practice. It suffices to re-label the original data by classifying it with the k-NN rule. Then the 1-NN

rule is used on the re-labeled data and the editing methods discussed in this paper may be readily

applied.
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