Proof of Ore’s Theorem by Backwards Induction

Godfried Toussaint
Ore’s Theorem – Combining Backwards Induction with the Pigeonhole Principle

Let \(G = (V, E) \) be a connected simple graph with \(n \geq 3 \) vertices. If \(G \) has the property that for each pair of non-adjacent vertices \(u, v \in V \), we have that \(\deg u + \deg v \geq n \) then \(G \) contains a Hamiltonian cycle.

Proof: by backwards induction on the number of edges in \(E \):

Base case: \(G_c \) is the complete graph with \(n(n-1)/2 \) edges.

Connect the vertices in \(G_c \) in any order such as \((v_1, v_2, ..., v_n) \) to create a Hamiltonian path, and add edge \((v_n, v_1) \) to create a Hamiltonian cycle.
Ore’s Theorem – Combining Backwards Induction with the Pigeonhole Principle

Induction hypothesis: the theorem is true when G has k edges.

- We must prove the theorem when G has $k-1$ edges.
- Let G be such a graph, and let v_n and v_1 be a pair of non-adjacent vertices in G such that $\deg v_n + \deg v_1 \geq n$.
Ore’s Theorem – Combining Backwards Induction and the Pigeonhole Principle

Induction hypothesis: the theorem is true when G has k edges.

- Let G' be the graph obtained by adding an edge between v_n and v_1 in G. G' therefore has k edges.
- It follows from the induction hypothesis that G' contains a Hamiltonian cycle.
Ore’s Theorem – Combining Backwards Induction and the Pigeonhole Principle

Let H' be the Hamiltonian cycle in G'.

We must now remove the edge (v_n, v_1) from G' to restore G.

Two cases arise:

Case 1: H' does not contain (v_n, v_1). Then H' is a Hamiltonian cycle in G, and we are done. Edge (v_n, v_1) may be safely removed from G'.
Ore’s Theorem – Combining Backwards Induction and the Pigeonhole Principle

Case 2: H' contains (v_n, v_1).

- Without loss of generality let $H' = (v_1, v_2, \ldots, v_n, v_1)$.

- Delete the edge (v_n, v_1) from G' to recover G.

H'
Ore’s Theorem – Combining Backwards Induction and the Pigeonhole Principle

Case 2: continued...

Since $\text{deg } v_n + \text{deg } v_1 \geq n$ it follows from the Pigeonhole Principle that here must exist vertices v_{i-1} and v_i such that v_{i-1} is connected to v_n and v_i is connected to v_1.
Case 2: continued...

Therefore, G contains the Hamiltonian cycle $H = (v_1, v_2, \ldots, v_{i-1}, v_n, v_{n-1}, v_{n-2}, \ldots, v_i, v_1)$. Q.E.D.