Scheduling, Map Coloring, and Graph Coloring

Scheduling via Graph Coloring: Final Exam Example

Suppose want to schedule some final exams for CS courses with following course numbers:

1007, 3137, 3157, 3203, 3261, 4115, 4118, 4156

Suppose also that there are no students in common taking the following pairs of courses:

1007-3137

1007-3157, 3137-3157

1007-3203

1007-3261, 3137-3261, 3203-3261

1007-4115, 3137-4115, 3203-4115, 3261-4115

1007-4118, 3137-4118

1007-4156, 3137-4156, 3157-4156

How many exam slots are necessary to schedule exams?

- Convert problem into a graph coloring problem.
- Courses are represented by vertices.
- Two vertices are connected with an edge if the corresponding courses have a student in common.

One way to do this is to put edges down where students mutually excluded...

...and then compute the complementary graph:

...and then compute the complementary graph:

Redraw the graph for convenience:

The graph is obviously not 1-colorable because there exist edges.

The graph is not 2-colorable because there exist triangles.

Is it 3-colorable? Try to color by Red, Green, Blue.

Pick a triangle and color the vertices 3203-Red, 3157-Blue and 4118-Green.

So 4156 must be Blue:

So 3261 and 4115 must be Red.

3137 and 1007 easy to color – pick Blue.

Therefore we need 3 exam slots:

Map Coloring: 5-Coloring the Continental US

5-Color Vertex Coloring of the Continental US

4-Coloring of the Continental US: 4 Colors Suffice for Continuous Planar Maps

Four Colors Suffice

An arbitrary number of colors may be needed if regions are not contiguous.

This example needs 5:

Six colors may be needed if continuous regions lie on a Möbius strip.

Seven colors may be needed if continuous regions lie on a Torus.

Basic Theorems

- Handshaking Lemma:
- In any graph, the sum of the degrees of the vertices is equal to twice the number of edges.

$$\sum_{i=1}^{n} \deg(v_i) = 2E$$

Planar Handshaking Theorem

 In any planar graph, the sum of the degrees of the faces is equal to twice the number of edges.

$$\sum_{k=1}^{k} \deg(f_k) = 2E$$

Euler's Formula

 In any connected planar graph with V vertices, E edges, and F faces,

$$V - E + F = 2$$
.

Two Theorems

• Two theorems are important in our approach to the 4-color problem.

 The first puts and upper bound to the number of edges a simple planar graph with V vertices can have.

 The second puts an upper bound on the degree of the vertex of smallest degree. **Theorem 1:** Let G be a simple connected planar graph with $V \ge 3$, then $E \le 3(V-2)$.

Proof: G is a simple connected planar graph, so $\sum \deg(f_i) = 2E$. Since the graph is simple, all faces must be of degree 3 or more (there are no loops or multiple edges), so $\sum \deg(f_i) \geq 3F$.

Consequently, $F \leq \frac{2}{3}E$.

Also, V - E + F = 2, so $V - E + \frac{2}{3}E \ge 2$ and $E \le 3(V - 2)$.

Vertices of degree ≤ 5

Theorem 2: Let *G* be a simple planar connected graph. Then *G* has at least one vertex of degree 5 or less.

Proof: We proceed by contradiction. Suppose all of the vertices of G have degree 6 or more, so $\sum \deg v_i \geq 6V$. But, by the handshaking lemma, $\sum \deg v_i = 2E$. So $E \geq 3V$. But G is a simple planar connected graph, so $E \leq 3(V-2)$.

This contradiction shows it is not possible for all of the vertices to be of degree 6 or more, so at least one must be of degree 5 or less.

The 6-Color Theorem: Every simple connected planar graph is 6-colorable.

Proof: We proceed by induction. Let P_n be the statement that every connected simple planar graph with n vertices is 6-colorable.

Basis Step: Clearly P_1, P_2, \dots, P_6 are true, since any graph of 6 or fewer vertices can be colored with 6 colors.

Assume every connected simple planar graph with k vertices is 6-colorable. We must prove that every connected simple planar graph with k+1 vertices is 6-colorable.

Consider a graph with (k+1) vertices. Find V^* with degree 5 or less

Remove V^* and all incident edges. The resulting subgraph has k vertices. Therefore it can be 5-colored.

Replace V* and incident edges. Since we have 6 colors available and at most 5 adjacent vertices, use the remaining color for V*.

The 5-Color Theorem:

All connected simple planar graphs are 5 colorable. Proof by induction on the number of vertices.

- **Base Case:** Any connected simple planar graph with 5 or fewer vertices is 5-colorable.
- **Induction Hypothesis:** Assume every connected simple planar graphs with *k* vertices is 5-colorable.
- Prove for a graph with k+1 vertices.

Let G be an SCP graph with (k+1) vertices. It contains at least one vertex, V^* , with degree 5 or less.

- Remove this vertex and all edges incident to it.
- By the induction hypothesis the remaining graph with *k* vertices is 5-colorable.

Color this graph with 5 colors.

Replace *V** and the incident edges. We can color *V** only if its adjacent vertices do not use all 5 colors. Therefore assume all 5 colors are already used.

Consider all G-M paths leading out of V* (paths that alternate Green-Magenta-Green-Magenta-Green-Magenta...)

If there is no connected path leading back to V* then switch M and G, and color V* Green.

If there exists a connected path, then switching does not help.

Is there a Red-Blue connecting path?

If not, switch the Red and Blue colored vertices and color V* Red.

Therefore assume that there exists a Red-Blue connecting path.

If there is a Red-Blue Chain, there cannot be a Black – Green Chain, since it is blocked by the Red-Blue Chain.

Then switch the colors of the Black – Green chain and color *V** Black

