Bucket Sorting in $O(n)$ Expected Time

Godfried Toussaint

School of Computer Science
McGill University
Montreal, Quebec, Canada

1. Introduction

Given n numbers X_1, X_2, \ldots, X_n drawn at random independently from the uniform distribution in $[0,1]$, it is desired to sort them in $O(n)$ expected time.

Our model of computation allows the floor function to be performed in constant time. The following algorithm does the job.

2. Algorithm BUCKET-SORT

Begin

Step 1: Find X_{min} and X_{max}, the points with minimum and maximum value.

Step 2: Divide the interval $[X_{\text{min}}, X_{\text{max}}]$ into $n-2$ “buckets” or intervals of equal length.

Step 3: “Throw” the remaining $n-2$ points into their respective buckets using the floor function.

Step 4: For each bucket that contains more than one point sort them with any method that runs in at most quadratic worst-case time.

Step 5: Scan through the buckets and concatenate the sorted lists in each bucket.

End

3. Analysis

Once X_{min} and X_{max} are found the algorithm processes the remaining $n-2$ points which are themselves uniformly distributed in $[X_{\text{min}}, X_{\text{max}}]$. Since we have $n-2$ buckets it follows that the probability that a remaining point falls in the i-th bucket is $p_i = 1/(n-2)$. In other words, the number of points that falls in bucket i is a binomial random variable, denoted by N_i, with parameters $(n-2)$ and p_i, $i = 1, 2, \ldots, n-2$. If we sort each N_i using a quadratic time algorithm the total time taken by BUCKET-SORT is given by
\[T(n) = k_1 N_1^2 + k_1 N_2^2 + \ldots + k_{n-2} N_{n-2}^2 \]

\[= c \sum_{i=1}^{n-2} N_i^2 \]

(1)

where \(c \) is a positive constant.

To find the expected time we need to take the expected value, denoted by \(E\{\cdot\} \), of (1).

\[E\{T(n)\} = c \sum_{i=1}^{n-2} E\{N_i^2\} \]

(2)

Thus we need to know the expected value of the square of a random variable. Now, for any random variable \(X \) we have

\[E\{X^2\} = \mu^2 + Var(X) \]

(3)

This is easy to see from the definition of the variance since

\[Var(X) = E\{(X - \mu)^2\} \]

\[= E\{X^2 - 2\mu X + \mu^2\} \]

\[= E\{X^2\} - 2\mu E\{X\} + \mu^2 \]

\[= E\{X^2\} - \mu^2 \]

Furthermore, for a binomial random variable \(N_i \) with parameters \((n-2)\) and \(p_i \) we have that:

\[\mu = (n-2)p_i \]

(4)

and

\[Var(X) = (n-2)p_i(1-p_i) \]

(5)
Substituting (4) and (5) into (3) and using $p_i = \frac{1}{n-2}$ yields

$$E\{N_i^2\} = 2 - \frac{1}{n-2} \quad \text{(6)}$$

Substituting (6) into (2) we have

$$E\{T(n)\} = c \sum_{i=1}^{n-2} \left(2 - \frac{1}{n-2} \right)$$

$$= 2cn - 5c$$

$$= O(n) - O(1)$$

$$= O(n)$$

Therefore, for points uniformly distributed in the unit interval, algorithm BUCKET-SORT runs in linear expected time.