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Introduction to Bayesian Decision Theory
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Bayesian Decision Theory

* Fundamental statistical approach to problem
classification.

* Quantifies the tradeoffs between various

classification decisions using probabilities and
the costs associated with such decisions.

— Each action is associated with a cost or risk.
— The simplest risk 1s the classification error.

— Design classifiers to recommend actions that minimize
some total expected risk.




Terminology

(using sea bass — salmon classification example)

 State of nature w (random variable):
— o, for sea bass, m, for salmon.

* Probabilities P(w,) and P(w,) (priors)

— prior knowledge of how likely 1s to get a sea bass or a
salmon

* Probability density function p(x) (evidence):

— how frequently we will measure a pattern with feature
value x (e.g., x 1s a lightness measurement)

Note: if x and y are different measurements, p(x) and p(y)
correspond to different pdfs: p(x) and p,(y)




Terminology (cont’d)

(using sea bass — salmon classification example)

Conditional probability density p(x/w)) (likelihood):

— how frequently we will measure a pattern with feature
value x given that the pattern belongs to class o

pixjw,)
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e.g., lightness distributions
between salmon/sea-bass
populations
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category w;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright © 2007 by John Wiley & Sons,




Terminology (cont’d) -.
(using sea bass — salmon classification example) |

» Conditional probability P(w;/x) (posterior):

— the probability that the fish belongs to class o,
given measurement Xx.

Note: we will be using an uppercase P(.) to denote E
a probability mass function (pmf) and a
lowercase p(.) to denote a probability density
function (pdf).




Decision Rule Using Priors Only

Decide w, if P(w,) > P(w,); otherwise decide w,

P(error) = min[P(w,), P(w,)]

Favours the most likely class ... (optimum if no other info is
available).

This rule would be making the same decision all the times!

Makes sense to use for judging just one fish ...




Decision Rule Using
Conditional pdf

* Using Bayes’ rule, the posterior probability of category w,
given measurement x is given by:

px/w;)P(w,) _ likelihood x prior

p(x) evidence

P(w,/x) =

where p(x) = i p(x/ ®, )P(a)].) (scale factor — sum of probs = 1)
7=

Decide w,1f P(w, /x) > P(w/x); otherwise decide w,
or

Decide o, if p(x/w,)P(w,)>p(x/m,)P(w,) otherwise decide w,




Decision Rule Using
Conditional pdf (cont’d)
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FIGURE 2.2. Posterior probabilities for the particular priors P(w1) = 2/3 and P(w,)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category w; is roughly 0.08, and thatitis in @ is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Convright © 2001 bv lohn Wilev & Sons, Inc.




Probability of Error

he probabilty of error is defined as: '
P(w, / x) if wedecidew,
P(w, / x) if wedecidew,

The average probability error is given by:

P(error/x) = {

P(error) = f P(error,x)dx = f P(error/ x) p(x)dx

The Bayes rule 1s optimum, that 1s, 1t minimizes the
average probability error since:

P(error/x) = min[P(w /x), P(w,/x)]




Where do Probabilities Come From?

The Baesian rule is optimal if the pmf or pdf1s
known.

» There are two competitive answers to the above
question:

(1) Relative frequency (objective) approach.

— Probabilities can only come from experiments.

(2) Bayesian (subjective) approach.

— Probabilities may reflect degree of belief and can be
based on opinion as well as experiments.




Example

Classify cars on UNR campus whether they are more or less

than $50K:
— C1: price > $50K
— C2: price < $50K
— Feature x: height of car

From Bayes’ rule, we know how to compute the posterior
probabilities:

p(x/C)P(C)
p(x)
Need to compute p(x/C,), p(x/C,), P(C,), P(C,)

P(C,/x) =




Example (cont’d)

Determine prior probabilities
— Collect data: ask drivers how much their car was and measure height.
— e.g., 1209 samples: #C,=221 #C,=988

221
P(Cy) = =5 =0.183

988
P(Cy) =5 = 0817

—

=|ess than 50k

more than 50k 2

1

Car Height [m] .




» Determine class conditional probabilities (/ikelihood)

— Discretize car height into bins and use normalized histogram




Example (cont’d)

Calculate the posterior probability for each bin:

P(C,/x=10) = p(x=107C) AC) _
p(x=10/C)RCy) + p(x =1.0/ C) AC))
0.2081%0.183

- — 0438
0.2081*0.183 +0.0597*0 817
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=
Car Height [m]




