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An Application of Burnside’s

Theorem to Music Theory

Jeff Graham
Dept. of Mathematics and Computer Science
Susquehanna University
Selingsgrove, PA 17870
graham@susqu.edu

Alan Hack
Northwestern Lehigh School District
New Tripoli, PA

Jennifer Wilson
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New Holland, PA

Introduction

Isihara andKnapp [1993] introduce fundamental ideas in an area ofmu-
sic theory that musicians refer to as set theory. At least one reader of that
UMAP Module was inspired to do a more advanced treatise that enumer-
ates mosaics [Fripertinger 1999]. Also, a very active community investi-
gating the connections between mathematics and music has developed. In
fact, there is a newly formed Society for Mathematics and Computation in
Music, which publishes the Journal of Mathematics and Music devoted to ex-
ploring those connections; and recently, Science published for the first time
an article about music theory [Tymoczko 2006].
We discuss an aspect of this theory that is not discussed by Isihara and

Knapp but that is a topic of continuing interest to music theorists [Hook
2007], namely, how to count the number of distinct set classes. We emphasize
using Burnside’s Lemma (Neumann [1979] recounts its history) for doing
the counting. This approach easily extends the results to include counting
set classes of pitch class multisets (pitch class sets with repeated entries).
Since pitch class sets that are members of the same set class sound similar
[Morris 1991], composerswant to knowhowmany distinct set classes there
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are for a given size of pitch class set, since this number would describe the
number of different sound combinations available (for more on composing
withpitchclass sets, seeMorris [1987]). The reader familiarwithelementary
group theory and combinatorics should be well-prepared for this paper.
First, we give a brief introduction to somemusical terms and operations

to set the stage. Next is a brief introduction to group actions and Burnside’s
Theorem. Following this material is a development of the invariance prop-
erties of transformations introduced earlier. Once the invariance properties
are established, we devote some attention to some examples of Burnside’s
Theorem in action, and an extension to orbits of multisets. The last section
has some concluding thoughts.

Music Terminology

We introduce some of the terminology of atonal music theory (pitch
classes and pitch class sets), define the commonly usedmathematical trans-
formations that act on pitch class sets, discuss the term “set class,” and pose
the question that we wish to answer.
If we start with a tone at a certain frequency, ω, and create a new tone

with frequency 2ω, the two tones are one octave apart. The octave is an
important interval in music theory, since the octave is usually the basis for
creating musical scales.
To create a musical scale, a musician divides the octave into a finite

number of tones. In atonal theory, the tones are assumed to be equally
spaced and all tones separated by an octave are considered equivalent.
Each of these tones creates a category that music theorists refer to as a pitch
class.
Usually the octave is divided into 12 pitch classes; however, many com-

posers and some non-Western cultures use more divisions. A musical sys-
tem that divides the octave into more than 12 pitch classes is called mi-
crotonal. There are also cultures that use fewer than 12 pitch classes per
octave.
For generality, we assume that the octave is divided into p pitch classes,

labelled with a number starting with 0; so the set of pitch classes is P =
{0, 1, 2, . . . , p− 1}.
Any subset of the set of pitch classes is a pitch class set. A pitch class set

is to atonal theory as a chord is to tonal theory. In a tonal piece ofmusic, the
chords are chosen to sound pleasing and there are aesthetic rules for chord
sequencing. In atonal music, the sequence of pitch class sets is determined
using mathematical operations. The aesthetics here are not necessarily
based on how the music sounds, but instead are based on using pleasing
mathematical principles such as symmetry.
How does a composer use mathematics to construct a piece of music?

One method is to use mathematical operations to transform one pitch class
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set into another. We consider two kinds of operations:

• a transposition operator, denoted by Tn; and

• an inversion operator, denoted by TnI .

A transposition operator acts on a pitch class set by adding a fixed con-
stant to each element of it. Since the result must be in P, the addition is
done modulo p. Since k + p mod p = k, we have exactly p transposition
operators at our disposal. For example, using p = 12 and x = {0, 4, 7}, we
calculateT7(x) = {0 + 7, 4 + 7, 7 + 7} = {7, 11, 14}, which gives the result
{7, 11, 2} since 14 mod 12 = 2. Since the order of the pitch classes in a pitch
class set doesn’t matter, this result would usually be written {2, 7, 11}.
An inversion operator works on a pitch class set by subtracting each

pitch class from p and then performing a transposition. Once again, the
transposition is done modulo p. Since there are p distinct transposition
operators, there are also p inversion operators. Let’s apply T3I to the pitch
class set x = {1, 5, 8, 11} with p = 13. First, we invert all the elements of
x, T3I({1, 5, 8, 11}) = T3({12, 8, 5, 2}) and then perform the transposition
modulo 13 to obtain {2, 5, 8, 11}.
A circle diagram is a useful visualization aid (see Johnson [2003] for

more on circle diagrams). To create a circle diagram, draw a circle and put
p equally spaced crossing line segments. Next, label the crossing lines with
the numbers representing the pitch classes. The diagram should remind
you of a clock face without hands. To represent a pitch class set, place dots
on the crossing lines that correspond to the members. In Figure 1, we see
a representation of the pitch class set {0, 4, 7} with p = 12 on the left, and
on the right the same pitch class set after T7 has been applied.
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Figure 1. The pitch class set {0, 4, 7} and T7({0, 4, 7}).
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With a circle diagram, it is easy to see that a transposition operator cor-
responds to a clockwise rotation of a pitch class set. An inversion operator
is a flip across the diameter of the circle through the position labelled 0, fol-
lowed by a clockwise rotation. It is easy to verify that this set of operators
is a group under function composition. In fact, it is the dihedral groupDp.
Suppose that you are a composer and you areworkingwith a pitch class

set x of size k. Since transpositions and inversions both preserve the inter-
vals in a pitch class set [Morris 1991], a pitch class set and its transformation
should sound similar. A composer might be interested in varying the in-
tervals to make the music more interesting. To do so, the composer would
have to find a pitch class set of size k that is not a transformation of x.
Music theorists refer to a collection of pitch class sets that are related by

transposition and inversion operators as a set class. The more set classes
there are, the more choices of sounds that a composer has. A natural ques-
tion to ask is, how many distinct set classes are there for a given size pitch
class set? The next section is a brief review of group actions and Burnside’s
Theorem,whichare tools thatwe canuse to answer this question (seeReiner
[1985] and Fripertinger [1999] for a different approach, and seeHook [2007]
for a tutorial on combinatorics and enumeration in music theory).

Group Actions and Burnside’s Theorem

Group actions are a powerful idea from abstract algebra; we review the
material about group actions that we need for our task.

Group Actions

Given a group G and a nonempty set S, a mapping ∗ : G × S → S
is called an action [Nagpaul and Jain 2005] of G on S if for all x ∈ S the
following conditions are satisfied:

• e ∗ x = x, where e is the identity inG; and

• (gh) ∗ x = g ∗ (h ∗ x) for all g, h ∈ G.

If there is an action of a group on a set S, then we say G acts on S and we
call S a G-set.
Suppose that G acts on a set S. For any x ∈ G, the orbit of x under G

is the set {g ∗ x|g ∈ G}. A set class in music is an example of an orbit, as
we explain shortly. From the definition of orbit, it is apparent that distinct
orbits are mutually disjoint. Since every x ∈ S must be in some orbit, we
can conclude that the orbits form a partition of S. This partition is referred
to as the orbit decomposition of S underG.
Given g ∈ G and x ∈ S, if g ∗ s = swe say that g fixes s. Further, the set

of all elements fixed by g is called the fixture of g and is written Fix(g). The
cardinality of Fix(g)will be denoted by F (g).
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Burnside’s Theorem

We state Burnside’s Theoremwithout proof; for nice proofs seeNagpaul
and Jain 2005] and Bogart [1991].

Theorem 1 (Burnside’s Theorem) LetG be a finite group acting on a finite set
S. Then the number of distinct orbits in S underG is given by

n =
1
|G|

∑

g∈G

F (g). (1)

An easy way to remember Burnside’s Theorem is to put (1) into words:

The number of distinct orbits in S under G is the average number of set
elements fixed by a group element.

To apply Burnside’s Theorem, we need

• a finite group,
• a finite set on which that group acts, and
• the cardinality of the fixtures of each group element.
In our problem, the group is the dihedral group Dp consisting of the p
transposition operators and the p inversion operators. For pitch class sets
of cardinality k, the set that our group acts on consists of all subsets of
{0, 1, 2, . . . , p− 2, p− 1} of cardinality k. To determine the number of set
classes (i.e., distinct orbits inS underG), wemust determine the cardinality
of the fixtures of the group elements. The next two sections discuss this
topic.

The Fixture of Inversion Operators

We assume that the octave is divided into p equal steps and n is a num-
ber such that 0 ≤ n ≤ p− 1. We must also remember that we are doing
arithmetic modulo p.
Recallingourdiscussionof the inversionoperatorsabove, each inversion

operator is a flip across a line of symmetry and so is its own inverse, that
is, TnI(TnI(x)) = x. Thus, the inversion operator TnI fixes pairs of pitch
classes {x, TnI(x)}, or else a single pitch class if TnI(x) = x. To compute
F (g) for an inversion operator g, we need to know how many singles and
howmany pairs are invariant. First, let’s determine howmany single pitch
classes are fixed by an inversion operator.
Suppose that x satisfies TnI(x) = x. This equation can be rewritten as

(p− x + n) mod p = x, (2)
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which is equivalent to

2x = n + kp. (3)

Since 0 ≤ x ≤ p− 1, we need consider only k = 0 and k = 1. Since the left
side of (3) is an even number, we have integer solutions onlywhen the right
side is also even. Since p can be even or odd and so can n, we have four
cases to consider. First, suppose that p is even; then if n is odd we have no
solutions, and if n is even we have two solutions. If p is odd, then there is
one solution whether n is even or odd.
This information makes it possible to count the number of pitch class

sets of a given size that an inversion operator fixes. We need only figure
out how many pairs and singles make up a given pitch class set size.

Example: Counting the Number of Pitch Class Sets That Are Fixed.
Suppose that p = 13 and we are interested in pitch class sets of size
four. From the discussion above, we know that all the TnI operators
fix six pairs of pitch classes and one singleton pitch class. Since it takes
two pairs to make four, and we have six pairs to choose from, each
inversion operator fixes

(
6
2

)
= 15

pitch class sets of size four.
If p is even, then it is slightly more complicated to do the count.

Suppose that p = 12 and k = 5. All the even inversions in this case fix
five pairs and 2 singles. Since five is two pairs plus one, the number
of pitch class sets of size five that each even inversion fixes is

2
(

5
2

)
= 20.

The odd inversions fix six pairs, so they do not fix any set of size five.

Wenowknowhowto compute the cardinalityof thefixtures of inversion
operators for any number of pitch classes. To use Burnside’s Theorem,
we also need to know the cardinality of the fixtures of the transposition
operators. This subject is the topic of the next section.

The Fixture of Transpositional Operators

Determining the fixtures of the transposition operators requires some
group theory. Subgroups, cosets, and Cauchy’s Theorem all make an ap-
pearance.
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Cosets play a key role in determining the fixtures of the transposition
operators; we recall the definition. Let G be a group, H a subgroup of G,
and a any element of G. The set Ha = {ha|h ∈ H} is a right coset of H ;
one can also define a left coset in an analogous manner. (Of course, in an
abelian group they are the same.) We use the term “coset” to mean a right
coset.
Recall that the set{0, 1, 2, . . . , p− 1}withadditionmodulop is the cyclic

group Zp, all of whose subgroups are also cyclic. So every subgroup has a
generator, and by Cauchy’s Theorem this generator must divide p. From
these facts, we can conclude two things:

• Since every subgroup is cyclic with generator d, successive elements
have the same difference, d. This means that the transposition operators
Td, T2d . . . , Trd all fix this subgroup. In addition, those operators also fix
the cosets of that subgroup since elements of the coset are also multiples
of d apart.

• The only operators Tm that can fix a pitch class set must have m not
relatively prime to p or else be the identity T0.

Cosets are not the onlypitch class sets that canbefixedbya transposition
operator. Invariant sets can also be unions of cosets of a given subgroup.
For example, for p = 12 there are nontrivial subgroups of order two, three,
four, and six. Invariant pitch class sets of size six can be manufactured by
taking three cosets of size two, two cosets of size three, or one coset of size
six. Figure 2 shows an invariant set of T6 that is the union of two cosets of
the subgroup {0,6}.
Music theorists keep track of this information using a table that they call

the Tn cycles [Morris 1991]. To create a Tn cycle, you create the subgroup
of Zp generated by n and then form the cosets of that subgroup. For our
purposes, we need only the operators that generate nontrivial subgroups,
since we know T0 fixes everything and the rest fix nothing. One last thing
to note is that if m + n = p, then Tn and Tm generate the same cosets, so
we can list these together.

Example: Cycles and FixedPitchClass Sets for p = 12. TheTn cycles
for p = 12 are:

T2, T10 {0, 2, 4, 6, 8, 10} {1, 3, 5, 7, 9, 11}
T3, T9 {0, 3, 6, 9} {1, 4, 7, 10} {2, 5, 8, 11}
T4, T8 {0, 4, 8} {1, 5, 9} {2, 6, 10} {3, 7, 11}
T6 {0, 6} {1, 7} {2, 8} {3, 9} {4, 10} {5, 11}
Let’s compute thenumberof pitch class sets of size six that arefixed

by transposition operators for p = 12. First we note that the operators
T1, T3, T5, T7, T9, and T11 fix no pitch class set of size six, and T0 fixes
all 924 (that is,

(
12
6

)
= 924) sets of that size. Using the Tn cycles, we see

that T2 and T10 together fix a total of 4; T4 and T8 together fix 12; and
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Figure 2. A union of cosets that are fixed by T6.

T6 fixes 20. Adding all these contributions together gives 960 pitch
class sets of size six that are fixed by transposition operators.

Examples of Counting Set Classes

AWarm-Up Example

Example: Counting Set Classes. Let’s take p = 12 andm = 4. From
the Tn cycles above, we see that the only transposition operators that
fix sets of size four areT0, T3, T9, andT6. So transposition operators fix
495 + 3 + 3 + 15 = 516 pitch class sets of size four. The odd inversion
operators fix six pairs of pitch classes each, so each of these fixes 15
sets of size four. The even inversion operators fix five pairs and two
single pitch classes. Since we are counting pitch class sets of size four,
we can treat the two singles as a pair; so each even inversion also
fixes 15 pitch class sets. The total number of pitch class sets fixed by
inversion operators is therefore 180. By Burnside’s Theorem, there are
(516 + 180)/24 = 29 set classes.

A Prime Number of Pitches

Suppose that theoctave is divided into aprimenumberpofpitch classes,
p > 2. We wish to know how many distinct set classes are there for pitch
class sets of size k.
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Since Zp has no nontrivial subgroups when p is prime, the only trans-
position operator that fixes anything is T0. The number of pitch class sets
of size k that T0 leaves invariant is

(
p

k

)
=

p!
(p− k)!k!

.

Since p is prime greater than two, it is necessarily odd. Recalling our
earlier discussion, we know that each inversion operator leaves (p− 1)/2
pairs of pitch classes and only one singletonfixed. Bearing this fact inmind,
we can calculate the number of invariant sets. Suppose that k is even, then
each inversion has

(
(p− 1)/2

k/2

)

invariant sets. If k is odd, then each inversion has
(

(p− 1)/2
(k − 1)/2

)

invariant sets.
To calculate the number N of distinct set classes of size k, we need the

average number of invariant sets. For k even we get

N =
1
2p

[(
p

k

)
+ p

(
(p− 1)/2

k/2

)]
.

Similarly, the number of distinct set classes when k is odd is

N =
1
2p

[(
p

k

)
+ p

(
(p− 1)/2
(k − 1)/2

)]
.

Example: Number of Distinct Set Classes. For p = 13 and k = 4, the
number of distinct set classes is

N =
1
26

[(
13
4

)
+ 13

(
6
2

)]
= 35;

and for p = 13 andm = 5, the number of distinct set classes is

N =
1
26

[(
13
5

)
+ 13

(
6
2

)]
= 57.
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Subgroups of Operators

Sometimes it is of interest to music theorists to count the distinct orbits
for a subgroup of the 2p operators described earlier in this paper.

Example: Number of Orbits. Let’s take p = 12 and let our group or
operators be G = {T0, T6, T0I, T6I}. Now, let’s compute the number
of distinct orbits for k = 5. We find that T0 fixes 792 pitch class sets of
size k = 5, T6 fixes 0, and the inversion operators fix 20 each. Adding
these together and dividing by four gives 208 distinct orbits.

An Extension to Pitch Class Multisets

Sometimes in a piece of music with multiple voices, some voices sound
the same pitch class, perhaps separated by an octave or in unison. Until
now, we listed any doublings only once in a pitch class set. Some music
theorists like to include the possibility of voice doublings by listing the
pitch classes for each voice, for example {0,0,4,7}. In this case, we need to
modify our counting to account for the possibility of repeated pitch classes
in a pitch class set. Let’s refer to a subset of the pitch classes that may
include repeated elements as a pitch class multiset. Burnside’s Theorem can
still be used to count orbits, but we will need to recompute the size of our
fixtures.
We’vedonemost of thework to compute thefixtures of the transposition

operators. We already know what types of sets can be fixed; cosets and
unions of cosets. For pitch class multisets, we can add copies of cosets to
our list. This addition does not change the countingmuch, as the following
example shows.

Example: Number of Pitch Class Multiset Orbits. We consider
p = 12 and k = 4. As before, we consult our Tn cycles to determine
what transposition operators can fix sets of size four; we see that the
possibilities are T0, T3, T6, and T9. As we count for each operator, we
must allow for repeats. So T0 fixes

(
12 + 4− 1

4

)
= 1365

pitch class multisets of size four, T3 and T9 still fix 3 each, and T6 fixes
(

6 + 2− 1
2

)
= 21

multisets. Altogether, the transposition operators fix 1392 pitch class
multisets of size four.
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Inversion operators are more complicated in the multiset case, since ac-
counting for the singleton fixed pitch classes is a little tricky. One approach
is to figure out howmany copies of the singletons youwant to include in the
multiset and then to fill in the rest of it with pairs. This leads to a partition
of the sets that we are counting.

Example: Fixed Pitch Class Sets for Inversion Operators. Again, let
p = 12, and k = 4. Recalling our discussion above, the even inversion
operators fix five pairs and two single pitch classes and the odd inver-
sion operators fix six pairs of them. The odd inversions are computed
simply as fixing

(
6 + 2− 1

2

)
= 21

each for a total of 126. A pitch class set fixed by the even inversions
could have zero, two, or four of its elements chosen from the two
singletons. Suppose that there are four elements chosen from the two
singletons, then there could be zero, one, two, three or four of either
element in a multiset; so we see that there are five ways that four
elements can be chosen from two (with repeats). Similarly, there are
threeways to choose two things from two. Putting these facts together,
we get that the odd inversion operators fix

5 + 3
(

5
1

)
+

(
5 + 2− 1

2

)
= 35

pitch class sets, for a total of 210.

We can now conclude that there are (1392 + 126 + 210)/24 = 72 distinct
multiset orbits for pitch class multisets of size four.

Conclusions

WehavedemonstratedhowtouseBurnside’sLemmatocount set classes
of pitch class sets and pitch class multisets.
For anyone reading Isihara and Knapp [1993] or taking an abstract al-

gebra course that touches on group actions, this material couldmake a nice
project. For example, a student could create a mathematical composition,
using a p = 5 tone scale, that employs all the possible set classes uniformly.
Students of mathematics are likely to be surprised at the depth and type

ofmathematics used to answer questions inmusic theory. Theymight even
be inspired to look for more connections.
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