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Abstract. Musical rhythm is considered from the point of view of ge-
ometry. The interaction between the two fields yields new insights into
rhythm and music theory, as well as new problems for research in mathe-
matics and computer science. Recent results are reviewed, and new open
problems are proposed.

1 Introduction

Imagine a clock which has 16 hours marked on its face instead of the usual
12. Assume that the hour and minute hands have been broken off so that only
the second-hand remains. Furthermore assume that this clock is running fast
so that the second-hand makes a full turn in about 2 seconds. Such a clock is
illustrated in Figure 1. Now start the clock ticking at “noon” (16 O’clock) and
let it keep running for ever. Finally, strike a bell at positions 16, 3, 6, 10 and
12, for a total of five strikes per clock cycle. These times are marked with a
bell in Figure 1. The resulting pattern rings out a seductive rhythm which, in a
short span of fifty years during the last half of the 20th century, has managed
to conquer our planet. It is known around the world (mostly) as the Clave Son

from Cuba. However, it is common in Africa, and probably travelled from Africa
to Cuba with the slaves [65]. In Africa it is traditionally played with an iron bell.
In Cuba it is played with two sticks made of hard wood also called claves [43].
More relevant to this paper, there exist purely geometric properties that may
explain the world-wide popularity of this clave rhythm [58].

The Clave Son rhythm is usually notated for musicians using standard music
notation which affords many ways of expressing a rhythm. Four such examples
are given in the top four lines of Figure 2. The fourth line displays the rhythm us-
ing the smallest convenient durations of notes and rests. Western music notation
is not ideally suited to represent African music [3], [18]. The fifth and sixth lines
show two popular ways of representing rhythms that avoid Western notation.
The representation on line five is called the Box Notation Method developed by
Philip Harland at the University of California in Los Angeles in 1962 and is also

? This research was partially supported by NSERC and FCAR. e-mail: god-
fried@cs.mcgill.ca



1
2

3

4

6

5

789

10

11

12

13

14

15 16

Fig. 1. A clock divided into sixteen equal intervals of time.
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Fig. 2. Eight common ways of representing the clave Son rhythm.

known as TUBS (Time Unit Box System). The TUBS representation is popu-
lar among ethnomusicologists [18], and invaluable to percussionists not familiar
with Western notation. It is also convenient for experiments in the psychology
of rhythm perception, where a common variant of this method is simply to use
one symbol for the note and another for the pause [17], as illustrated in line
six. In computer science the clave Son might be represented as the 16-bit binary
sequence shown on line seven. Finally, line eight depicts the interval length rep-
resentation of the clave Son, where the numbers denote the lengths (in shortest
convenient units) of the durations between consecutive onsets (beginning points
in time of notes). The compactness and ease of use in text, of this numerical
interval-length representation, are two obvious advantages, but its iconic value
is minimal. For a description of additional (more geometric) methods used to
represent rhythms see [61].

In this paper several geometric properties of musical rhythm are analysed
from the musicological and mathematical points of view. Several connecting
bridges between music theory, mathematics, and computer science are illumi-
nated. Furthermore, new open problems at the interface are proposed.



2 Measures of Rhythmic Evenness

Consider the following three 12/8 time rhythms expressed in box-like notation:
[x . x . x . x . x . x .], [x . x . x x . x . x . x] and [x . . . x x . . x x x .]. It is in-
tuitively clear that the first rhythm is more even (well spaced) than the second,
and the second is more even than the third. In passing we note that the second
rhythm is internationally the most well known of all the African timelines. It
is traditionally played on an iron bell, and is known on the world scene mainly
by its Cuban name Bembé [60]. Traditional rhythms have a tendency to exhibit
such properties of evenness to one degree or another. Therefore mathematical
measures of evenness, as well as other geometric properties, find application in
the new field of mathematical ethnomusicology [9], [62], where they may help to
identify, if not explain, cultural preferences of rhythms in traditional music.

2.1 Maximally even rhythms

In music theory much attention has been devoted to the study of intervals used in
pitch scales [24], but relatively little work has been devoted to the analysis of time
duration intervals of rhythm. Two notable exceptions are the books by Simha
Arom [3] and Justin London [36]. Clough and Duthett [12] introduced the notion
of maximally even sets with respect to scales represented on a circle. According
to Block and Douthett [5], Douthet and Entringer went further by constructing
several mathematical measures of the amount of evenness contained in a scale
(see the discussion on p. 41 of [5]). One of their measures simply adds all the
interval arc-lengths (geodesics along the circle) determined by all pairs of pitches
in the scale. This definition may be readily transferred to durations in time, of
cyclic rhythms represented on a unit circle, as illustrated in Figure 1. However,
the measure is too coarse to be useful for comparing rhythm timelines such as
those studied in [58] and [60]. Admitedly, the measure does differentiate between
rhythms that differ widely from each other. For example, the two four-onset
rhythms [x . . . x . . . x . . . x . . .] and [x . x . x . . x . . . . . . . .] yield evenness
values of 32 and 23, respectively, reflecting clearly that the first rhythm is more
evenly spaced than the second. However, all six fundamental 4/4 time clave/bell
patterns illustrated in Figure 3, and discussed in [58], have an equal evenness
value of 48, and yet the Rumba clave is clearly more uneven than the Bossa-

Nova clave. The use of interval chord-lengths (as opposed to geodesic distances),
proposed by Block and Douthet [5], yields a more discriminating measure, and
is therefore the preferred measure of evenness.

2.2 Maximizing the sum of distances

The evenness measure of Block and Douthet [5], which sums all the pairwise
straight-line distances of a set of points on the circular lattice, brings up the
question of which configurations of points (rhythms) achieve maximum evenness.
In fact, this problem had been investigated by the Hungarian mathematician
Fejes Tóth [55] some forty years earlier without the restriction of placing the
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Fig. 3. The six fundamental 4/4 time clave and bell patterns in box notation.

points on the circular lattice. He showed that the sum of the pairwise distances
determined by n points in a circle is maximized when the points are the vertices
of a regular n-gon inscribed on the circle.

The discrete version of this problem, of interest in music theory [5], is a special
case of several problems studied in computer science and operations research. In
graph theory it is a special case of the maximum-weight clique problem [22]. In
operations research it is studied under the umbrella of obnoxious facility location
theory. In particular, it is one of the dispersion problems called the discrete p-
maxian location problem [20], [21]. Because these problems are computationally
difficult, researchers have proposed approximation algorithms [30], and heuris-
tics [21], [66], for the general problem, and have sought efficient solutions for
simpler special cases of the problem [49], [54].

Fejes Tóth also showed in [55] that in three dimensions four points on the
sphere maximize the sum of their pairwise distances when they are the vertices
of a regular tetrahedron. The problem remains open for more than four points on
the sphere. Some upper and lower bounds on the maximum value that the sum
may attain are known. Alexander [1] proved an upper bound of (2/3)n2 − (1/2).
It has also been shown that the points must be well spaced in some sense.
Stolarsky [53] proved that if n points are placed on the sphere so that the sum
of their distances is maximized, then the distance between the closest pair is at
least 2/3n. Additional bounds and references may be found in the survey paper
by Chakerian and Klamkin [8].

In 1959 Fejes Tóth [56] asked a more difficult question by relaxing the spher-
ical constraint. He asked for the maximum sum of distances of n points in the
plane under the constraint that the diameter of the set is at most one. Pil-
lichshammer [46] found upper bounds on this sum but gave exact solutions only
for n = 3, 4, and 5. For n = 3 the points form the vertices of an equilateral
triangle of unit side lengths. For n = 5 the points form the vertices of a regular
pentagon with unit length diagonals. For n = 4 the solution may be obtained
by placing three points on the vertices of a Reuleaux unit-diameter triangle,
and the fourth point at a midpoint of one of the Reuleaux triangle arcs. The
problem remains open for more than five points in the plane. In the mathematics
literature such problems have also been investigated with the Euclidean distance
replaced by the squared Euclidean distance [45], [47], [67].
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Fig. 4. The full-interval histograms of the 4/4 time clave-bell patterns.

3 Interval Spectra of Rhythms

Rather than focusing on the sum of all the inter-onset duration intervals of a
rhythm, as in the preceeding section, here we examine the shape of the spec-

trum of the frequencies with which all the inter-onset durations are present in
a rhythm. Again we assume rhythms are represented as points on a circle as
in Figure 1. In music theory this spectrum is called the interval vector (or full-
interval vector) [39]. For example, the interval vector for the clave Son pattern of
Figure 1 is given by [0,1,2,2,0,3,2,0]. It is an 8-dimensional vector because there
are eight different possible duration intervals (geodesics on the circle) between
pairs of onsets defined on a 16-unit circular lattice. For the clave Son there are
5 onsets (10 pairs of onsets), and therefore the sum of all the vector elements
is equal to ten. A more compelling and useful visualization of an interval vec-
tor is as a histogram. Figure 4 shows the histograms (interval vectors) of the
full-interval sets of all six (4/4)-time clave-bell patterns pictured in Figure 3.

Examination of the six histograms leads to questions of interest in a variety of
fields of enquiry: musicology, geometry, combinatorics, and number theory. For
example, David Locke [35] has given musicological explanations for the char-
acterization of the Gahu bell pattern (shown at the bottom of Figure 3) as
“rhythmically potent”, exhibiting a “tricky” quality, creating a “spiralling ef-
fect”, causing “ambiguity of phrasing” leading to “aural illusions.” Comparing
the full-interval histogram of the Gahu pattern with the five other histograms
in Figure 4 leads to the observation that the Gahu is the only pattern that has
a histogram with a maximum height of 2, and consisting of a single connected
component of occupied histogram cells. The only other rhythm with a single
connected component is the Rumba, but it has 3 intervals of length 7. The only
other rhythm with maximum height 2 is the Soukous, but it has two connected
components because there is no interval of length 2. Only Soukous and Gahu use
seven out of the eight possible interval durations.



The preceeding observations suggest that perhaps other rhythms with rela-
tively uniform (flat) histograms, and few, if any, gaps may be interesting from
the musicological point of view as well. Does the histogram shape of the Gahu

rhythm play a significant role in the rhythm’s special musicological properties?
If so, this geometric property could provide a heuristic for the discovery and
automatic generation of other “good” rhythms. Such a tool could be used for
music composition by computer. With this in mind one may wonder if rhythms
exist with the most extreme values possible for these properties. Let us denote
the family of all rhythms consisting of k onsets in a time span cycle of n units by
R[k, n]. In other words R[k, n] consists of all n-bit cyclic binary sequences with
k 1’s. Thus all the 4/4 time clave-bell patterns in Figure 3 belong to R[5, 16].

The first natural question that arizes is whether there exist any rhythms
whose inter-onset intervals have perfectly flat histograms of height one with no
gaps. This is clearly not possible with R[5, 16]. Since there are only 8 possible
different interval lengths and 10 distance pairs, there must exist at least one
histogram cell with height greater than one. The second natural question is
whether there exists an R[5, 16] rhythm that uses all eight intervals. The answer
is yes; one such pattern is [x x . . . x . x . . . . . x . .] with interval vector given
by [1,1,1,2,1,2,1,1]. However, the rhythm [x x . . x . x . . . . .] belonging to the
family R[4, 12] depicted on the circle in Figure 5 (a) does have a perfectly flat
histogram: every one of the inter-onset intervals occurs exactly once; its interval
vector is [1,1,1,1,1,1].

For a rhythm to have “drive” it should not contain silent intervals that are
too long, such as the silent interval of length six in Figure 5 (a). One may wonder
if there are other rhythms in R[4, 12] with interval vectors equal to [1,1,1,1,1,1],
and if they exist, are there any with shorter silent gaps. It turns out that the
answer is yes. The rhythm [x x . x . . . x . . . .] shown in Figure 5 (b) satisfies
all these properties; its longest silent gap is five units.
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Fig. 5. Two flat-histogram rhythms.



A cyclic sequence such as [x x . . x . x . . . . .] is an instance of a necklace

with “beads” of two colors [33]; it is also an instance of a bracelet. Two necklaces
are considered the same if one can be rotated so that the colors of its beads cor-
respond, one-to-one, with the colors of the other. Two bracelets are considered
the same if one can be rotated or turned over (mirror image) so that the colors
of their beads are brought into one-to-one correspondence. The rhythms in Fig-
ure 5 clearly maintain the same interval vector (histogram) if they are rotated,
although this rotation may yield rhythms that sound quite different. Therefore it
is useful to distinguish between rhythm-necklaces, and just plain rhythms (neck-
lace instances in a fixed rotational position with respect to the underlying beat).
The number of onsets in a rhythm is called the density in combinatorics, and
efficient algorithms exist for generating all the necklaces with a specified fixed
density [51].

3.1 Rhythms with specified duration multiplicities

In 1989 Paul Erdős [19] asked whether one could find n points in the plane (no
three on a line and no four on a circle) so that for every i, i = 1, ...n−1 there is a
distance determined by these points that occurs exactly i times. Solutions have
been found for 2 ≤ n ≤ 8. Palásti [44] considered a variant of this problem with
further restrictions: no three form a regular triangle, and no one is equidistant
from three others. A musical scale whose pitch intervals are determined by points
drawn on a circle, and that has the property asked for by Erdős is known in
music theory as a deep scale [31]. We will transfer this terminoly from the pitch
domain to the time domain and refer to cyclic rhythms with this property as deep

rhythms. Deep scales have been studied as early as 1967 by Carlton Gamer [26],
[27], and it turns out that the ubiquitous Western diatonic scale is a deep scale.
Also, the Bembé rhythm mentioned in the preceeding is a deep rhythm since it
is isomorphic to the diatonic scale.

The question posed by Erdős is closely related to the general problem of re-
constructing sets from interpoint distances: given a distance multiset, construct
all point sets that realize the distance multiset. This problem has a long history
in crystallography [34], and more recently in DNA sequencing [52]. Two non-
congruent sets of points, such as the two different necklaces of Figures 5, are
called homometric if the multisets of their pairwise distances are the same [50].
For an extensive survey and bibliography of this problem see [34]. The special
cases relevant to the theory of rhythm, when points lie on a line or circle, have
received some attention, and are called the turnpike problem and the beltway

problem, respectively [34].

Some existing results on homometric sets on the circular lattice are most
relevant to the theory of rhythm. For example many drumming patterns have
two sounds (such as the high and low congas) that together tile the lattice. It
is known that every n-point subset of the regular 2n-gon is homometric to its
complement [34]. This leads immediately to a simple method for the generation
of two-tone tiling rhythms in which each of the two parts is homometric. One



example is illustrated in Figure 6. It is also known that two rhythms are homo-
metric if, and only if, their complements are [10]. This concept provides another
tool that may find use in music composition by computer.

1

2

3

4
5

6

7
0

1

1

2

3

3

4

1

2

3

4
5

6

7
0

1

1
2

3

3

4

Low Conga High Conga

Fig. 6. Two complementary homometric rhythms.

4 Measuring the Similarity of Rhythms

At the heart of any algorithm for comparing, recognizing or classifying rhythms,
lies a measure of the similarity between a pair of rhythms. The type of similarity
measure chosen is in part predetermined by the manner in which the rhythm
is represented. Furthermore, the design of a measure of similarity is guided by
at least two fundamental ideas: what should be measured, and how should it be
measured.

There exists a wide variety of methods for measuring the similarity of two
rhythms represented by strings of symbols [59]. Indeed the resulting approxi-
mate pattern matching problem is a classical problem in pattern recognition and
computer science in general [16]. Traditionally similarity between two patterns
is measured by a simple template matching operation. More recently similarity
has been measured with more powerful and complex functions such as the earth

mover’s distance [7], [64], weighted geometric matching functions [37], the swap

distance [61], and the directed-swap distance [15], [13].

4.1 Swap distance

A well known distance measure between two n-bit binary sequences is the Ham-
ming distance trivially computed in O(n) time. However, this distance measure
is not appropriate for rhythm similarity, when used with a binary-string repre-
sentation, because although it measures the existence of an onset missmatch, it
does not measure how far the missmatch occurs. Furthermore, if a note onset



of a rhythm is displaced a large distance, the resulting modified rhythm will in
general sound more different than if the onset is moved a small distance.

To combat this inherent weakness of the Hamming distance, variants and
generalizations of the Hamming distance have been proposed over the years. One
early generalization is the edit distance which allows for insertions and deletions
of notes. Discussions of the application of the edit-distance to the measurement
of similarity in music can be found in Mongeau and Sankoff [40] and Orpen
and Huron [42]. A noteworthy more recent generalization is the fuzzy Hamming
distance [6] which allows shifting of notes as well as insertions and deletions.
Using dynamic programming these distances may be computed in O(n2) time.

The problem of comparing two binary strings of the same length with the
same number of one’s suggests an extremely simple edit operation called a swap.
A swap is an interchange of a one and a zero that are adjacent to each other in
the binary string. Interchanging the position of elements in strings of numbers is
a fundamental operation in many sorting algorithms [14]. However, in the sort-
ing literature a swap may interchange non-adjacent elements. When the elements
are required to be adjacent, the swap is called a mini-swap or primitive-swap [4].
Here we use the shorter term swap to mean the interchange of two adjacent
elements. The swap distance between two rhythms is the minimum number of
swaps required to convert one rhythm to the other. The swap distance may be
viewed as a simplified version of the generalized Hamming distance [6], where
only the shift operation is used, and the cost of the shift is equal to its length.
Such a measure of dissimilarity appears to be more appropriate than the Ham-
ming distance between the binary vectors in the context of rhythm similarity [58],
[60]. The swap distance may also be viewed as a special case of the more gen-
eral earth mover’s distance (also called transportation distance) used by Typke
et al. [64] to measure melodic similarity. Given two sets of points called sup-
ply points and demand points, each assigned a weight of material, the earth
movers distance measures the minimum amount of work (weight times distance)
required to transport material from the supply points to the demand points. No
supply point can supply more weight than it has and no demand point receives
more weight than it needs. Typke et al. [64] solve this problem using linear pro-
gramming, a relatively costly computational method. The swap distance is a one
dimensional version of the earth mover’s distance with all weights equal to one.
Furthermore, in the case where both binary sequences have the same number of
“one’s” (or onsets), there is a one-to-one correspondence between the indices of
the ordered onsets of the sequences [32].

The swap distance may of course be computed by actually performing the
swaps, but this is inefficient. If X has one’s in the first n/2 positions and zero’s
elsewhere, and if Y has one’s in the last n/2 positions and zero’s elsewhere,
then a quadratic number of swaps would be required. On the other hand, if we
compare the distances instead, a much more efficient algorithm results. First
scan the binary sequence and store a vector of the x-coordinates at which the k
onsets occur. Then the swap distance between the two onset-coordinate vectors
U and V with k onsets is given by:
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Fig. 7. Two melodies as rectilinear pitch-duration functions of time.

dSWAP (U, V ) =

k∑

i=1

|ui − vi| (1)

Computing U and V from X and Y is done trivially in O(n) time with a
simple scan. Therefore O(n) time suffices to compute dSWAP (U, V ), resulting in
a large gain over the linear or dynamic programming algorithms.

5 Introducing Melody into Rhythm

ÓMaid́ın [41] proposed a geometric measure of the distance between two melodies
modelled as monotonic pitch-duration rectilinear functions of time as depicted
in Fig. 7. ÓMaid́ın measures the distance between the two melodies by the area
between the two polygonal chains (shown shaded in Fig. 7). Note that if the
area under each melody contour is equal to one, the functions can be viewed
as probability distributions, and in this case ÓMaid́ın’s measure is identical to
the classical Kolmogorov variational distance used to measure the difference
between two probability distributions [57]. If the number of vertices (vertical
and horizontal segments) of the two polygonal chains is n then it is trivial to
compute ÓMaid́ın’s distance in O(n) time using a line-sweep algorithm.

In a more general setting, such as music information retrieval systems, we
are given a short query segment of music, denoted by the polygonal chain Q =
(q1, q2, ..., qm), and a longer stored segment S = (s1, s2, ..., sn), where m < n.
Furthermore, the query segment may be presented in a different key (transposed
in the vertical direction) and in a different tempo (scaled linearly in the horizontal
direction). Note that the number of keys (horizontal levels) is a small finite
constant. Time is also quantized into fixed intervals (such as eighth or sixteenth
notes). In this context it is desired to compute the minimum area between the two
contours under vertical translations and horizontal scaling of the query. Francu
and Nevill-Manning [25] claim that this distance measure can be computed in
O(mn) time but they do not describe their algorithm in detail.



6 New Open Problems

Let us assume that we are given a circular lattice with n points (evenly spaced),
and we would like to create a rhythm consisting of k onsets by choosing k of these
n lattice points. For example, perhaps n = 16 and k = 5 as in Figure 1. Further-
more we would like to select the k onsets that maximize the sum of the lengths of
all pairwise chords between these onsets. Evaluating all n-choose-k subsets may
in general be too costly. However, interesting rhythms often have additional mu-
sicological constraints that may be couched in a geometric setting [3], and may
permit simpler solutions. One may also consider an approximation method using
the following snap heuristic: construct a regular k-gon with one vertex coinci-
dent with one lattice point, and then move the remaining onset points to their
nearest lattice points. One would expect such a rhythm to have high evenness
value. How close to optimal is this procedure?

The two sequences shown in Figure 5 are the only possible rhythm bracelets
with flat histograms, for any values of k greater than three [48]. Therefore in
order to be able to generate additional rhythms with near-flat histograms the
constraints outlined in the preceeding need to be relaxed. We may proceed in
several directions. For example, it is desirable for timelines that can be played
fast, and that “roll along” (such as the Gahu already discussed), that the rhythm
contain silent gaps that are neither too short nor too long. Therefore it would be
desirable to be able to efficiently generate rhythms that either contain completely
prescribed histogram shapes, or have geometric constraints on their shapes, and
to find good approximations when such rhythms do not exist.

The analysis of cyclic rhythms suggests another variant of the question asked
by Erdős. First note that if a rhythm R[k, n] has k ≤ n/2, then a solution
to Erdős’ problem always exists: simply place points at positions 0, 1, 2, ..., k.
However, as mentioned in the preceeding, from the musicological point of view
it may be desirable sometimes not to allow empty semicircles. These constraints
suggest the following problem. Is it possible to have k points on a circular lattice
of n points so that for every i, i = ks, ks+1, ..., kf (s and f are pre-specified)
there is a geodesic distance that occurs exactly i times, with (or without) the
further restriction that there is no empty semicircle?

The preceeding discussion on the swap distance was restricted to comparing
two linear strings. However, many rhythms such as the timelines considered here
are cyclic, and there are applications, such as music information retrieval, where
it is desired to compute the best alignement of two cyclic rhythms over all pos-
sible rotations. In other words, it is of interest to compute the distance between
two rhythms minimized over all possible rotations of one with respect to the
other. Some work has been done with cyclic string matching for several defini-
tions of string similarity [28], [38], [11]. Consider two binary sequences of length
n and density k (k ones and (n − k) zeros). It is desired to compute the mini-
mum swap distance between the two strings under all possible alignments. I call
this distance the cyclic swap-distance or also the necklace swap-distance, since
it is the swap distance between two necklaces. From the preceeding discussion it
follows that the cyclic swap distance may be computed in O(n2) time by using



the linear-time algorithm in each of the n possible alignment positions of the
two rhythms. Note that swaps may be performed in whatever direction (clock-
wise or counter-clockwise) yields the fewest swaps. Can the cyclic swap distance
be computed in o(n2) time? In contrast, if the swap distance is replaced with
the Hamming distance, then the cyclic (or necklace) Hamming distance may be
computed in O(n log n) time with the Fast Fourier Transform [23], [29].

The work of ÓMaid́ın [41] and Francu and Nevill-Manning [25] suggests sev-
eral interesting open problems. In the acoustic signal domain the vertical trans-
position is continuous rather than discrete. The same can be said for the time
axis. What is the complexity of computing the minimum area between a query
Q = (q1, q2, ..., qm) and a longer stored segment S = (s1, s2, ..., sn) under these
more general conditions?

A simpler variant of the melody similarity problem concerns acoustic rhyth-

mic melodies, i.e., cyclic rhythms with notes that have pitch as a continuous
variable. Here we assume two rhythmic melodies of the same length are to be
compared. Since the melodies are cyclic rhythms they can be represented as
closed curves on the surface of a cylinder. What is the complexity of computing
the minimum area between the two rectilinear polygonal chains under rotations
around the cylinder and translations along the length of the cylinder? Aloupis
et al. [2] present an O(n) time algorithm to compute this measure if rotations
are not allowed, and an O(n2 log n) time algorithm for unrestricted motions (ro-
tations around the cylinder and translations along the length of the cylinder).
Can this complexity be improved?

In the preceeding sections several tools were pointed out that can be used
for computer composition. We close the paper by mentioning one additional tool
for automatically selecting rhythm timelines that can be used for generating
new music. In [63] it is shown that the Euclidean algorithm for finding the
greatest common divisor of two numbers can be used to generate very good
rhythm timelines when the two numbers that serve as input to the Euclidean

algorithm are the number of onsets (k) and the time-span (n), respectively,
of the desired rhythm. The resulting rhythms, called Euclidean rhythms, are
particularly attractive when k and n are relatively prime. What is the relation
between Euclidean rhythms and maximally even rhythms under the different
definitions of even considered in the preceeding?

References

1. R. Alexander. On the sum of distances between n points on a sphere. Acta. Math.
Acad. Sci. Hungar., 23:443–448, 1972.

2. Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa,
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