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Abstract

Given a simple polygon in the plane, a flip is de-
fined as follows: consider the convex hull of the poly-
gon. If there are no pockets do not perform a flip.
If there are pockets then reflect one pocket across its
line of support of the polygon to obtain a new simple
polygon. In 1934 Paul Erdés introduced the prob-
lem of repeatedly flipping all the pockets of a simple
polygon simultaneously and he conjectured that the
polygon would become convex after a finite number
of flips. In 1939 Béla Nagy pointed out that flipping
several pockets simultaneously may result in a non-
simple polygon. Modifying the problem slightly he
then proved that if at each step only one pocket is
flipped the polygon will become convex after a finite
number of flips. We call this result the Erdés-Nagy
Theorem. Since then this theorem has been redis-
covered many times in different contexts, apparently,
with none of the authors aware of each other’s work.
One purpose of this paper is to bring to light this
“hidden” work. We review the history of this prob-
lem, provide a simple elementary proof of a stronger
version of the theorem and consider variants, general-
izations and applications of interest in computational
knot theory, polymer physics and molecular biology.
We also improve several results in the literature with
the application of the Erdés-Nagy theorem. We close
with a list of open problems.
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Figure 1: Rotating a reflex vertex using the third
dimension.

1 Introduction

Let A = A A; A3 A4 be a nonconvex quadrilateral in
the two-dimensional zy-plane with Az as its reflex
vertex (refer to Figure 1). Furthermore, assume that
the quadrilateral (although planar) is embedded in
the 3D space with axes z, y and z, that the vertices
are ball-joints which allow rotations in all directions
in 3D. Finally, assume the links (edges) are rigid line
segments with A1 As = A1As and Ay Az = AszAs.
If we lift vertex As off the zy-plane into the third
dimension z (leaving the other three vertices fixed)
by rotating it about the line through A» and A4 until
it returns to the xzy-plane at position Bs, then the
quadrilateral has been convexified with one simple
motion. This rotation motion in 3D is equivalent to
a reflection transformation in the zy-plane: Bs is the
reflection of Ag across the line through A; and As.

A generalization of this problem has been dis-
covered and re-discovered independently by several
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Figure 2: Flipping the pockets of a polygon.

mathematicians, biologists, physicists and computer
scientists dating back to 1935. Computer scientists
are motivated by practical robotics problems with
linkages. Molecular biologists and polymer physicists
are interested in unravelling large molecules (modeled
as polygons) such as circular DNA [10]. Mathemati-
cians are curious about the geometric properties of
polygons and simple closed curves.

The first person to propose this problem appears
to have been Paul Erdds in 1935 [8] in the context
of planar polygons. Consider the simple polygon P
in Figure 2 (a). If we subtract this polygon from its
convex hull we obtain the convex deficiency: a col-
lection of open connected regions. Each such region
together with its boundary is itself a polygon, often
called a pocket of P. The polygon P in Figure 2 (a)
has two pockets P; and P;. Each pocket has an edge
which coincides with a convex hull edge of P (shown
in the figure by dotted lines). Such an edge is called
the pocket lid.

Erdds defined a reflection operation on P as a si-
multaneous reflection of all the pockets of P about
their corresponding pocket lids. Applying a reflec-
tion operation to polygon P in Figure 2 (a) yields
the new polygon P’ in Figure 2 (b). In 1935 Erdés
conjectured that given any simple polygon, a finite
number of such reflection steps will convexify it. The
first proof of Erdds’ conjecture was provided in 1939
by Béla de Sz.-Nagy [6]. First Nagy observed that
reflecting all the pockets in one step can lead from
a simple polygon to a non-simple one. One such ex-
ample due to Nagy is shown in Figure 3. Therefore
he modified Erd6s’ problem slightly by defining one
step to be the reflection of only one pocket. Since a
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Figure 3: Flipping two pockets simultaneously may
lead to a crossing polygon.

Figure 4: The polygon on the left is convexified after
four flips.

pocket is reflected into a previously empty half-plane,
no collisions can occur with such a motion. Let us
call such an operation a flip.

Figure 4 shows a polygon being convexified after
four flips. The pockets at each flip are shown in white
before flipping and shaded after the flip is completed.
Nagy then proceeded to prove that any simple poly-
gon can be convexified by a finite number of flips.

2 Rediscoveries of the Erdos-

Nagy Theorem

Branko Griinbaum [12] described some of the strange
history of this problem and uncovered several redis-
coveries of the theorem. He also provided his own
version of a proof which is similar to Nagy’s proof
with one of the main differences being that at each
step he flips the pocket that has maximum area (if
more than one pocket exists). Since [12] is rather
inaccessible, here we first briefly outline his findings
and then add some more rediscoveries and variants
to the history of this problem.

As mentioned previously, in 1939 Béla Nagy



changed Erdés’ problem slightly by reflecting only
one pocket of the polygon at each step so that sim-
plicity is maintained during the convexification pro-
As we shall see later, maintaining simplicity
during the process is not necessary if the definition
of a flip is suitably modified.

CESSs.

In 1957 there appeared two Russian papers by
Reshetnyak [26] and Yusupov [38] proving the the-
orem with variants of basically the same proof.

In 1959 Kazarinoff and Bing [16] announced the
problem with a solution. Two years later a proof
appeared in a paper by Bing and Kazarinoff [3] and
also in Kazarinoft’s book [15]. They also conjectured
that every simple polygon will be convex after at most
2n flips.

In 1973 two students of Griunbaum at the Univer-
sity of Washington, R. R. Joss and R. W. Shannon
worked on this problem but did not publish their re-
sults. An account of the unfortunate circumstances
surrounding this event is given by Grinbaum [12].
They found a counter-example to the conjecture of
Bing and Kazarinoff (unaware of the conjecture of
course). They showed that given any positive integer
k, there exist simple polygons (indeed quadrilaterals
suffice) that cannot be convexified with fewer than k&
flips.

In 1981 Kaluza [14] posed the problem again and
asked if the number of flips could be bounded as a
function of the number of vertices of the polygon.

In 1993 Bernd Wegner [36] took up Kaluza’s chal-
lenge and solved both problems again. His proof of
convexification in a finite number of flips is quite dif-
ferent from the others but his example for unbound-
ednes is the same as that of Joss and Shannon.

In 1999 Biedl et al. [2] rediscovered the problem
again and obtain the same results as Wegner. Their
proofs of convexification are remarkably similar and
their unboundedness example is the same quadrilat-
eral.

3 A Proof of the Erdos-Nagy
Theorem

Some of the published proofs of the Erdos-Nagy the-
orem are long and technical, others make references
to higher mathematics, and some have gaps. We
will also prove several theorems that make use of the
Erd6s-Nagy theorem as a lemma. Therefore, for both
completeness and pedagogical reasons, it is appropri-
ate to borrow the best features of the existing proofs,
fill in the gaps, and present a simple, clear, elemen-
tary and short proof of the theorem. In this sec-
tion we present such a proof along the lines of Nagy’s
reasoning, but first we consider a simple lemma for
convex polygons that will be used in the proof. We
assume that the convex polygon has no vertices with
angle equal to w. If this is not the case it is a simple
matter to scan the polygon in O(n) time and delete
vertices with angle equal to 7w by substituting longer
adges appropriately.

Lemma 1 Given a conver polygon, there exists a
positive real number € such that if some or all of the
vertices are each moved by a distance less than €, then
the polygon remains conver.

Proof: Consider vertex A; and its two adjacent
vertices A;—1 and A;41 (refer to Figure 5). Let L;
be the line passing through the midpoints of the
two edges A;A;_1 and A;A;4+1, and let r; denote the
minimum distance between A; and L;. Note that
r; 18 also the minimum distance between A;_; and
L; as well as between A;y; and L;. Now construct
disks D;, D;—1 and D;41, all of the same radius r;,
centered at A;, A;—1 and A;;1, respectively. No
matter where the vertices move, as long as each
remains in the interior of its corresponding disk,
their final positions B;, B;_1 and B;y; will have the
property that B; is separated by the line L; from
B;_1 and B;41. Therefore vertex B; is convex. If
we choose for the radius of our disk for every vertex
the value € = min{ry,ra, ..., r,} then all vertices will
remain convex and since the polygon is simple it
follows from Proposition 5 in [11] that it is convex. m



Figure 5: The convexity tolerance disk of a vertex.
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Figure 6: A flip increases the distance from a fixed
point to a vertex.

This number ¢ is sometimes called the convezity-
tolerance of the polygon [1]. Tt is a measure of how
much the vertices of a convex polygon may be per-
turbed while guaranteeing that the polygon remains
convex.

Theorem 1 FEvery simple polygon can be converified
with a finite number of flips.

Proof: Let A° = A9A9.. A2 denote the given poly-
gon before any flips have taken place. After perform-
ing k flips we obtain the polygon AF = A% Ak, .Afl
where vertex A is taken to A¥ for alli = 1,2,....n.
We will call polygon A™ a descendant of A* 1fm > k.
Consider any point z in A°. Since for all &, A**+1 con-
tains A*, point  remainsin all the descendants of A°.
We are interested in the distance betwen point z and
a vertex of the k-th descendant of A°, d(x, A¥). Af-
ter the next flip A¥ either remains fixed or is reflected
across a line of support L (refer to Figure 6). In the
latter case this line is the perpendicular bisector of
the segment AZ-“A?H. Let z’ denote the intersection
of line L with segment ;tAZ-“'H. Then we have

d(z, AF*Y) = d(z, '

)+ d(a!, AT,

Since z’ is equidistant from AZ-“ and Af"'l we obtain

d(z, ASTY) = d(z, ') + d(2', AY).
It follows from the triangle inequality that
d(z, AFTY) > d(x, AF).

Therefore the distance function d(z, A¥) is a mono-
tonically non-decreasing function of k. Further-
more, since the edges are rigid, the perimeter of ev-
ery descendant of A° remains constant after every
flip. Therefore the distance d(z, A¥) is bounded from
above by half the perimeter of A°. From these two
observations it follows that the sequence {AY A} AZ...}
has a limit. Let us denote the limit of A¥, as k goes
to infinity, by A} and let A* = A7 A}... A% denote the
limit polygon.

Firstly we remark that the limit polygon A* must
be a simple polygon. In other words, different ver-
tices cannot converge to one and the same limit ver-
tex. This follows from the observation above that
d(z, A¥) is a monotonically non-decreasing function
of k, where the role of x 1s now played by another
vertex AJ’-C where j # i. If both A;“ and A¥ move with
the next flip then

d(AjH, A = d(Af, Af).
If only A¥ moves, then
A(AFH, AR > d(AF, AF),

Therefore two vertices of A* cannot move closer to-
gether when we flip AF.

Secondly we note that the limit polygon A* must
be convex, for otherwise, being a simple polygon, an-
other flip would alter its shape contradicting that it
is the limit polygon.

Thirdly, some vertices of A* will have interior an-
gles equal to m and others less than 7. Note also that
whenever a vertex A¥ becomes straight it remains
straight for all descendants of A*. Therefore we may
ignore straight vertices in the analysis.

It remains to show that the sequence
{AY AY . A%} where A* = A* is finite. To

this end let us now construct around each vertex



A} whose interior angle is less than 7 a disk D; of
radius ¢, the convexity tolerance of A*. Consider the
sequence of positions of the i-th vertex {AY Al A?..}.
Since A" converges to A} as m approaches infinity,
there must exist a finite number ¢; of flips after
which A]* first enters disk D;. Furthermore, once it
enters D); it stays there. This follows from the fact
that A% is contained in A* (A* contains all previous
polygons) and L; separates A;* from A7}, and A",
thus preventing A;* from being contained in the
interior of any pockets of subsequent descendants.
Therefore not only does A% stay in D; but it is in
fact immobilized. If we let ¢* = maz{ecy,ca,...,cn},
then after ¢* flips every vertex has entered its
corresponding limit disk and since the vertices must
then remain in their respective disks it follows from
Lemma 5 that A°" must be convex. Hence A* is
convex for k = ¢* flips. [

To conclude this section we mention that since the
convex hull of a simple polygon may be computed in
O(n) time [21], [23] it follows that each flip may be
done in O(n) time.

4 A Stronger Version of the
Erd6s-Nagy Theorem

Even in a non-simple (self-crossing) polygon a line of
support of the polygon may contain two vertices, say
A and B which divide the polygon into two chains
connecting A and B. One may wonder if repeatedly
flipping one of these chains across the line of sup-
port will also convexify a non-simple polygon in a
finite number of flips. This is indeed the case and
was recently proved by Griinbaum and Zaks [13]. All
the published proofs of the Erdés-Nagy theorem (for
simple polygons) are based on increasing area in that
they depend on the fact that after every flip the new
polygon contains the previous one in its interior. For
crossing polygons the notions of increasing area and
interior lose their meaning. Therefore Grunbaum and
Zaks [13] use a different approach in their proof for
crossing polygons. At each step they select from
all the possible candidate flips determined by lines

of support, the flip that maximizes the sum of the
distances between all pairs of vertices of the poly-
gon. This function has the desired property that it
strictly increases after each flip. Unfortunately it re-
quires O(n?) time to compute for each flip. We will
show that there is a simple proof of a stronger ver-
sion of this theorem that follows directly from the
Erd6s-Nagy theorem and that leads to a simpler al-
gorithm in which each flip may be computed in O(n)
time. First we show for the case of simple polygons
that the Erd6s-Nagy theorem can be strengthened by
requiring that during the entire convexification pro-
cedure a specified edge of the polygon remain fixed.
This result will then be used to prove the theorem
for crossing polygons.

4.1 Mirror-Flips

To strengthen the Erdos-Nagy theorem for simple
polygons in the plane we introduce a new reflection
operation we call a mirror-flip. Consider the polygon
P in Figure 7 (a) and let L be a line of support of
P that contains the non-adjacent vertices A and B.
These vertices divide the polygon into two chains: the
mmner and the outer chains. Each of these two chains
together with segment AB define a new polygon. The
inner chain is the chain that defines the polygon con-
tained in the polygon determined by the other (outer)
chain. The standard flip employed in the Erdés-Nagy
theorem flips the inner chain about L as illustrated
in Figure 7 (b) to obtain the shaded polygon P’. On
the other hand, the mirror-flip operation reflects the
outer chain as illustrated in Figure 7 (¢) to obtain the
shaded polygon P”. We now prove a stronger version
of the Erdés-Nagy theorem for simple polygons.

Theorem 2 FEvery simple polygon can be convexified
with a finite number of flips or mirror-flips while keep-
ing a specified edge fized.

Proof: First observe that if instead of performing
a flip we do a corresponding mirror-flip the two
resulting polygons are mirror images of each other.
It follows from the Erd6s-Nagy theorem that if at
each step a flip is to be performed we choose at
random to either perform a flip or its corresponding
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Figure 7: A simple polygon (left), a flip (center) and
its corresponding mirror-flip on the right.

mirror-flip (say by the flip of a coin), then such a
procedure must result in a convex polygon after a
Secondly,
instead of using a coin to decide whether to flip or

finite number of flips and mirror-flips.

mirror-flip, we could just as well decide by requiring
a specified edge of the polygon to remain fixed in the
plane during the entire process. If at any step the
specified edge is part of the flipping (inner) chain
we perform the mirror-flip (outer chain) instead
and vice-versa. Thus this procedure will convexify
the polygon with the additional constraint that
a preselected edge remain fixed in the plane at
all times. Finally, note that this procedure may
yield a convex polygon with the opposite orien-
tation to that of the initially given polygon. If
this is the case it suffices to flip the convex polygon
once more about the line containing the fixed edge. m

4.2 Crossing Polygons

We will now use Theorem 2 to prove that a self-
crossing polygon P, with vertices A1, As, ..., A, may
be convexified with a finite number of flips and
mirror-flips while maintaining a specified edge of P
fixed in the plane, thereby strengthening the result
of Griinbaum and Zaks [13]. For simplicity of exposi-
tion we assume the polygon is in general position in
the sense that its vertices are distinct and no three
of them lie on a line.

Figure 8: Illustrating the induction proof for flipping
a crossing polygon.

Theorem 3 FEvery crossing polygon can be convex-
ified with a finite number of flips and mirror-flips,
while keeping a specified edge fized, in O(n) time per
flip and mirror-flip.

Proof: (by induction on n) We begin by observing
that the result is trivial if n = 3. For n > 3 assume
that the assertion is already known for polygons with
n — 1 vertices. We want to prove the result for poly-
gons of n vertices. Let P, denote the given polygon.
Let us assume that edge A;A;41 has been chosen to
remain fixed during convexification. Replace vertex
A; and its incident edges in P, with an edge join-
ing A;_1 and A;y1, resulting in a polygon P/_; of
n — 1 edges. By the induction hypothesis P!_; may
be convexified leaving any edge fixed. Therefore let
us choose edge A;_1A4;41 as the fixed edge and let
Pr_, denote the convexified version of P._; (refer
to Figure 8). Now delete edge A;—1A;41 from P;_;
and replace it with A; and its incident edges in P, to
obtain polygon Pj .

It remains to show that P} can be convexified
with a finite number of flips and mirror-flips leav-
ing A;A;j41 fixed. Consider where A; may lie with
respect to line L, the line that contains A;_; and
A;it1. Note that A; cannot lie on line L for it would
mean A;, A;_1 and A;41 are collinear contradicting
our assumption of non-collinearity. Without loss of
generality let the line L be directed from A; 41 to A;_1
and assume P)_, lies to the right of L. We have two
cases.



Case 1: If A; lies to the left of L then P is a simple
polygon and the result follows from Theorem 2.

Case 2: If A; lies to the right of L then we can
reflect the chain connecting A;y; to A;_1, namely
Aiv1, Aiga, oy Aima, Aj_1, across line L to reduce it
to case 1. This completes the correctness part of the
proof.

Let us turn to the complexity.
proof suggests the following algorithm. Let P, =
Ay, As, ..., A, denote the given polygon and without
loss of generality assume that edge A; A is selected
to remain fixed. Initially select the first three vertices
Ay Az A3 as the convex polygon with edge A; A5 fixed.
Advance one vertex on P, to A; and consider the
quadrilateral determined by these four vertices and
the “phantom” edge (diagonal) A3 A4. Next convex-
ify this quadrilateral using the rules specified above to
ensure edge A; As remains fixed. If triangle A3A4 A,
is to be flipped about the line containing A; and As
then flip the entire chain AzAy, ..., A;. Proceed in
this fashion until A,, 1s reached.

Note that this convexification procedure may yield
a convex polygon with orientation opposite to that
of the original given polygon P,. If a convexification
with the same orientation is desired simply flip
the chain connecting the fixed edge A;A; about
the line containing this edge. FEach flip or mirror
flip only requires precomputing the convex hull of
a simple polygon (for flips only) and recomputing
the coordinates of the polygon’s vertices. Therefore
O(n) time suffices per flip or mirror-flip. ]

The induction

Note that the proof of Theorem 3 carries through
even if A; lieson L. If it lies on the segment A; 41 A;-1
the resulting polygon is convex and there is noth-
ing to do. If it lies on L and, say, above A;_; then
the line of support L’ of A; and some other ver-
tex A determines a subchain that can be reflected
across L’ to yield the desired simple polygon. There-
fore, this approach applies to more general polygons
where collinearities of vertices are allowed. Indeed,
Griinbaum and Zaks [13] prove convexification for a
general class of non-simple polygons called ezposed
polygons.

To conclude, our proof has two features not present
in [13]. The first is that we can “freeze” a given edge

of the polygon during convexification thus prevent-
ing the unfolding from “running away”. The second
is the reduced computational complexity carried out
per flip. The algorithm in [13] uses an O(n?) test to
decide which flip to perform, namely the computation
of the sum of the distances between all the pairs of
vertices of the polygon. Furthermore, before this dis-
tance computation is performed the convex hull of the
crossing polygon is needed, adding another O(n logn)
time per flip [25]. For the algorithm given here O(1)
time suffices to decide which flip is to be performed
after the convex hull is computed. A mirror flip only
involves recomputation of the coordinates of the ver-
tices and takes O(n) time. Furthermore, a convexi-
fication flip involves the computation of the convex
hull of a simple polygon and is therefore only O(n)
time per flip [21], [23].

5 Variants and Generalizations

5.1 Mouth Flips

Knot theorists are interested in polygons in 3D
(knots). In particular, for the computer analysis of
knot spaces (or exploring the respective variety) they
are interested in “walk” algorithms that will take one
knot into another. Millett [24] rediscovered a spe-
cial case of the Erds-Nagy theorem when the poly-
gons satisfy all of the following properties: (1) they
are star-shaped, (2) they are equilateral (all edges
have equal length) and (3) a flip is made not on a
complete pocket of the polygon but only on a reflex
vertex reflected across the line joining its adjacent
vertices. We will call such a flip a mouth-flip. Mil-
let proves that ultimately enough mouth-flips con-
vexify the polygon. However, one can prove with
an argument similar to that in [12] that not only
will the polygon be convexified after a finite num-
ber of mouth-flips but this number can be bounded
as a function of n because the polygon is equilat-
eral. To see this note that the before-after positions
of a mouth form a parallelogram. Therefore no new
slopes (aside from the slopes of the edges of the orig-
inal polygon) are ever introduced by mouth-flipping.
But the area strictly increases after each mouth-flip.



Therefore each new polygon generated on the path
towards convexity is composed of a new permuta-
tion of the edges (no permutation is revisited during
this walk). Therefore the number of mouth-flips is
bounded by the number of permutations. We there-
fore have the following theorem.

Theorem 4 A star-shaped equilateral polygon with
n wvertices can be convezified with at most (n — 1)!
mouth-flips.

5.2 Pivots and Hyperplane Flips

One way to generalize the original Erdds-Nagy flip
in the plane is to consider any two vertices of the
polygon and to reflect one of the polygonal chains
they determine across the line they define. An addi-
tional generalization is obtained if the selected chain
is not reflected but rotated (about the line as axis)
by some angle (assuming the polygon is embedded
in 3D). Finally, a third further generalization is to
polygons in d dimensions. Combining all three ideas
leads to a motion which in knot theory and physics
is called a pivot [24], [19], [20], [35]. Erdés-Nagy flips
may be considered as special cases of pivots with pla-
nar polygons in 3D where the pairs of vertices that
define the pivots are determined by the lines of sup-
port of the polygon that detrmine pockets and each
rotation has an angle of #. For the results obtained
in this paper that refer to pivots, a pivot will mean a
rotation pivot. Two vertices of the polygon partition
the polygon into two chains. A rotation pivot rotates
one of these two chains about the line containing the
two vertices as the axis of rotation.

Another special type of pivot which is a natural
generalization of Erd6s-Nagy flips is as follows. Let
P be a polygon in R? and let H be a hyperplane
supporting the convex hull of P and containing at
least two vertices of P. Reflect one of the resulting
polygonal chains across H. Let us call such motions
hyperplane-flips. The first person to propose these
hyperplane-flips appears to be Gustave Choquet [5]
in 1945 for applications to curve stretching, a topic to
be discussed below. He claimed in [5] (but published
no proof) that after a suitable choice of a countable
number of hyperplane-flips the polygons generated

converge to planar convex polygons. These results
were rediscovered in 1973 by Sallee [29].

In 1994 Millett [24], in connection with explor-
ing varieties, proposed a “walk” algorithm (consisting
mainly of a sequence of pivots) to take any equilat-
eral polygon (knot) in 3D into any other. The in-
terest in equilateral polygons comes from molecular
biology where homogeneous macromolecules or poly-
mers such as DNA are modelled by polygons with
equal length edges. Here the vertices correspond to
the mers and the edges to the bonding force between
them. To establish the walk Millet proposed taking
an arbitrary polygon P in 3D to a planar regular
polygon. His algorithm consists of three parts: (1)
convert P to a planar star-shaped polygon P/, (2)
convert P’ to a convex polygon P" and (3) convert
P" to a regular polygon. Part (2) is done using the
mouth-flips discussed above on the reflex vertices of
P’. However, his algorithm for part (1) does not al-
ways work correctly. His procedure may yield non-
simple planar polygons in which all turns are right
turns and the winding number is high thus invalidat-
ing step (2) of the algorithm (no reflex vertices are
found). However, we can obtain a walk algorithm
by modifying (1) and applying the Erdés-Nagy the-
orem for (2). Furthermore, this modification gener-
alizes Millet’s theorem to polygons in d dimensions
with no restrictions on edge lengths. Assume P, is a
polygon of n vertices in R? such that all vertices are
distinct and no three are collinear. Consider the first
four vertices of P,,. They determine a possibly skew
quadrilateral. Rotate one of the triangles (if neces-
sary) so that the quadrilateral is planar (one pivot).
If the quadrilateral is not convex apply Erdés flips
(pivots) to it until it is convex. Note that some of
these pivots may carry the remaining polygon with
them as in the case of crossing planar polygons. Now
advance to the next vertex of P,, pivot this trian-
gle so it is co-planar with the convex quadrilateral
and again apply flips to the pentagon if it is not con-
vex. Continuing this process leads to convexification
with pivots only. Furthermore, if we desire to keep
one segment fixed in space at all times we can apply
Theorem 3 to incorporate mirror-flips when necessary
on the planar portion of the polygon. Therefore we
have the following result.



Theorem 5 In dimensions higher than two any
polygon can be convexified with a finite number of piv-
ots, while keeping a specified edge fized in O(n) time
per pivot.

Of course it follows from our previous discussion
that the number of pivots in Theorem 5 cannot be
bounded as a function of n. However, convexification
is possible in a polynomial number of moves if we
are willing to use more complicated motions. For ex-
ample in 1995 Lenhart and Whitesides [17] showed
that (in any dimension greater than two) a poly-
gon may be convexified in O(n) time with O(n) 5-
joint line-tracking motions. Each such motion rotates
five joints with two cooperating “elbows”. In 1973
Sallee [29] proved that this can be accomplished with
pivots and 4-joint line-tracking motions. He gives no
complexity analysis in [29] but examination of his al-
gorithm reveals that it can be accomplished in O(n)
time with O(n) such motions.

5.8 Curve Inflation

A generalized version of Erdds’ problem for the case
of arbitrary simple curves has also been discovered in-
dependently. In this context the operation is referred
to as inflation. Flipping several arcs simultaneously
as originally proposed by Erdés is called full infla-
tion and flipping only one arc is called partial infla-
tion. For sufficiently smooth curves Robertson [27]
proves that they converge to a convex curve after
a suitable infinite sequence of flips. Robertson and
Wegner [28] investigate the degree of smoothness of
the limit curves obtained by flipping.

5.4 Stretching

Let A= Ay, Ay, ..., Ay be a polygon that is reconfig-
ured to another B = By, Bs, ..., B,. In other words
the corresponding line segments have the same length
and to each point on A there corresponds a point on
B in the obvious way. If for every two points on A
their corresponding points on B are further (or the
same distance) apart then we say that B is a chord-
stretched version of A. In 1973 Sallee [29] proved
that for every polygon in d dimensions there exists

a planar convex stretched version. Furthermore he
gives an algorithm for carrying out the reconfigura-
tion. Therefore these are stronger results than the
convexification results mentioned earlier. The same
results were aparently obtained as early as 1945 by
Choquet [5]. Strantzen and Brooks [32] prove a con-
jecture of Yang Lu that if B is a chord-stretched
version of A and if A is convex, then A and B are
congruent.

5.5 Flipturns

Consider a planar polygon with a pocket determined
by vertices A; and A; and refer to Figure 9. An-
other generalization of the Erdos flip was considered
in 1973 by Joss and Shannon [12] where instead of
flipping the pocket we rotate it by 180 degrees about
the center of the convex hull edge that determines
the pocket. The effect of this kind of flip which they
called a flipturn is that no new slopes are introduced
after a flipturn. What was automatically obtained
in the case of mouthflips for star-shaped equilateral
polygons is obtained here for any simple polygon by
flipping and “turning” in a vertical plane. Joss and
Shannon proved that any simple polygon with n sides
can be convexified by a sequence of at most (n — 1)!
flipturns. This bound is very loose and they con-
jectured that (n?)/4 flipturns are always sufficient.
Griinbaum and Zaks [13] showed that even crossing
polygons could be convexified with a finite number
of flipturns. In 1999 Therese Biedl discovered a poly-
gon such that a bad sequence of flipturns leads to
convexification only after @(n?) flipturns.

A related “cutting” operation is used in physics for
self-avoiding walks where the polygonal chain con-
necting the two vertices in question is just inverted
with respect to these vertices. Such a “pivot” is called
a diagonal reflection [20]. Even more relevant is the
work of Dubins et al., [7] on planar simple polygons
in Z2, the square lattice. Physicists call the flipturn
an inversion. In [7] it is shown that any simple lat-
tice polygon of n vertices may be convexified with at
most n — 4 flipturns. They are not concerned with
computational complexity but clearly each flipturn
can be done in O(n) time with any of several convex
hull algorithms [21], [23]. Therefore we can state the



Figure 9: The polygon P’ results from performing a
flipturn on polyogn P.

following theorem.

Theorem 6 Any simple n-vertez polygon in Z% can
be converified in O(n?) time with at most n — 4 flip-
turns.

5.6 Non-Crossing Linkages

None of the work discussed above, apart from the
original FErdés-Nagy theorem, is concerned with
whether or not edges of the polygon cross each other
during reconfiguration. However, in some applica-
tions such as linkage analysis in robotics, exploring
varieties in knot theory and molecular biology prob-
lems, the edges are to be considered as physical bar-
riers so that no crossings are allowed. Biedl et al., [2]
explore the area of convexifying polygons under these
constraints. Among other things they show that a
planar simple polygon in 3D may be convexified in
O(n?) time with O(n) pivots and O(n?) 4-joint line-
tracking motions. Jeffrey Erickson pointed out that
with a slight modification and an amortized complex-
ity analysis the algorithm in [2] runs in O(n) time.
A survey of this area can be found in [33]. In three
dimensions unknotted polygons that cannot be con-
vexified have been discovered independently by Biedl
et al., [2] (with ten edges) and Cantarella and John-
ston [4] (with six edges). Toussaint [34] discovered
an additional class of stuck unknotted hexagons.
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5.7 Self-Avoiding Walks

To simplify Monte-Carlo simulations most work re-
lated to the problems discussed in this paper that is
done in physics is restricted to Z2 and Z3, i.e., square
and cubic lattices in two and three dimensions, re-
spectively. Almost no results are available for the
continuum (also off-lattice) model. One notable ex-
ception is the work of Stellman and Gans [31] which
concerns open polygonal chains in 3D and considers
a motion they call a dihedral rotation which selects
a randon edge of the chain and rotates the smaller
of the two chains incident to that edge, about the
line through that edge as an axis. Some work has
also been done on the FCC lattice [35]. Furthermore,
in Z2 and Z2 not only must vertices be situated on
lattice points but the edges are parallel to the coor-
dinate axes and their lengths are all equal. Like the
robotics research on linkages, the problems of inter-
est to physicists involve closed simple polygons [7],
open simple polygonal chains [22] and simple polyg-
onal trees [9], i.e., polygons, chains and trees that do
not intersect themselves; hence the term self-avoiding
walks for the case of polygons and chains. Generat-
ing a random walk that does not self-intersect, espe-
cially if it must return to its starting point as in the
case of polygons, is difficult (the waiting time is too
long due to attrition, i.e., if a random walk crosses
itself at any point other than its starting point it
must be discarded and a new walk started). There-
fore an efficient method frequently used to generate
the chains or polygons is to modify one such object
into another by means of a pivot for various defini-
tions of pivot. Unlike the work in linkages however,
here we do not care if intersections happen during
the pivot as long as when the pivot is complete we
end up with a simple polygon or chain. In other
words, simplicity is required only at certain “snap-
shots” during the process. In general the pivots used
are selected from a variety of transformations such as
reflections and rotations of the sub-chain in question.
Such transformations even include “cut-and-paste”
operations. The reader is referred to a multitude of
such problems and results contained in [19]. For ex-
ample, Madras and Sokal [20] have shown that in
Z% for d > 2 every simple lattice polygonal chain of



n edges can be straightened by some sequence of at
most 2n — 1 suitable pivots while maintaining sim-
plicity after each pivot. The pivots used here are
either reflections through coordinate hyperplanes or
rotations by +w/2.

In order to prove the ergodicity of self-avoiding
walks, polymer physicists are also interested in con-
vexifying (and straightening) open polygonal chains
under various geometric constraints [37], [30]. Such
constraints, which include remaining in between two
parallel lines or fixing the two endpoints of the chain,
have application to polymer adsorption, steric sta-
bilization of colloids and surface magnetism [37].
Madras, Orlitsky and Shepp [18] showed that any
lattice polygon in Z¢, with endpoints fixed, can be
convexified with O(n®(4=2)) generalized pivots. As a
corollary of Theorem 5 we obtain a continuum ver-
sion of this fixed endpoint theorem for the lattice. Let
C, = A1, As, ..., A, be an n-vertex open polygonal
chain in R¢ which we want to convexify while holding
A; and A,, fixed. Here convexification of the chain
means that inserting edge A; A, makes the chain a
convex polygon. The fixed endpoint restriction on an
open chain is equivalent to having an edge between
the endpoints. Therefore we may consider C), to be a
closed, possibly self-crossing, polygon P, which is to
be convexified while keeping edge A; A,, fixed. Thus
Theorem 5 immediately implies the following result.

Corollary 1 In dimensions higher than two any
open polygonal chain can be convexified with a finite
number of pivots while holding its endpoints fized in
O(n) time per pivot.

6 Conclusion and Open Prob-
lems

We conclude by mentioning several open problems in
this area.

1. Wegner [36] proposed a very interesting vari-
ant of Erdds flips which can be considered the in-
verse problem which he called deflation. Given a sim-
ple polygon P in the plane, if there exists a pair of
non-adjacent vertices A; and A; such that the line
through A4; and A; is not a line of support of P, the
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line intersects the boundary of the polygon only at A;
and A;, and the polygonal chain A;, Ajy1,..., 4; can
be reflected about this line to lie inside the polygon
then this reflection operation is called a deflation. If
this cannot be done the polygon is called deflated.
Wegner conjectured that every simple polygon can
be deflated with a finite number of deflations.

2. Wegner also introduced two measures of con-
vexity for simple polygons that are functions of the
number of flips that will convexify the polygon. He
called these the mazimal and minimal inflation com-
plexities. The former is the maximum number of flips
that will convexify a polygon. The latter is the min-
imum number of flips. There are polygons (quadri-
laterals) for which these two numbers are the same.
What is the computational complexity of computing
these numbers?

3. The Joss-Shannon conjecture that every sim-
ple polygon can be convexified with at most (n?)/4
flipturns is still open. In fact, no upper bound lower
than (n — 1)! is known!

4. A planar lattice simple polygon on the other
hand can be convexified in O(n?) time with n — 4
flipturns. Can this complexity be reduced?

d. The results concerning stuck unknotted
hexagons in [4] and [34] show that there exist at least
five classes of nontrivial embeddings of the hexagon
in 3D. It is conjectured that there are no more than
five such classes.
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