CORRESPONDENCE

appropriately modified.” Furthermore, since there is no phase
shift at a turning point unless the turning point lies on a caustic
([remarks after eq. (12)],* the phase factors exp (+ksz/2) in
Yoam [cf. (15.3), (15.9)]," and subsequently where Y,y appears
in our results) are teplaced by unity except at caustics. In other
respects our earlier results remain unmodified.
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Sharper Lower Bounds for Discrimination Information
in Terms of Variation

GODFRIED T. TOUSSAINT, MEMBER, IEEE

Abstract—The lower bound for discrimination information in terms of
variation, derived recently by Kullback [7] for the distribution-free case,
is sharpened. Furthermore, under a restriction, a lower bound is derived
that is sharper than all other existing bounds.

Given two probability distributions f;(x) and f,(x), there are
two well-known measures of the ‘“distance” or difference
between f;(x) and f,(x). One is the discrimination information

given by
= fi(x)
» I= f fl(x) log [fz(x)] dx. )
The other is the variation given by
V=fmm—ﬁuwu ®

In the past there has been a great deal of interest in bounding 7
in terms of V. Volkonskij and Rozanov [1] showed that

I=V-log(1+ V). &)}
Pinsker [2] improved (3) by showing that
V2
I>—, 4
T )

where I' is a constant greater than two. Csiszar [3] proved (4)
with I' = 16 while McKean [4] established (4) with " = 4e,
Csiszar [5] and Kemperman [6], apparently independently,
sharpened these results by proving that

V2
I1>—. 5
5 3
Kullback [7], [8] sharpened (5) by showing that
2 4
=27 ©®)
2 36

The disadvantage of the bounds (3)-(6) is that for ¥ close to
two they are loose, and for ¥V = 2 the equality does not hold.
In an attempt to improve these bounds, at least for V close to
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two, Vajda [9] proved that

v

T2+ v M

Izlog(2+V)

2-V

The bound given by (7) is slightly looser than (6) for V less than
approximately 1.75, but much sharper than (6) for ¥V 2 1.75.
Furthermore, it has the added nice property that the equality
holds for both ¥ = Oand V = 2.
In this correspondence Kullback’s bound (6) is sharpened
further. In fact, it will be shown that
2 4
=Y
2 36
Thus the maximum of (8) and (7) provides the sharpest lower
bound available for I in terms of ¥ for arbitrary distributions.
Let Q; denote the space where fi(x) > fi(x), i = 1, 2,1 # j.
For the set of distribution pairs such that

f £o(x) dx =
Q

V6

TR 8)

fi(x) dx, )

Q2

which holds, for example, for the important case of Gaussian
distributions with equal covariance matrices, it will be shown

that
I> ;log (2 + V),

where the equality holds for both ¥V = 0 and V = 2. Further-
more, it will be shown that (10) is sharper than both (7) and (8),
for every V e [0,2].

Proof of (8): Let L(u,t) be a function given by

(10)

L@t = (u + 1) log (1 + 5)
u

+ (1 -u— t)log(l __! ) (11)
1 —u
where u and ¢ are real numbers. Also let
fix)dx = a, 12)
Q
and
filx) dx = ay. (13)
Q
It follows from (12) and (13), see [11], that
V=21 - a — a). (14)
Krafft and Schmitz [10] showed that for
O<ux<l 15
and
—u<t<l-u 16)
it holds that
4 6
4t 2t (17)

L{ut) = 2¢%> + — + =,
9 9

It is easy to verify thatforu = 1 — ay and ¢t = a; + a, — 1,
(15) and (16) are satisfied and

%

1 - * 2

+( - a)log (1_‘2) (18)
273

L — ap, 00 + oty — 1)=a110g(
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Kullback [12] has shown that

1= L(l - O, 06y + 0y — 1). (19)

1t also follows from (14) that
(20)

Substituting (20) into (17) and combining the latter with (19)
yields (8), the desired result.

Proof of (10): Substitute ay = ay, = 3 — V/4 into (19).
Equation (10) can be used to obtain useful bounds in pattern
recognition [13]. To prove that (10) is sharper than all the other
bounds in this correspondence, for all ¥ e [0,2], it is sufficient
to prove that (10) is sharper than (7) and (8).

Substitute ¥ = 1 + V/4 and ¢ = —V/2 into (17). Then the
left side of (17) becomes the right side of (10), and the right side
of (17) becomes the right side of (8), thus proving that (10) is
sharper than (8).

In order to prove that (10) is sharper than (7) it must be shown

that
2x 1+ x
— lo >0,
1 - x? g(l —x)

where x = V/2, which follows from the fact that, for0 < x < 1,
we have

llog 1+ x
2 1-—-x

il

fx(l -y tdy
0

IA

2"

- %)t f dy =
0

1 —x
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The Capacity Region of a Multiple-Access Discrete
Memoryless Channel Can Increase with Feedback

N. THOMAS GAARDER, MEMBER, ik, AND JACK K. WOLF,
FELLOW, IEEE

Abstract—The capacity of a single-input single-output discrete
memoryless channel is.not increased by the use of a noiseless feedback
link. It is shown, by example, that this is not the case for a multiple-
access discrete memoryless channel. That is, it is shown that the capacity
region for such a channel is enlarged if a noiseless feedback link is
utilized.

INTRODUCTION

Shannon [1] proved that the capacity of a single-input single-
output discrete memoryless channel is not increased even if the
encoder could observe the output of the channel via a noiseless
delayless feedback link. Recently, Liao [2], and then, Slepian
and Wolf [3] gave formulas for the capacity region of a two-input
single-output discrete memoryless channel with independent
encoding of two source messages. After summarizing their
results, we evaluate the performance of a transmission scheme
for this channel, which makes use of noiseless feedback links
from the output to the two encoders. We show that this scheme
yields a vanishingly small error probability for a pair of rates
that lies outside the capacity region.

CaPACITY REGIONS WITHOUT FEEDBACK

In this section we summarize the previously published results
concerned with the capacity region of a multiple-access discrete
memoryless channel without feedback. Consider the block
diagram shown in Fig. 1. Two sources are described by a two-
dimensional rate vector R = (R;,R,) with nonnegative com-
ponents. Let N be a fixed positive integer. Every N time units,
the sources! produce a pair of statistically independent random
variables (U;,U,), where U, is uniformly distributed over the
set of integers {1,2,---, M; = 2RN1} A 4, i= 1,2. Here
[xT1is the smallest integer greater than or equal to x.

The channel is described by a conditional probability dis-
tribution of the output random variable Y (which takes values
ye®) given the inputs X; = x; €%, and X, = x, € Z,. We
denote this conditional probability distribution Pyx, x,(¥ | x1%2).
The channel is assumed memoryless in the usual sense. That is,
the conditional probability distribution for N-vectors is equal to
the product of the marginal conditional probability distributions.
The encoders are a pair of deterministic mappings from the source
outputs to channel input N-vectors. The mappings are such that
if the sources produce the pair (U; = i, U, = j), encoder 1
produces the N-vector x,; € (¥;)", which depends only on i,
and encoder 2 produces the N-vector x,; € (%), which depends
only on j.

The decoder is a deterministic mapping from the channel
output N-vector y to the pair (i*,j*), where i* € £, j* € F,.
We denote the decoder outputs by the pair of random variables
(U*,U,%).
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! Henceforth, source does not refer to the actual source with rate R;; it
refers to an extended source with the larger rate N~ ! log [2R:N], which is
compatible with the block length N. This extended source consists of the
actual source and additional devices to add bits when necessary.



