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Bibliography on Estimation of Misclassification

GODFRIED T. TOUSSAINT

Abstract—Articles, books, and technical reports on the theoretical and
experimental estimation of probability of misclassification are listed for
the case of correctly labeled or preclassified training data. By way of
introduction, the problem of estimating the probability of misclassification
is discussed in order to characterize the confributions of the literature.

INTRODUCTION

NE OF THE most important problems in pattern
recognition is estimating the probability of mis-
classification. Before embarking on a description of the
literature in this field it is proper to make a distinction
between some of the various measures of probabilities of
misclassification (error) usually considered.

1) The optimal or Bayes probability of error, denoted by
PP, is given by P® =1 — [ max; {P(X/C)P(C)} dX,
where P(X/C,) and P(C)) are the class-conditional prob-
ability density function and the a priori probability of the
ith class, respectively. This error probability results when
one has complete knowledge of the probability density
functions with which to construct the optimal decision rule
and uses the Bayes decision rule. Knowledge of the under-
lying distributions could have resulted from observing an
infinite number of independent labeled pattern samples.
Thus the Bayes error rate can be thought of as the infinite-
sample error.

2) The error probability that results when one has
complete knowledge of the probability density functions
and uses a decision rule other than the Bayes’ rule is denoted
by P.°.

It is clear that P,° > P,%, with equality holding when the
given classifier is (Bayes) optimal. The term P, will be used
when no distinction is madé between P, and P2, and it
will be referred to as the ““actual” error probability.

In practice one usually obtains a data set which is not
only finite, but in fact quite small. Frequently no knowledge
is available concerning the underlying distributions, In such
situations one would, ideally, like to know what the resulting
probability of error is going to be on future pattern samples
when the classifier is trained, i.e., its parameters estimated,
on the given data set.

3) Denote by P, the probability of error on future
performance when the classifier is trained on the given
data set.

4) Denote by E{P,} the expected error probability on
future performance over the distribution of training sets.
P, is an estimate of E{P,} and both approach the “actual”
error probability P, as the number of pattern samples
approaches infinity. P, and E{P,} are also known in the
literature as error rates of the sample-based classifier design
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or decision rule. It is obvious that P, > P, although it
is not necessarily true that P,° > P.° unless the underlying
distributions are such that the given classifier is Bayes
optimal.

5) Denote the “apparent” error probability by P (app).
For example, P.P(app) is obtained by estimating the
probability distributions or their parameters and subse-
quently substituting these estimated values into the
expression for error probability. The apparent Bayes error
probability is given by

\-—-ﬁ_rm
J

p Blnnn) — — ax IP(XICNP(CW dY
e \aPpP 1 J laX (i a /Ly Ga

i

i

13

where P(X/C;) and P(C,) are estimates of P(X/C, and
P(C)), respectively.

Alternately, one can consider the ‘“‘apparent” error
probability to be that obtained when the sample-based
classifier design or decision rule is tested on an infinite
number of pattern samples coming from distributions, the
parameters of which take on the estimated rather than the
true values. P,2(app) may be greater or less than PP, but
has a tendency to be optimistically biased.

6) For 1), 3), 4), and 5) and any classifier considered in
2), denote by P, the transition probability of error that a
pattern belonging to class { is classified into class j, for i,

j=12--- M, i # j, where there are M classes.

7) For 1), 3), 4), and 5) and any classifier considered in
2), denote by P, ¢, the class-conditional probability of error,
i.e., the probability that any one pattern belonging to class
i is misclassified. It follows that

M
P2|C¢ = Z Pe”.
j=1
J#i
8) For 1), 3), 4), and 5) and any classifier considered in
2), denote by P,y the conditional probability of error given a
particular unclassified pattern. It follows that

P, = fP(X)PelX dX

where P(X) is the unconditional, or mixture, distribution.

In most pattern recognition problems one is interested in
P,. However, P, cannot be obtained exactly because, by
definition, all the available pattern samples are used for
training the classifier and hence none are left for testing it.
Several methods are available for estimating P,. Some of
these methods are described in the following. Emphasis is
placed on nonparametric techniques, since usually nothing
is known about the distributions.

There are two basic approaches to the problem of
estimation of misclassification : the nonparametric approach,
which is almost always used in problems such as character
recognition; and the parametric approach, in which it is
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assumed that the unknown distributions belong to a
parametric family. The nonparametric methods will be
considered first.

Let {X,0} = {X}, 0;; X,, 0,;"-; Xy, Oy} be the set of
N pattern samples available, Where X; and 6, denote,
respectively, the measurement information and the label or
classification information of the ith pattern sample. It is
assumed that each 0; associated with X, ; Is the correct label,
i.e., the pattern samples have been correctly preclassified.

Method 1

The first method considered here is the resubstitution, or
R method, which consists of the following steps.

1) The classifier is trained on {X,0}.

2) The classifier is tested on {X,0}.

Let the resulting proportion of errors encountered during
testing be denoted by P,[R]. When pattern recognition as a
field of study was still in its infancy, P_[R] was a popular
method of estlmatmg P,. As a matter of fact, this method
of estimating Pe was suggested by some statisticians in
discriminant analysis long ago [161].

Researchers in the field of pattern recognition soon
became interested in the “generalizing” capability of a
“learning” machine (adaptive classifier), which gave rise to
methods 2)-4). It should be noted that although the three
methods are discussed separately for the purpose of clarity
and historical perspective, they are all special cases of the
method referred to by some statisticians as cross-validation.

Method 2

The second method under investigation is the holdout or
H method, which can be described as follows.

1) Partition {X,6} into two mutually exclusive sets {X,0},
and {X, G}ﬁ such that

and N(f) = N — N(oc).

2) Train the classifier on {X,0},.

3) Test the classifier on {X,0},.

Let the proportion of errors observed during testing be
denoted by P,[ H]. Traditionally 50 percent of the available
samples have been used for training, and 50 percent for
testing. The H method was analyzed by Highléyman [89],
who indicated a method for obtaining confidence intervals
on the results and presented graphs showing how a finite
data set of size N should be partitioned between training and
test sets for various values of N. However, Kanal and
Chandrasekaran [112] showed that Highleyman’s analysis
and the resulting graphs are valid only when N is sufficiently
large, whereas the problem of estimation of misclassification
is of most concern when N is small. Additional work on
obtaining confidence intervals and partitioning the data set
can be found in [16], [17], [50], [51], [118], [127], and
[143]. Researchers using the R and H methods soon
reported large discrepancies between P,[R] and P,[H].
Some of the important works that discuss these discrep-
ancies are [11], [18], [31], [45], [46], [88], and [142]. It
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was observed that AP(H — R) A P[H] — P[R] was
usually positive, and it was conjectured [45], [88], that the
value of AP,(H — R) was inversely proportional to sample
size and that
lim {AP(H — R)} =
N—-w
As it turns out, although the R method uses the data
efficiently, it is an overly optimistic estimate of performance.
Furthermore, unless N is large, the H method tends to give
an overly pessimistic estimate of performance, as well as an
unreliable one because the value of P,[H] for a given data
set depends on the partitioning of {X,0}. The H method
also uses the data in an inefficient manner. It can, however,
be made more reliable by averaging P,[ H] over all possible
partitions of fixed size.
1) Partition {X,0} into K randomly chosen pairs of sets
of equal size

{X.0}5: {X.015, - {X,015: {X,0}}
such that for i = 1,2,- -+ K, {X,0}} and {X,0}; are mutually
exclusive.
2) For i = 1,2,-++ K train the classifier on {X,0}] and

test it on {X,0}}, letting the resulting proportion of errors
be denoted by P,[H],.

3) An estimate of the expected value of P,[ H] over the
partitions is then given by

(1

Ma

K1=1

This method of improving the reliability of the estimate was
mentioned by Duda and Hart [46], and is known in some
circles as “‘data shuffling” [68]. Although the estimate in
(1) uses the data more efficiently than the H method, it
still uses only half of the available data for training each
time. Furthermore, the final result is still overly pessimistic.
A method which has come to be known in North
American circles as the U method or ‘leave-one-out”
method goes a long way towards making efficient use of the
data and yielding an estimate of performance with a small
amount of bias compared to the previous methods.

Method 3—(U Method)

1) Take one pattern sample (X,,6;) out of {X,0}. Then
define

2) Train the classifier on {X,0};.

3) Test the classifier on (X,0,). If X, is classified into the
category associated with 0, set e; = 0; otherwise set
e; = 1, where ¢; acts as an error indicator.

4) Do steps 1)-3) for i = 1,2,---,N to obtain values for
e i =12+ N

5) The estimate of P, denoted by P,J[U], is then
computed as follows:

Ile

P[U] = 2 (2)

1
N
In the statistics literature the U method is attributed to
Lachenbruch, [90], [165], who published results on it as
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early as 1967 [119]. However, the U method has been under
investigation in the pattern recognition literature since the
early 1960’s. Lunts and Brailovskiy [128] attribute the U
method, which they refer to as a “sliding” estimate, to
Weinzweig, and they themselves published experimental and
theoretical work on it as early as 1964 [21], [22], and [128].
An experimental comparison of the U method with the R
method and the actual error probability for different ratios
of sample size to feature size (dimensionality) for different
nonnormal distributions is given in [124].

In spite of its advantages with regard to bias, the U
method suffers from at least two disadvantages. Denote by
E{P[U]} the expected value of P,[U] over the distribution
of training sets. Although it is deslrable to have E{P,[UT}

“close” to the actual error probability, it is probably more
important to use an estimator with a small variance. Hence,
an estimator which is more biased than the U method but
has a much smaller variance thay be preferred by a
researcher who may then have more confidence about his
particular result on his particular data set. This problem has
been considered by Lunts and Brailovskiy [128], who also
derive an expression for the variance of P,[U] under
certain restrictions. Glick has shown that the U method has
much greater variance than the R method for discrete
distributions and, in fact, the U method in some sense
achieves bias reduction in exactly the “worst” way for the
discrete case.’ Recently Lissack and Fu [126] have proposed
a method which they call the F method, and have reported
experimental results on Gaussian data. They found that the
F method was less biased and had smaller variance than the
U method. A second practical disadvantage of the U method
is that it requires excessive computation in the distribution-
free-case, in the form of N training sessions, unless N is very
small. For the case of Gaussian distributions a certain
amount of computation can be saved-[63], [64], [119]. To
combat this disadvantage of the U method the following
method, also referred to as the rotation or IT method, was
proposed in [171] and [173].

Method 4—(I1 Method)

1) Take a small subset of pattern samples
{X,0}° &

such that 1 < P « N and N/P is an integer, P/N <

Then
{X.0}[% &

2) Train the classifier on {X,0}TX.

3) Test the classifier on {X G}TS to obtain a proportion of
errors denoted by P,[I1],.

4) Do steps 1)-3) for i = 1,2,-+,N/P such that {X,0}]%
and {X,0}7° are disjoint for i = 1,2,--<,N/P, J = 1,2,--",
N/P,and i # j.

5) The resulting estimate of P, is computed as

5 2‘“1 P[], 3

. ' Ned Glick, personal communication.
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Note that when P = 1 the IT method reduces to the U
method. On the other hand, when P = N/2 the II method
reduces essentially to the H method, where the roles of
training and testing are interchanged. This is the well-known
“cross-validation in both directions” method [139].? The IT
method is also considered in [128]. Obviously, the IT
method is a compromise between the U and H methods.
One would expect the I1 method to be less biased than the
H method (depending on the values of P, N, and 4, where
A denotes feature size, dimensionality, or the number of
parameters to be estimated) and to require less computation
than the U method. Therefore, it is a method well suited to
“medium-sized” data sets. Some experimental results on
this method of estimating P, are given in [99], [100],
[172], and [174]. This method of cross-validation has the
flavor of the estimation methods used in statistics to reduce
bias that are referred to as “jackknifing” procedures [138].
Two problems closely related to the estimation of the
probability of misclassification from a given data set are: 1)
reducing the bias of the estimates of the parameters that
results when designing the classifier, especially when the
training set is small, and 2) estimating the stability of the
classifier or estimated parameters based on the given data
set. The jackknife [138] serves the dual purpose of
eliminating bias in the estimates of the parameters and
giving ‘an honest measure of variability, based on the
training data itself. For example, consider a linear dis-
criminant function g(X). Let the data be divided into &
subgroups and let g,,(X) and g,(X) denote the discriminant
functions computed using the eéntire data set and using all
the data left after omitting the jth subgroup, respectively.
The jackknifed discriminant function is then given by
% k—-1&
g"(X) = kgu(X) = —— ¥ g,X). @
i=

In [139] Mosteller and Tukey propose a ‘“‘leave-two-out”
method® in which jackknifing and cross-validation are
carried out simultaneously. At each step one pattern sample
is put aside for cross-validation while another is successively
removed from the remaining group of size N — 1 in order
to obtain a jackknifed classifier design. These methods have
been applied to an authorshlp classification problem in

[138]-[141]. R
- Several studies [56], [57] show that these estimates of
P, converge to P, as N - co. In particular, a quantity such

2 This method is referred to as “double cross-validation’ in the
psychology literature [137], {145]. A further extension of these methods
is possible, as indicated by Norman [145]. For example, one can use
“triple cross-validation’® [145] to estimate the probability of mis-
classification of the best subset of # out of N features for a specified
feature-selection criterion. The data set is first partitioned into three
subsets. With knowledge of each subset of data, a subset of » features
is chosen with the specified feature-selection criterion. For each of the
three subsets of n features the classifier is trained with a data subset not
used in the feature subset selection procedure. Finally, the classifier
incorporating a particular feature subset is tested on the third data
subset, The average of the three results is a measure of the performance
of the best n features according to a given feature- selectlon criterion.

3 It should be kept in mind that this “leave-two-out’ method is not
the same as the “second-order-jackknife.”” The latter involves leaving
two out for the purpose of bias reduction and has nothing to do with
cross-validation. Work on the “second-order-jackknife” can be found
in Adams et al., Ann. Math. Statist., vol. 42, pp. 1606-1612, 1971.
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as E{P,[R]} approaches P, from below whereas another
quantity such as E{P,[II]} approaches P, from above.
Therefore, another estimate for P, can be defined as

P N/P N
—N' Z Pe[n]i + [1 - W(N’P’}')]pe[R]

&)

where 0 < W(N,P,4) < 1. In fact, since (3) and P,[R] are
estimates of P, biased in opposite directions, it should be
possible to determine the function W (N,P,A), at least
empirically, such that P,* is an essentially unbiased estimate
of P,. For example, in the work of Foley [56], the average
of the results on the test set and training set provides quite
a good estimate of the actual error probability, even for
small N. In [174], P,* was applied to a problem in medical
diagnosis and it was found empirically that for W(N,P,A) =
constant = 1/2 and P/N = 1/10, where N = 300, P,* was
essentially equal to PJU]. Furthermore, a tremendous
saving was realized, because 300 training sessions were
needed to obtain P,[U], whereas for P,* only 11 training
sessions were needed—one to obtain P,[R] and ten to
obtain (3).

Studying the error probability on the training and
testing sets as a function of N, the number of pattern
samples, is not the whole story. The estimation of P, is also
intimately related to the number of features or measure-
ments used by the classifier.* Early experimental observa-
tions of this dependence in pattern recognition, discriminant
analysis, and disease diagnosis can be found in [4], [5],
[33], [38], [49], [67], [73], and [175]. Some theoretical
work along the same lines is given in [1], [28], [29], [46],
[56], [57], [96], [98], [111], and [154]. The problem of
estimating P, is further complicated by the fact that it
depends on whether there exist dependencies among the
features and ultimately on the actual distributions for the
problem at hand. One measure of error probability not yet
defined here is the “problem-average” error rate or, as
defined by Hughes [96], the “mean-recognition-accuracy”
denoted by P(L,N), where N is the number of samples and
L is the number of “‘cells” or values X can take in the
discrete case. P,(L,N) represents the error probability
averaged over all possible pattern recognition problems or
distributions on X. Further results on P(L,N) are given in
[17, [28], [29], [98], and [111].

The literature contains a wide variety of other methods
(the parametric methods) for estimating various measures
of probability of misclassification when certain a priori
information concerning the distributions is available.
These methods usually invoke the normality assumption.
An example is the D method in [123], where it is assumed
that there are two classes (M = 2) with means p; and p,,
and equal covariance matrix X. Obviously, if the parameters
were known there would be no problem and the class-

P* = W(N,P,2)

4 Anderson and Isenhour [6] have recently done extensive Monte
Carlo studies on dimensionality A versus sample size N as related to
linear separability. They found that even for constant N/4 the prob-
ability of error on the testing set tends to decrease as 4 increases for
values of N/4 < 3.
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conditional Bayes probabilities of misclassification would -
be given by

Pf|cl = P£|cz = (D(—§/2)

where 6% = (u; — u,)"="'(u; — p,) is the Mahalanobis
distance, @ is the cumulative normal distribution, and T
denotes the transpose. When the parameters are not known
the D method yields an estimate of Pjc, i = 1,2, which
is given by

P, = ®(—D/2)

where D? is the Mahalanobis sample distance when the
sample means X, and X, and the sample covariance matrix
S are substituted for pu,, u,, and X, respectively. Various
modifications of this D method exist, in which different
types of estimates of the Mahalanobis distance are used.
Discussions and comparisons of all these methods can be
found in [23], [119], [120], [122], [123], [151], [162]-
[165], and [167]. It should be noted that the D method
yields the “apparent” error rate discussed earlier for the
case of normal distributions.

The parametric approach to estimation of misclassifica-
tion involves two other theoretical aspects of the problem:
the distributions of classification statistics on one hand
[19], [20], [84], [102]-[110], [133]-[135], [146], [158],
[159], and the convergence properties of the estimators on
the other [54], [55], [74}-[76], [176]. For example, in a
typical approach, for the two-category problem with
Gaussian distributions and known - equal covariance
matrices, John [102] proposes a classification procedure
based on the calculation of a classification statistic and
derives an analytic expression, in the form of an infinite
series, for the probability of misclassification as a function
of N, and N,, where N; + N, = N and N, is the number
of training pattern samples in the ith category. Furthermore,
for the case of M categories, M > 2, he derives an upper
bound on the probability of misclassification. In order to
set up the classification procedure and to study performance
characteristics, such as the probability of misclassification,
it is necessary to know the distribution of the statistic used
in the classification procedure. In [104] John gives the exact
distribution of several classification statistics. Glick [75],
[76] extensively covers what he calls “plug-in” estimates
(for Gaussian distributions, actually the D method of
Lachenbruch and Mickey [123]) and “deletion-counting”
estimates (actually the “sliding” estimates in [128] or the U
method in [123]). He also considers these estimates for
various decision rules such as the nearest-neighbor rule.

The “deleted nearest-neighbor” estimate of P, was first
proposed by Cover [39]. Since then further theoretical work
has been done on the estimate and on an interesting
modification of it in [178], [179], and [187]. The modifica-
tion is essentially a recursively updated nearest-neighbor
estimate as new pattern samples are added. Experimental
work with the deleted nearest-neighbor estimate can be
found in [174] and [184]. Additional work on the con-
vergence of nearest-neighbor estimates is given in [41],
[42], [78], [82], [85], [147]-[150]. Estimating error
probabilities using nearest-neighbor rules requires a great
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deal of storage when data sets are large. Hence some
attempts have been made at decreasing the size of the
training data; in some cases better estimates of P, are
obtained than those obtained by using the entire training
set [53], [83], [87], [147], [170], and [186].°

Some further miscellaneous work concerning the estima-
tion of P, and related problems can be found in [3], [12],
[13], [15], [34], [36], [37], [58], [81], [116], [125], [152],
[156], and [166]. Friedman defines A = P, — P, as the
“error determined by a classifier,” the parameters of which
are estimated from a particular training set. For the two-
class problem with equal a priori probabilities, he derives
expected values of A and examines their asymptotic
behavior for a few simple univariate Gaussian cases.
Wilkins and Ford [185] discuss the effects of unrepre-
sentative samples present in the training sets.

The reader should be reminded that estimating the error
on a given data set by making proper use of the best
procedures available is only half the problem. One may
have a large enough data set relative to the number of
parameters to be estimated, but does it adequately represent
the variability in the data for the problem one is trying to
solve? Hence a problem of perhaps even greater importance
than the previous one is the adequacy of the data set itself.
For example, in speech recognition and alphanumeric
handprinted character recognition, thousands of samples
are required to represent the true variability in the data
from the population at large. This is the price which must
be paid when the underlying class-conditional distributions
are not known.
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Optimum Transmitting Filter in Digital PAM
Systems with a Viterbi Detector

STAFFAN A. FREDRICSSON

Abstract—Optimization of the transmitting filter in a PAM system
using a Viterbi detector of constrained complexity is considered. The
receiving filter is considered to be a whitened matched filter. A constraint
on detector complexity is obtained by limiting the length of the system
impulse response. The results are applied to a channel with coaxial cable
characteristics. Comparison with other detectors shows that the Viterbi
detector is preferable even when the length of the system 1mpulse response
is quite short.
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1. INTRODUCTION

EMANDS for higher data rates in the transmission of
D digital information are continuously increasing. In
order to mitigate the intersymbol interference effects which
inevitably- accompany such increased data rates, several
different systems have been proposed. In digital PAM
systems the use of partial response techniques looks very
promising. Recently, Forney [1] and Kobayashi [2] have
shown that the so-called Viterbi detector performs
maximum-likelihood sequence estimation of the transmitted
sequence in partial response systems. The main drawback



