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and upon applying the vector calculus identity
Ve(yd) = A-Vy + yv-A4
to the first term, (13) follows.
Corollary: The divergence of §(x) equals its variance at x; i.e.,
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This corollary relates spatial variations in §(x) to conditional expecta-
tions at x; and, in addition, it enables us to state that the CME is
completely specified by its variance function V(x). This statement is a
consequence of Helmholtz’s theorem, which states that a vector is
completely specified by its divergence and curl. (Recall that as §(x) is
conservative, V. x §(x) = 0.)

The primary value of Property 3 and its corollary is that they relate
both the likelihood ratio and CME to a conditional variance function
of the signal. Hence, by viewing L(x) as a potential function and §(x)
as a conservative vector field, the mathematics of potential theory can
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I1I. CONCLUSIONS

This correspondence has noted a fundamental property relating
optimum detection and CME for random signals in white Gaussian
noise for discrete-time processes, and has discussed the role of the
estimation—correlation operation in forming an optimum decision
statistic.

By viewing the log-likelihood ratio as a potential function, the
CME of the signal was shown to constitute a conservative vector
field. This concept was used to show the intimate connection between
spatial variation (divergence) of the CME and the conditional signal
variance. These results suggest that the mathematics of potential theory
might play an important role in furthering the theory of signal
detectability.

C. P. HaTsgLr?

Dep. Elec. Eng.

USAF Inst. Technol.
Wright-Patterson AFB, Ohio
L. W. NoLTE

Dep. Elec. Eng.

Duke Univ.

Durham, N.C. 27706

3 Formerly with the Department of Electrical Engineering, Duke University,
Durham, N.C.

Note on Optimal Selection of Independent Binary-Valued
Features for Pattern Recognition

Abstract—Given a set of conditionally independent binary-valued
features, a counter example is given to a possible claim that the best
subset of features must contain the best single feature.

Recently, Elashoff et al.! showed that for optimal selection of a
subset of independent binary-valued features, the features generally
may not be evaluated independently. Specifically, an example is given!
in which, given three independent variables x;, x,, and x3 such that
&(x1) < &(x2) < e(x3), where e(x,) is the error probability when the
ith variable alone is used, the first and third variables are jointly better
than the first and second variables. In other words, e(x;,x3) < &(xy,X2),
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where £(x;,x;) is the probability of error when the ith and jth variables
are used together. In this note, the results of Elashoff er al. are carried
one step further, and it is shown that the best pair of variables need
not contain the best single variable.

Let there be two equiprobable pattern classes C; and C,, and let
@, =Px;=1|Cy) and B = P(x; =1]|Cp), i= 123, where
P(x; = 1| C)) is the conditional probability that the ith variable
takes on the value ONE conditioned on the jth pattern class. As in
Elashoff et al., et the foliowing assumptions be made:

1) e(xy) < e(xz) < &(x3);
2) w < f,i=123;
3) By — g > fo— ap > 3 — aa.

For simplicity of notation, let /; = (8; — o), by = 31 — a; — BY),
and D;; = k| — |Ay]- It is shown by Elashoff et al. that for two con-
ditionally independent variables x; and x;, the minimum error prob-
ability is given by

e(xnxy) = He(x) + elx)) — L byl — I ], 6y
where &(x) = 31 — (B — ) for k£ = ,j. From (1) and conditions

1), 2), and 3) above, it can easily be shown that for e(x;,x,) <
&(x2,x3), a sufficient condition is given by

lhy| > |hs| @
and a necessary and sufficient condition is given by
1{l —1
Dsy < = [—2)A + 2. 3)
2 I

Consider as an example, three features x;, x,, and x; chosen so as
to violate (3) such that ¢(x;) < &(x,) < e(x3). Such examples are not
difficult to find. The probabilities of the three features conditioned on
the two pattern classes are given by

oy = 0.10 ay = 0.05 a3 = 0.01

p: = 0.90 B> = 0.80 By = 0.71.

Substituting these figures into (1) yields the following results:

e(xy) = 10 percent &(x1,x,) = 8.25 percent

e(x;) = 12.5 percent &(x1,x3) = 6.9 percent

e(x3) = 15 percent &(x2,x3) = 5.875 percent.

From these results it is observed that, although all pairs of features
are better than the best single feature, the pair consisting of the two
worst single features is much better than the pair consisting of the two
best single features. Furthermore, the best pair does not contain the
best single feature; in fact, the best pair is made up of the worst single
features.
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Comments on “A Modified Figure of Merit for Feature
Selection in Pattern Recognition”

In a recent correspondence [1] a modification of the conventional
mutual-information effectiveness criterion for feature selection in
pattern recognition was described. However, there seems to be some
confusion between selecting a subset of features and selecting features
individually. This apparent confusion may confuse the reader further
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