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Abstract

Given a set S of n points in the plane (not all on a line) it is well known that it
is always possible to polygonize S, i.e., construct a simple polygon P such that the
vertices of P are precisely the given points in S. For example, the shortest circuit
through S must be such a simple polygon [20]. In 1994 Grünbaum [13] showed that
an analogous theorem holds in 3-dimensional space. More precisely, if S is a set of n
points in space (not all of which are coplanar) then it is always possible to polyhedronize
S, i,e., construct a simple (sphere-like) polyhedron P such that the vertices of P are
precisely the given points in S. Grünbaum’s constructive proof may yield Schonhardt
polyhedra that cannot be triangulated [?]. In this paper we propose several alternative
algorithms for constructing such polyhedra induced by a set of points. Our methods
yield polyhedra which not only may always be triangulated, but which enjoy several
other useful properties as well. Such properties include polyhedra that are star-shaped,
have hamiltonian skeletons, and admit efficient point location queries. Furthermore, we
show that polyhedronizations with a variety of such useful properties can be computed
efficiently in O(n log n) time.

1 Introduction

In 1964 Hugo Steinhaus posed the following problem [25]. There are n points lying in a
plane, no three of them lying on the same straight line. Is it always possible to find a closed
polygon with n non-intersecting sides whose vertices are these n points? Then he proceeded
to give a clever proof by induction that this is true. His proof removes an extreme point of
the set and by induction assumes the remaining n − 1 points admit such a polygon. Then
by trial and error he searches for an edge of this polygon that is completely visible from
the removed point. A direct implementation of his proof yields an O(n3) time algorithm for
constructing the required polygon.

Independently, in 1966 Michael Gemignani [9] posed the following problem: given n points
in the plane, not all lying on the same straight line, are they the vertices of a simple closed
polygonal chain and, if so, produce a witness, i.e., construct one. Note that the problem
Gemignani posed is more general than the version Steinhaus posed since Gemignani only
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assumes not all the points are collinear, whereas Steinhaus assumes no three are collinear.
Indeed, the induction proof of Steinhaus does not hold if one only assumes that not all points
are collinear. Gemignani also conjectures that the shortest closed route through the points
must be one of these simple polygons. This conjecture had in fact been proved one year earlier
by Quintas and Supnick [20]. It has been independently proved elsewhere since then [22]
but finding such a shortest circuit is difficult. This is the well known Euclidean Travelling
Salesman Problem and it is known to be NP-complete [16]. In a later paper Gemignani [8]
gives a much simpler proof than the one given in [9] which yields a star-shaped polygon in
O(nlogn) time.

In 1994 Branko Grünbaum [13] gives an alternate simple proof of Gemignani’s prob-
lem that yields a monotonic polygon. Furthermore, Grünbaum’s proof can also be easily
implemented in O(nlogn) time.

Different types of polygonizations are of interest in a variety of disciplines and serve dif-
ferent functions. Clearly for traveling-salesperson-type problems we are interested in poly-
gonizations that have a short if not minimal length. In pattern recognition we are often
interested in polygonizations that characterize in a “nice” periosteal manner the boundary
of some shape [18], [29]. One may be interested in polygonizations as data structures that
afford simple insertions and deletions of points from S [1]. In computational geometry it
may also be the case that there exists a simple solution to a problem for polygons that may
also be the solution to the problem when the input is the set of vertices of the polygon, i.e.,
a set of points. If the right kind of polygonization can be found efficiently then a simple
solution for polygons may yield a simple solution for point sets. A notable example here is
the convex hull problem [11].

Ron Graham in 1972 [11] proposed a simple optimal O(n logn) time algorithm for com-
puting the convex hull of S that works in two stages. In the first stage he obtains a special
polygonization of S and in the second stage he finds the convex hull of the resulting polygon
with a linear time backtracking algorithm now well known as the Graham Scan. Here we
are interested in his polygonization algorithm. First a point inside the convex hull called
the origin is found by taking the average (center of gravity) of three of the given points.
Then the points in S are sorted by polar angle about the origin. Finally the points in S are
connected by edges in the sorted order to yield the polygonization. We shall call this the
star polygonization.

The star polygonization has the nice property that it is star-shaped and a point in its
kernel (namely the origin O) is known. Therefore the polygon can be triangulated with
a simple and practical algorithm in linear time [31]. This is an attractive property of a
polygonization because a triangulated polygon is very useful for the efficient computation of
many geometric properties [28], [30], [14].

The reason a triangulated polygon is so useful is that the dual graph of the triangulation
is a tree and this tree can be used to guide efficient search in the polygon. For precisely
the same reason, an even more attractive property of a polygon is the admissibility of a
good thin triangulation [24]. A thin triangulation is one that minimizes the number of
nodes of degree three in the dual tree and can be computed in O(n3) time using O(n2)
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Figure 1: Illustrating the fan polygonization of a point set.

space [24]. Clearly an even more attractive property of a polygon is that of admitting
a triangulation such that its dual is a chain. Such polygons are called serpentine. The
disadvantage of the star polygonization is that it may yield a polygon that is not serpentine
and therefore it may require O(n3) time and O(n2) space to compute a thin triangulation.
However, a simple modification of the Graham polygonization not only has this serpentine
property but a serpentine triangulation is generated during polygonization at no extra cost.
Instead of picking as the origin a point in the interior of the convex hull, we chose it to be
a point of S on the convex hull of S such as the point with minimum y coordinate. We
call such a polygonization a fan polygonization of a point set. A set of points and its fan
polygonization is illustrated in Fig. 1. The sorting of the points with respect to O yields the
triangulation immediately and therefore no triangulation algorithm is needed. Furthermore,
the triangulation thus obtained is clearly serpentine.

Another desirable and useful property of a polygon is its monotonicity. Neither the star
nor the fan polygonization methods are guaranteed to yield monotonic polygons. However
a monotonic polygonization can be easily obtained in O(n logn) time as follows (refer to
Fig. 2. It should be noted that this polygonization was implicitly used in several variations
of Graham’s convex hull algorithm [2], [3]. First find the points of S with minimum and
maximum x-coordinates, say a and b, respectively. Construct a line L through a and b and
determine which of the n−2 points lie above L (call these S1) and which below (call these S2).
Sort the points in S1 by x-coordinate and connect adjacent points by edges. Do the same for
points in S2 . Finally connect the end vertices of the resulting chains to the corresponding
extreme points a and b. While such a polygon is clearly monotonic in the x-direction and a
simple and practical O(n) time triangulation algorithm exists for monotone polygons [27] this
procedure may yield monotonic polygons that are not serpentine and therefore computing a
thin triangulation for them may require O(n3) time and O(n2) space as in the case of star
polygonizations.
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Figure 2: Illustrating a monotonic polygonization.

The planar polygonization problem can be generalized in at least two ways to 3-dimen-
sional space. We can ask for a closed polygonal chain that is “simple” in the sense that it
is not knotted. We will call this the 3-D-polygonization problem. This problem is trivially
solved using the planar polygonization procedures by projecting the points of S onto a plane
and then “lifting” the planar polygonization obtained back into space. In the more interesting
generalization we can ask for a simple polyhedron the vertices of which are the given point
set. We call this problem the polyhedronization problem. Surprisingly this problem does
not appear to have been studied before in this general setting. However a special case of
it is a well known problem in solid modelling and has received much attention in medical
applications concerning the reconstruction of solids [5]. In this instance of the problem we
are given two simple polygons P and Q of n and m vertices, respectively, each on one of
two parallel planes in space, and it is desired to find a simple polyhedron that has the two
polygons as faces and whose vertices are precisely the vertices of the two polygons. Clearly,
when the two given polygons are convex this is always possible as it suffices to compute the
convex hull of the union of the two polygons. Furthermore such a polyhedronization can
be computed in O(n + m) time by using the “rotating caliper” technique [26]. O’Rourke
and Subramanian [19] have shown that such a polyhedronization is not always possible for
arbitrary simple polygons. Finally, if a judiciously-placed “Steiner vertex” is permitted then
such a polyhedronization always exists [10].

In this paper we study various methods for generating polyhedronizations that have a
variety of desirable properties: monotonicity, starshapedness, admitting a tetrahedralization
(triangulation), possibly with nice dual structure, possessing a good 1-skeleton from the
viewpoint of graph theory and affording fast point location. The 3-D-polygonization prob-
lem is solved along the way in that a polyhedronization with the property that it admits a
hamiltonian yields a 3-D-polygonization when one of its hamiltonians is reported. Before
presenting the 3-D results in section 4, as a way of introducing one of the methods, we first
present it in the plane in section 3. This new polygonization method combines the desir-
able properties of both the monotonic and fan polygonizations yielding in O(n logn) time
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Figure 3: Illustrating the edges and vertices of a terrain.

polygonizations that are: (1) monotonic, (2) serpentine and (3) triangulated in a serpentine
manner at no extra cost.

2 Geometric Properties of Polyhedra

Vertices and Edges of Polyhedra

It is helpful to distinguish between a variety of different edges and vertices when speaking
about polyhedra. Here we borrow some terminology from Griffiths [12] as well as Chazelle
and Palios [6] and introduce some of our own. An edge e of T is said to be reflex if the
interior dihedral angle formed by its two incident faces is greater than 180 degrees. An edge
e of T is said to be convex if the interior dihedral angle formed by its two incident faces is less
than 180 degrees. An edge e of T is said to be flat if the interior dihedral angle formed by its
two incident faces is equal to 180 degrees. We say that a vertex is reflex if it is incident upon
at least one reflex edge, and that it is flat if all its incident faces lie in at most two distinct
planes. Finally, a vertex is called pointed if it is neither flat nor reflex. These definitions
are illustrated in Fig. 3 where a polyhedron is shown from the top in Fig. 3(a) and from
a perspective view in Fig. 3(b). The polyhedron is constructed as follows. The base (on
the xy-plane) is the equilateral triangle abc with sides of length equal to 15 units. Vertex d
is located near the center of triangle abc at an elevation of 5 units creating a tetrahedron.
Vertex e is located near the center of triangle dbc of the first tetrahedron. Finally a vertex
f is created on edge eb and connected to d and c. Then ef is a convex edge, dc is a reflex
edge, cf is a flat edge, f is a flat vertex, d is a reflex vertex and e is a pointed vertex.
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Tetrahedralizations

It is well known that a simple planar polygon can always be triangulated and the reader
is referred to [30] for a survey of this problem and a variety of algorithms for solving it.
The problem consists of constructing a triangulation of P , i.e., decomposing P into a set
of non-overlapping triangles (their interiors do not intersect) without adding new vertices.
Mathematicians have been interested in constructive proofs (algorithms) of the existence of
triangulations for simple polygons as early as 1911 [17]. The algorithm of Lennes [17] works
by recursively inserting diagonals between pairs of vertices of P and runs in O(n2) time on a
polygon with n vertices. This procedure sounds deceptively straight forward. However, since
1911 this type of algorithm has reappeared in a score of papers and text books during the
past eighty years very often and surprisingly containing fundamental errors. See the paper
by Chung-Wu Ho [15] for a series of counter-examples to published triangulation algorithms
of the recursive diagonal insertion kind.

It is less well known that the analogous 3-dimensional triangulation problem of de-
composing polyhedra into tetrahedra (also called tetrahedralization) is not always possi-
ble. Lennes [17] was the first to exhibit such an indecomposable polyhedron. Lennes’s
counter example contained seven vertices. In 1928 Schonhardt [23] strengthened this re-
sult by constructing a polyhedron of six vertices that did not admit even a single diagonal
and proved that no indecomposable polyhedra existed with less than six vertices. In 1948
Bagemihl [4] generalized Schonhardt’s result to polyhedra with any number n > 6. These
counter-examples open up the intriguing computational question of whether a given poly-
hedron can be tetrahedralized. In 1992 Ruppert and Seidel [21] showed that the problem
of deciding whether a polyhedron can be tetrahedralized is NP-complete. Surprisingly, they
showed that the problem remains NP-complete when restricted to the case of star-shaped
polyhedra. This raises the interesting question of whether a polyhedral terrain can be tetra-
hedralized, but first we must define what we mean by this.

First let us define the convex hull of a polyhedral terrain T as the convex hull of its
vertex set V = {v1, v2, . . . , vn}. We note here that this convex hull, denoted by CH(T ),
encloses the polyhedral surface defined in the interior of CH(P ) on the X-Y plane and can
be computed, ignoring the polyhedral structure of T , in O(n logn) time [7]. We now define
the tetrahedralization of a terrain T as the tetrahedralization of the region in S (the space
strictly above T in E3) in the interior of CH(T ).

An obvious question now is whether every terrain can be tetrahedralized. Next we show
that a terrain does not necessarily admit a tetrahedralization. Our construction is based on
the example of Schonhardt which we must convert to a terrain. Therefore we first describe
Schonhardt’s construction (see Fig. 4(a)). The six-vertex polyhedron is constructed by start-
ing with a triangular prism (the top and bottom are shown shaded) and “twisting” the top
face in the direction shown by some small amount. The three side faces (rectangles consisting
of two triangles each) cannot remain planar and so “buckle” inwards along the diagonals to
produce bona-fide triangular faces. It is easy to see that no two non-adjacent vertices of
this polyhedron are internally visible to each other. Now we construct an indecomposable
terrain. Let the terrain be convex except for a single “pocket” like the crater of a volcano.
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Figure 4: Constructing a polyhedral terrain that cannot be tetrahedralized.

It is sufficient to show that we can build an indecomposable crater. We start by making
the crater from Schonhardt’s prism first by making the top triangle much bigger than the
bottom triangle and then by removing the top face so that it becomes part of the terrain
as illustrated in Fig. 4(b) where the crater is viewed from the top. The bottom triangle
is shaded. Now we “twist” the top triangle (the rim of the crater) in a counter-clockwise
manner by some amount to create the necessary buckling as before and the resulting lack
of visibility between non-adjacent pairs of vertices of the crater. However, we must now be
careful that during this twisting we do not lose the polyhedral terrain property that we had
before twisting. It is easy to show that we can ensure that the twisted crater remains a
terrain by rotating through an angle smaller than that required to carry the projection of
the diagonal a, b on the X-Y plane to be collinear with the projection of a, c on X-Y plane.

3 On-line Polygonization

We present here a new method of polygonization in the plane which achieves many desirable
properties, and that somehow surprisingly does not extend to 3D. The main idea is very
simple and consists of sorting all the points along some direction such as the x-axis, creating
a triangle from the first three points, and subsequently processing one point at a time in the
sorted list which creates a new triangle that is “glued” on to a suitable visible edge of the
existing polygonization. We describe next the algorithm more formally.
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Algorithm-1

Initialization
(1) Sort lexicographically the points along their +x and +y coordinates to obtain the list
p1, p2, . . . , pn.
(2) If p1, p2, and p3 are not collinear, connect them to form triangle T3, which would also
be the initial polygon Q3 and let us define an initial value � to be � = 4.
Otherwise let pj be the first point non-collinear with its preceding points in the list,
p1, . . . , pj−1. We construct now the initial polygon Qj = p1pjpj−1 . . . p2p1, and the trian-
gles T3 = p1pjp2, T4 = p2pjp3, . . . , Tj = pj−2pjpj−1, and let the value � be � = j + 1.
Iteration
for i = � to i = n do:
Connect point pi to a visible edge of triangle Ti−1 in the polygon constructed thus far,
denote this new triangle by Ti and the updated polygon by Qi.
end for

The correctness of the above procedure follows from the following simple lemma.

Lemma 3.1 At every step of Algorithm-1 pi sees completely at least one forward edge of
triangle [pi−1, pi−2, pi−3].

Proof:

Theorem 3.2 A set of points S in the plane admits a serpentine polygonization and a
triangulated serpentine polygonization can be obtained in O(n logn) time.

At first glance it may appear that this on-line algorithm extends to three dimensions
by “gluing” a new tetrahedron to one of the three faces incident on the last point of the
polyhedron constructed thus far. Unfortunately, it may happen that none of the three faces
is completely visible from the new point to be inserted, and therefore the method fails. An
example of a set of points for which this procedure fails is shown in Figure Fig. 5.

First consider the six points ordered by increasing x-coordinate: P1 = (0, 0, 0), P2 =
(0, 1, 0), P3 = (0,−3, 1), P4 = (1, 0, 0), P5 = (2,−5/2,−3) and P6 = (3,−4, 1). The first,
second, and third tetrahedra glued in the construction are given, respectively, by P1P2P3P4,
P1P2P4P5, P1P4P5P6.

When viewed from the top (+z direction) the projection of P5 on the xy plane lies in the
interior of the projection of the triangle P1P6P4. Therefore the outer normals of faces P4P5P6

and P1P5P6 are pointing in the negative z direction. Furthermore, any point P7 above the
planes P1P4P6, P1P5P6 and P4P5P6 cannot see faces P4P5P6 and P1P5P6. Finally, if P7 is
high enough it will not see face P1P4P6 either, and if P7 lies on a nearly vertical line slightly
slanted towards the positive x axis, its x-coordinate can be made to be larger than that of
P6, as required.
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Figure 5: Illustrating the polyhedron constructed from the first three tetrahedra and the
line on which the seventh point lies.

4 Polyhedronization of Point Sets in Space

In this section we prove that every set of n points in general position in three dimensional
space admits a polyhedronization. We describe several different types of polyhedronizations
and analyze their properties as well as algorithms for their computation.

Monotonic Polyhedronizations

In 1994 Grünbaum [13] outlined a constructive proof that a set of points S could always be
polyhedronized. As it turns out his idea leads to a monotonic polyhedronization, as defined
below. In the following we present a simplification of his approach and show that it can be
efficiently computed.

Definition 4.1 A polyhedron is xy-monotonic provided that its intersection with every line
parallel to the z-axis is either empty or a connected set.

In other words, an xy-monotonic polyhedron is bounded from above and below by ter-
rains. Such polyhedra are ubiquitous in geographic information systems and manufacturing
applications, and admit efficient point location queries by deciding whether a query point is
above or below the terrains, which can be quickly achieved after performing point location in
the projections of the terrains on the xy-plane. Hereafter we use the simpler term monotonic
to mean xy-monotonic.

Theorem 4.1 A set of points S in space admits a monotonic polyhedronization that can be
obtained in O(n logn) time.
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Proof: First compute the convex hull CH(S) of S. If no points of S lie inside this convex
hull we are done because the poyhedron CH(S) is a monotonic polyhedron. Otherwise,
let CHL(S) and CHU(S) be the lower and upper convex hull of S, respectively. Let B be
the shadow boundary of the convex hull of S, in other words the set of edges common to
CHL(S) and CHU(S). Let SU be the subset of points in S which are not vertices of CHL(S).
Triangulate in any way the projection of the set SU ∪B on the xy-plane, and lift each triangle
to the points that projected onto its vertices. By gluing along B this terrain with CHL(S)
we obtain the desired monotonic polyhedron.

Computing the convex hull and constructing a triangulation of the projected points can
be done in time O(n logn) [?], which is the overall running time as the lifting step only
requires O(n) time.

A drawback of the above construction is that the resulting polyhedronization may not
admit a tetrahedralization (insert here the counterexample or give a pointer). We
show next an alternative more complicated construction that admits a tetrahedralization.
We start with some technical lemmas.

Lemma 4.2 Given a monotonic tetrahedralized polyhedron, and points that lie above or
below the polyhedron such that a vertical line through each of them intersects the boundary
of the polyhedron twice, it is possible to enlarge the polyhedron and its tetrahedralization to
encompass these points, while remaining monotonic and tetrahedralized.

Observation. The preceding lemma also applies when we have a convex lower hull instead
of a plane polygon P .
Proof: If a triangle abc of the upper part has points above it, translate a copy of it until
it meets a point q; then replace the triangle abc with the three triangles qab, qbc and qac.
Iterate.

Lemma 4.3 Let P be a triangulated convex polygon with vertex set V lying on the plane
xy, and let S be a point set in 3-space such that every point in S has positive z and projects
vertically inside P (strictly). Then it is possible to construct a tetrahedralized monotonic
polyhedron with vertex set V ∪ S such that its lower terrain is P .

Theorem 4.4 A set of points S in space admits a tetrahedralizable monotonic polyhedroniza-
tion.

Proof: Compute the convex hull of the shadow boundary. Let B+ and B− be its upper
and lower part, respectively. Assume that there are points above B− (otherwise we switch to
points below B+, otherwise we are done). Use the construction from Lemma 4.3 to obtain a
first tetrahedralized monotonic polyhedron, then use Lemma 4.2 to incorporate points below
B−, if any.
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Star-shaped Polyhedronizations

Definition 4.2 A polyhedron Q is starshaped from a non-exterior point p provided that for
all points q ∈ Q the line segment pq lies in Q.

Hinge Polyhedronizations

We give the name of hinge polyhedronization to the following construction. Start with any
pair of points x, y ∈ S for which xy is an edge of the convex hull CH(S), consider a plane
H that supports S at xy, and let H∗ be a halfplane in H bounded by the line r = xy.
Sort all the remaining points in the order they are encountered when H∗ is rotated around
r. Connect all these points in sorted order obtaining an open polygonal chain, and finally
connect every vertex of this chain to both x and y.

Theorem 4.5 A hinge polyhedronization can be constructed in O(n logn) time and has the
following properties:

1. star-shaped (fan, edge-visible);

2. serpentine

3. Hamiltonian;

4. affords O(logn) point-location queries.

Proof: Let q1, . . . , qn−2 the points in S\{x, y} as they appear sorted in the chain. The first
two properties follow immediately from the fact that the hinge polyhedronization consists of
the union of tetrahedra defined by xy, qi and qi+1. The path xq1 . . . qn−2yx is a Hamiltonian
cycle lying on the 1-skeleton of the polyhedron. Angular binary search with the halfplane
having its hinge at xy allows point location as claimed.

The selection of an edge from CH(S) can be done in linear time, and sorting the points
in O(n logn) time, which is the dominating step as the final connections are done in linear
time.

Orange Polyhedronizations

We describe here orange polyhedronizations, which are a slight modification of hinge polyhe-
dronizations. Start with any pair of points x, y ∈ S for which xy is not an edge of the convex
hull CH(S), consider a plane H through xy, and let H∗ be a halfplane in H bounded by the
line r = xy. Sort all the remaining points in the cyclic order they are encountered when H∗

is rotated around r. Connect all these points in sorted order obtaining a closed polygonal
chain, and finally connect every vertex of this chain to both x and y.

Theorem 4.6 An orange polyhedronization can be constructed in O(n logn) time and has
the following properties:
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1. star-shaped (from a diagonal);

2. admits a tetrahedralization whose dual is a cycle

3. Hamiltonian;

4. has an Eulerian 1-skeleton for even n;

5. affords O(logn) point-location queries.

Proof: Let q1, . . . , qn−2 the points in S\{x, y} as they appear cyclically sorted in the chain.
The first two properties follow immediately from the construction. The path q1xq2yq3 . . . qn−2q1

is a Hamiltonian cycle lying on the 1-skeleton of the polyhedron. The degrees of x and y in
the 1-skeleton of the polyhedron are both n−2, while any other vertex has degree 4, therefore
for n even all the degrees are even and the graph is Eulerian. Angular binary search with
the halfplane having its hinge at xy allows point location as claimed.

The computation is done in the same way as for the hinge polyhedronization in O(n logn)
time.

Notice that by deleting a ”gajo” tetrahedron from an orange polyhedronization, we obtain
an alternate construction of a hinge polyhedron, except for the fact that the hinge is not
longer a convex hull edge.

Cone Polyhedronizations

A cone polyhedronization with apex v ∈ CH(S) is constructed as follows: let the apex v
be any vertex of the convex hull of S. Consider a plane H such that all the points in S
except q are strictly in between H and a plane parallel to H that contains q. Let S∗ be
the perspective projection of S\{q} onto the plane H , from the point q. Triangulate S∗ and
lift every triangle in the triangulation to the corresponding original points in space. Finally,
connect to q the points that project to convex hull vertices of CH(S∗)

Theorem 4.7 A cone polyhedronization can be constructed in O(n logn) time and has the
following properties:

1. star-shaped (fan);

2. admits a tetrahedralization;

3. affords O(logn) point-location queries.

Proof: The two first properties are obvious from the construction. Given a query point q,
let q∗ be the intersection of the line pq with the plane H . If q∗ is outside CH(S∗) the q is
outside of the polyhedron. Otherwise, we determine which triangle contains q∗ and test q for
inclusion in the tetrahedron corresponding to this triangle. Kirkpatrick’s algorithm allows
this to be done within the claimed bound [REFERENCE].
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There are several methods for picking a vertex v of the convex hull and a suitable plane
H in O(n logn) time, for example by computing the convex hull itself. S∗ is then obtained
in linear time and triangulated in O(n logn) time. Finally the triangulation can be pre-
processed in O(n logn) time using linear space to support logarithmic time point location
queries, using Kirkpatrick’s algorithm.

Pyramid Polyhedronizations

A pyramid polyhedronization is a slight variation of the cone polyhedronization, in which in-
stead of constructing a triangulation of S∗ we obtain a planar polygonization q∗1q

∗
2 . . . q∗n−1q

∗
1

of S∗ and lift a triangulation of this polygon. Furthemore, if we use the serpentine triangu-
lation from the preceding section, we obtain a serpentine polyhedronization, which is also
Hamiltonian, because q1vq2q3 . . . qn−1q1 is a Hamiltonian cycle in its 1-skeleton. As for point
location, Kirpatrick’s algorithm can also be used in this context, and in fact is even easier.
Therefore we have the following theorem:

Theorem 4.8 A pyramid polyhedronization can be constructed in O(n logn) time and has
the following properties:

1. star-shaped (fan);

2. admits a serpentine tetrahedralization;

3. is Hamiltonian;

4. affords O(logn) point-location queries.

Proof: The two first properties are obvious from the construction. Given a query point q,
let q∗ be the intersection of the line pq with the plane H . If q∗ is outside CH(S∗) the q is
outside of the polyhedron. Otherwise, we determine which triangle contains q∗ and test q for
inclusion in the tetrahedron corresponding to this triangle. Kirkpatrick’s algorithm allows
this to be done within the claimed bound [REFERENCE].

There are several methods for picking a vertex v of the convex hull and a suitable plane
H in O(n logn) time, for example by computing the convex hull itself. S∗ is then obtained
in linear time and triangulated in O(n logn) time. Finally the triangulation can be pre-
processed in O(n logn) time using linear space to support logarithmic time point location
queries, using Kirkpatrick’s algorithm.

5 Open Problems

1. Find a monotonic polyhedronization which admits tetrahedralization.
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2. How fast can it be recognized that a polyhedron is serpentine?

3. For n odd and > 7, do there exist Eulerian polyhedronizations?

4. Combinatorics of polyhedronizations.

5. If we are given a simple polygon on one plane and a set of points on a parallel plane,
do they admit a polyhedronization?

NOTE TO OURSELVES: HAMILTONIAN POLYHEDRONIZATIONS GIVE
3D POLYGONIZATIONS AS A SIDE EFFECT, THIS SHOULD BE MEN-
TIONED SOMEWHERE.

6 Conclusions
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