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Abstract

The Euclidean algorithm (which comes down to us from Euclid’s Elements) computes the greatest com-
mon divisor of two given integers. It is shown here that the structure of the Euclidean algorithm may be
used to automatically generate, very efficiently, a large family of rhythms used as timelines (rhythmic
ostinatos), in traditional world music. These rhythms, here dubbed Euclidean rhythms, have the prop-
erty that their onset patterns are distributed as evenly as possible in a mathematically precise sense, and
optimal manner. Euclidean rhythms are closely related to the family of Aksak rhythms studied by eth-
nomusicologists, and occur in a wide variety of other disciplines as well. For example they characterize
algorithms for drawing digital straight lines in computer graphics, as well as algorithms for calculating
leap years in calendar design. Euclidean rhythms also find application in nuclear physics accelerators
and in computer science, and are closely related to several families of words and sequences of interest
in the study of the combinatorics of words, such as mechanical words, Sturmian words, two-distance
sequences, and Euclidean strings, to which the Euclidean rhythms are compared.

1. Introduction

What do African bell rhythms [126], spallation neutron source (SNS) accelerators in nuclear physics [18],
Sturmian words and string theory (stringology) in computer science [85], Markoff numbers and two-distance
sequences in number theory [114], [86], [28], drawing digital straight lines in computer graphics [72],
calculating leap years in calendar design [61], [9], and an ancient algorithm [55] (called the Euclidean
Algorithm in computer science) for computing the greatest common divisor of two numbers, originally
described by Euclid [52], have in common? The short answer is: patterns distributed as evenly as possible.
For the long answer please read on.

Mathematics and music have been intimately intertwined at least since the day Pythagoras discovered
2500 years ago that the pleasing experience of musical harmony is the result of ratios of small integers [10].
However, most of this interaction has been in the domains of pitch, scales, and tuning systems. For some
historical snapshots of this interaction the reader is referred to H. S. M. Coxeter’s delightful account [41].
Rhythm, on the other hand has been throughout history, until recently, mostly ignored. Some notable recent
works on the subject are the books by Simha Arom [6], Christopher Hasty [63], and Justin London [84].
The earlier books by Grosvenor Cooper and Leonard B. Meyer [38] and Maury Yeston [138] are also useful.
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In this paper we make some mathematical connections between musical rhythm and other areas of knowl-
edge such as nuclear physics, calendar design, number theory, geometry, and computer science, as well as
the work of another famous ancient Greek mathematician, Euclid of Alexandria. It should be noted that the
Euclidean Algorithm has been connected to music theory previously by Viggo Brun [25]. However, Brun
used Euclidean algorithms to calculate the lengths of strings in musical instruments in between two lengths l
and 2l, so that all pairs of adjacent strings have the same length-ratios. Here on the other hand the Euclidean
algorithm is related to rhythm; it is shown that this algorithm generates almost all rhythmic timelines used
in traditional world music.

During the past thirty years a number of researchers have approached the study of rhythmic timelines using
generative methods, notably Kubik [77], Locke [80], Pressing [101], Rahn [105], [106], Anku [4], Tous-
saint [125], [126], [127], [128], and Agawu [1]. Agawu [1] provides an in-depth analysis of these methods
applied to African timelines. On the other hand, the Euclidean algorithm exposed here is a mathematical
model of rhythmic timeline generation that applies to music from all over the world (with the exception
of India). It should be stressed that this is not a model of the conscious process by which musicians in
any culture arrive at their preferred timelines, but rather of the inherent properties (both mathematical and
musicological) of the resulting timelines obtained.

2. Timing Systems in Neutron Accelerators

The following problem is considered by Bjorklund [18], [17] in connection with the operation of certain
components (such as high voltage power supplies) of spallation neutron source (SNS) accelerators used in
nuclear physics. Time is divided into intervals (in the case of SNS, 10 seconds). During some of these
intervals a gate is to be enabled by a timing system that generates pulses that accomplish this task. The
problem for a given number n of time intervals, and another given number k < n of pulses, is to distribute
the pulses as evenly as possible among these n intervals. Bjorklund [18] represents this problem as a binary
sequence of k ones and n−k zeros, where each integer represents a time interval, and the ones represent the
times at which the pulses occur. The problem then reduces to the following: construct a binary sequence of
n bits with k ones, such that the k ones are distributed as evenly as possible among the (n − k) zeros. If k
divides evenly (without remainder) into n, then the solution is obvious. For example, if n = 16 and k = 4,
the solution is [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0]. The solution is less obvious when k and n are relatively
prime numbers [100], i.e., when k and n are not evenly divisible by any number other than 1.

Bjorklund’s algorithm will be described simply by using one of his examples. Consider a sequence with
n = 13 and k = 5. Since 13 − 5 = 8, we start by considering a sequence consisting of 5 ones followed by
8 zeros which should be thought of as 13 sequences of one bit each:

[1][1][1][1][1][0][0][0][0][0][0][0][0]

If there is more than one zero the algorithm moves zeros in stages. We begin by taking zeros one at-a-time
(from right to left), placing a zero after each one (from left to right), to produce five sequences of two bits
each, with three zeros remaining:

[10] [10] [10] [10] [10] [0] [0] [0]

Next we distribute the three remaining zeros in a similar manner, by placing a [0] sequence after each [10]
sequence to obtain:

[100] [100] [100] [10] [10]
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Now we have three sequences of three bits each, and a remainder of two sequences of two bits each. There-
fore we continue in the same manner, by placing a [10] sequence after each [100] sequence to obtain:

[10010] [10010] [100]

The process stops when the remainder consists of only one sequence (in this case the sequence [100]), or we
run out of zeros (there is no remainder). The final sequence is thus the concatenation of [10010], [10010],
and [100]:

[1 0 0 1 0 1 0 0 1 0 1 0 0]

Note that one could proceed further in this process by inserting [100] into [10010] [10010]. However,
Bjorklund argues that since the sequence is cyclic it does not matter (hence his stopping rule). For the same
reason, if the initial sequence has a group of ones followed by only one zero, the zero is considered as a
remainder consisting of one sequence of one bit, and hence nothing is done. Bjorklund [18] shows that the
final sequence may be computed from the initial sequence using O(n) arithmetic operations in the worst
case.
A more convenient and visually appealing way to implement this algorithm by hand is to perform the se-
quence of insertions in a vertical manner as follows.
First take five zeros from the right and place them under the 5 ones on the left to obtain:

1 1 1 1 1 0 0 0
0 0 0 0 0

Then move the three remaining zeros in a similar manner to obtain:

1 1 1 1 1
0 0 0 0 0
0 0 0

Next place the two remainder columns on the right under the two leftmost columns to obtain:

1 1 1
0 0 0
0 0 0
1 1
0 0

Here the process stops because the remainder consists of only one column. The final sequence is obtained
by concatenating the three columns from left to right to obtain:

1 0 0 1 0 1 0 0 1 0 1 0 0

3. The Euclidean Algorithm

One of the oldest well known algorithms, described in Euclid’s Elements (circa 300 B.C.) in Proposition
2 of Book VII, today referred to as the Euclidean algorithm, computes the greatest common divisor of two
given integers [52], [55]. Indeed, Donald Knuth [75] calls this algorithm the “granddaddy of all algorithms,
because it is the oldest nontrivial algorithm that has survived to the present day.” The idea is very simple.
Repeatedly replace the larger of the two numbers by their difference until both are equal. This final number
is then the greatest common divisor. Consider as an example the numbers 5 and 8 as before. First, 8 minus
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5 equals 3; then 5 minus 3 equals 2; next 3 minus 2 equals 1; and finally 2 minus 1 equals 1. Therefore
the greatest common divisor of 5 and 8 is 1, or in other words 5 and 8 are relatively prime numbers. The
algorithm may also be described succinctly in a recursive manner as done in [40]. Let m and k be the input
integers with m > k.

EUCLID(m, k)
1. if k = 0
2. then return m
3. else return EUCLID(k, m mod k)

Running this algorithm with m = 8 and k = 5 we obtain:
EUCLID(8,5) = EUCLID(5,3) = EUCLID(3,2) = EUCLID(2,1) = EUCLID(1,0) = 1

It is clear from the description of the Euclidean algorithm that if m and k are equal to the number of zeros
and ones, respectively, in a binary sequence (with n = m + k) then Bjorklund’s algorithm described in
the preceding has the same structure as the Euclidean algorithm. Indeed, Bjorklund’s algorithm uses the
repeated subtraction form of division, just as Euclid did in his Elements [52]. It is also well known that if
algorithm EUCLID(m, k) is applied to two O(n) bit numbers (binary sequences of length n) it will perform
O(n) arithmetic operations in the worst case [40].

4. Euclidean Rhythms in Traditional World Music

A common method of representing musical rhythms is as binary sequences, where each bit (called a pulse
in this context) is considered as one unit of time (for example a 16th note), a zero bit represents a silence (or
a 16th rest), and a one bit represents an attack (or onset) of a note [125]. Therefore, the binary sequences
generated by Bjorklund’s algorithm, as described in the preceding, may be considered as one family of
rhythms. Furthermore, since Bjorklund’s algorithm is a way of visualizing the repeated-subtraction version
of the Euclidean algorithm, these rhythms will be called Euclidean rhythms, and denoted by E(k, n), where
k denotes the number of ones (onsets) and n (the number of pulses) is the length of the sequence (zeros
plus ones). For example E(5, 13) = [1001010010100]. The zero-one notation is not ideal for representing
binary rhythms because it is difficult to visualize the locations of the onsets as well as the duration of
the inter-onset intervals. In the musicology literature it is common to use the symbol ‘x’ for for the one
bit and the symbol ‘.’ for the zero bit. In this more iconic notation the preceding rhythm is written as
E(5,13) = [x . . x . x . . x . x . .].

The rhythm E(5,13) is a cyclic rhythm with a time span (measure) of 13 units. Although it is used in
Macedonian music [7], it is considered to be a relatively rare measure in world music. Let us consider
for contrast two widely used values of k and n; in particular, what is E(3, 8)? Applying the Euclidean
algorithm to the corresponding sequence [1 1 1 0 0 0 0 0], the reader may easily verify that the resulting
Euclidean rhythm is E(3,8) = [x . . x . . x .]. This rhythm is illustrated in Figure 1 (a) as a triangle (polygon
in general), yet another useful way to represent cyclic rhythms [125]. Here the rhythm is assumed to start at
the location labelled ‘zero’, time flows in a clockwise direction, and the numbers by the sides of the triangle
indicate the inter-onset duration intervals. Indeed, an even more compact representation of the rhythm is the
adjacent-inter-onset-interval vector, namely (332), which will also be used here.

The Euclidean rhythm E(3,8) pictured in Figure 1 (a) is none other than one of the most famous on the
planet. In Cuba it goes by the name of the tresillo and in the USA is often called the Habanera rhythm used
in hundreds of rockabilly songs during the 1950’s. It can often be heard in early rock-and-roll hits in the
left-hand patterns of the piano, or played on the string bass or saxophone [22], [69], [96]. A good example
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Figure 1: (a) The Euclidean rhythm E(3, 8) is the Cuban tresillo, (b) The Euclidean rhythm E(5,8) is the
Cuban cinquillo.

is the bass rhythm in Elvis Presley’s Hound Dog. The tresillo pattern is also found widely in West African
traditional music. For example, it is played on the atoke bell in the Sohu, an Ewe dance from Ghana [70].
The tresillo can also be recognized as the first bar (8 pulses) of the ubiquitous two-bar clave Son given by
[x . . x . . x . . . x . x . . .].

In the two examples considered in the preceding (E(5,13) and E(3,8)) the number of ones is less than the
number of zeros. If instead the number of ones is greater than the number of zeros, Bjorklund’s algorithm
yields the following steps with, for example k = 5 and n = 8.

[1 1 1 1 1 0 0 0]
[10] [10] [10] [1] [1]

[101] [101] [10]
[1 0 1 1 0 1 1 0]

The resulting Euclidean rhythm is E(5,8) = [x . x x . x x .]. This rhythm is illustrated as a polygon (pen-
tagon) in Figure 1 (b). It is another famous rhythm on the world scene. In Cuba it goes by the name of
the cinquillo and is intimately related to the tresillo [69]. It has been used in jazz throughout the 20th cen-
tury [106], as well as in the rockabilly music of the 1950’s. For example it is the hand-clapping pattern
in Elvis Presley’s Hound Dog [22]. The cinquillo pattern is also widely used in West African traditional
music [105],[125], as well as Egyptian [58] and Korean [65] music.

In the remainder of this section we list some of the most common Euclidean rhythms found in world music.
In some cases the Euclidean rhythm is a rotated version of a commonly used rhythm. If a rhythm is a rotated
version of another we say that both belong to the same necklace. Thus a rhythm necklace is the inter-onset
duration interval pattern that disregards the starting point in the cycle. An example of two rhythms that are
instances of one and the same necklace is illustrated in Figure 2.

4.1 Periodic Euclidean Rhythms

We will not be concerned with the obvious Euclidean rhythms that occur when k divides without remainder
into n. Such perfectly regular rhythms are called isochronous. For example, when k = 3 and n = 12 we
obtain E(3,12) = [x . . . x . . . x . . .]. Isochronous rhythms are common all over the planet in traditional,
classical, and popular genres of music; they are also periodic: E(3,12) has period 3. In both isochronous
and non-isochronous rhythms and meters, slight deviations from perfect regularity are useful as markers
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Figure 2: These two rhythms are instances of one and the same rhythm necklace.

of higher order periodicities while maintaining an effective distribution of attentional energy [83]. Indeed,
there is psychological evidence that such slight deviations from isochrony enhance beat-tracking ability [79].
Therefore we will restrict ourselves to the more interesting non-isochronous Euclidean rhythms.

Furthermore, we will also not be concerned with rhythms that have only one onset. This subfamily of
Euclidean rhythms yields the following sequence of rhythms:
E(1,2) = [x .]
E(1,3) = [x . .]
E(1,4) = [x . . .], etc.
Since we restrict ourselves to aperiodic rhythms, we need not enumerate rhythms with different multiples

of k and n. For example, multiplying (1,3) by 4 gives (4,12) yielding: E(4,12) = [x . . x . . x . . x . .], which
is periodic with four repetitions of E(1,3) = [x . .]. Incidentally, E(4,12) = [x . . x . . x . . x . .] is the (12/8)-
time Fandango clapping pattern in the Flamenco music of southern Spain, where ‘x’ denotes a loud clap
and ‘.’ a soft clap [46], [47].

4.2 Relatively Prime Euclidean Rhythms

The following list of remaining Euclidean rhythms that are found in world music is restricted to values of
k and n that are relatively prime. It is perhaps surprizing that such rhythms are not at all rare. Indeed, the
following list includes more than 98 such rhythms that I have found so far.

E(2,3) = [x x .] = (12) is a rhythmic pattern of the Corn Dance performed at the Santo Domingo Pueblo
in New Mexico [110], as well as the Huapango rhythm of the Huasteca region of Mexico [122], and the
iambic rhythm (short-long) from ars antiqua [129], traditionally associated with prosody [38]. When started
on the second onset as in [x . x], it is a hand-clapping pattern used by the Bantu people of Africa [66], as
well as the first rhythm taught to beginners of Mandinka drumming [74]. It is also found in Cuba, as for
example, the conga rhythm of the (6/8)-time Swing Tumbao [73]. It is common in Latin American music, as
for example in the Cueca [131], and the coros de clave [111]. It is common in Arab music, as for example
in the Al Táer rhythm of Nubia [58]. It is a Tuareg rhythm played on the tende drums [135]. In North
America it is a drum ostinato found in the Owl Dance of the Flathead indians of Western Montana in the
Unites States [89], and in the Drum Dance of the Slavey Indians of Northern Canada [8]. In Greece it is
the rhythm of the Tsamiko dance [116]. It is also the trochaic rhythm (long-short) traditionally associated
with prosody [38]. This pattern is also the “ancestral” rhythm obtained from a phylogenetic analysis of
Steve Reich’s Clapping Music [36]. When started on the silent pulse (anacrusis) as in [. x x], it is used to
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complement certain African rhythms [31].

E(2,5) = [x . x . .] = (23) is a rhythm found in Greece, Namibia, Rwanda and Central Africa [7]. It is the
pattern of the N-geru and Yalli rhythms used in heroic ballads by the Tuareg nomadic people of the Sahara
desert [135]. It is the Rupaka Tisra tala (of the Sulaadi family) of the music of South India [94]. It is also
a thirteenth century Persian rhythm called Khafif-e-ramal [136], as well as the rhythm of the Macedonian
dance Makedonka [119]. Tchaikovsky used it as the metric pattern in the second movement of his Symphony
No. 6 [71]. When started on the second onset as in [x . . x .] it is a rhythm found in Central Africa, Bulgaria,
Turkey, Turkestan and Norway [7]. It is also the metric pattern of Dave Brubeck’s Take Five as well as
Mars from The Planets by Gustav Holst [71]. Both starting points determine metric patterns used in Korean
music [65], and in classical music composed by Bartok [48]. Both starting points are gong rhythms in their
ten-pulse forms (2323) and (3232) in Korean Bhuddist chants [59], and in their ten-pulse form (3223) in
Korean Shaman rhythms [64].

E(2,7) = [x . . x . . .] = (34) is the rhythm of the Macedonian Lesnoto dance [116]. Started on both onsets,
they are two meters used in classical music composed by Bartok [48].

E(3,4) = [x x x .] = (112) is a pattern used in the Baiaó rhythm of Brazil [130], a drum rhythm in South
Indian classical music [95], as well as the polos rhythm of Bali [90]. It is also the anapest rhythm (short-
short-long) from ars antiqua [129], traditionally associated with prosody [38]. When started on the second
onset as in [x x . x] it is the Catarete rhythm of the indigenous people of Brazil [130], and is also used
in ragtime music [68]. It is also the amphibrach rhythm (short-long-short) traditionally associated with
prosody [38]. When started on the third onset as in [x . x x] it is a Chingo rhythm used in Mandinka
drumming [74]. It is the archetypal pattern of the Cumbia from Colombia [87], as well as a Calypso rhythm
from Trinidad [53]. It is also a thirteenth century Persian rhythm called Khalif-e-saghil [136], as well as
the trochoid choreic rhythmic pattern of ancient Greece [88]. It is also the dactil rhythm (long-short-short)
traditionally associated with prosody [38]. When started on the silent note (anacrusis) obtaining [. x x x] it
is a popular flamenco rhythm used in the Taranto, the Tiento, the Tango, and the Tanguillo [56]. It is also the
Rumba clapping pattern in flamenco, as well as a second pattern used in the Baiaó rhythm of Brazil [130],
and a rhythmic pattern played on the calung panerus in Indonesian music [57].

E(3,5) = [x . x . x] = (221) is a thirteenth century Indian tala called Caturthaka [117]. When started on
the second onset, it is a thirteenth century Indian tala called Dhenki [118]. it is a thirteenth century Persian
rhythm by the name of Khafif-e-ramal [136], as well as a Rumanian folk-dance rhythm [102], and the Sangsa
Pyǒlgok drum pattern in Korean music [65]. It has also been used as a metric pattern in traditional Chinese
opera [134].

E(3,7) = [x . x . x . .] = (223) is a rhythm found in Greece, Turkestan, Bulgaria, and Northern Sudan [7].
It is also the Indian Tritiya tala [117]. It is the Dáwer turan rhythmic pattern of Turkey [58]. It is the
Ruchenitza rhythm used in a Bulgarian folk-dance [101], as well as the rhythm of the Macedonian dance
Eleno Mome [119]. It is also the rhythmic pattern of Dave Brubeck’s Unsquare Dance [24], and Pink Floyd’s
Money [71]. When started on the second onset as in [x . x . . x .] it is a Serbian rhythm [7]. When started on
the third onset as in [x . . x . x .] it is a rhythmic pattern found in Greece and Turkey [7]. In Yemen it goes
under the name of Daasa al zreir [58]. It is also the rhythm of the Macedonian dance Tropnalo Oro [119],
the rhythm for the Bulgarian Makedonsko Horo dance [133], as well as the meter and clapping pattern of
the tı̄vrā tāl of North Indian music [32], and the the Triputa Tisra tala (of the Sulaadi family) of the music
of South India [94].

E(3,8) = [x . . x . . x .] = (332) is the ubiquitous Cuban tresillo pattern discussed in the preceding [69]; it
is a traditional bluegrass banjo rhythm [71], a characteristic bass ostinato in Jamaican Mento music [82], a
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small-drum Burmese rhythmic pattern [13], as well as the Mai metal-blade pattern of the Aka Pygmies [6].
It is common in West Africa [20] and many other parts of the world such as Greece and Northern Sudan [7].
For example, it is the Kinka timeline found in the music of Togo [1]. It is considered to be one of the most
important rhythms in Renaissance music by Curt Sachs [113] and Willi Apel [5]. Indeed, it goes all the way
back to the Ancient Greeks who called it the dochmiac pattern [20]. In India it is one of the 35 s ūl ādi talas
of Karnatak (Carnatic) music [84]. In more recent times it was popular in ragtime music [68] and jazz [39],
and most recently it is a popular rhythmic timeline used in electronic dance music [26]. When started on the
second onset it is a thirteenth century Indian tala called Mathya-Tiśra [118], [94], a timeline used in eastern
Angola [78], a drum pattern used in Samhyǒn Todǔri Korean instrumental music [65], and a metric pattern
used in traditional Chinese opera [134]. Furthermore, it is also found in Bulgaria and Turkey [6]. When
started on the third onset it is the Nandon Bawaa bell pattern of the Dagarti people of northwest Ghana [62],
and is also found in Namibia and Bulgaria [6]. All three onsets are used as starting points in accent patterns
used in the traditional music of Ghana [99]. When started on the last pulse (anacrusis) as in [. x . . x . . x] it
is a bass-drum and cymbal timeline of Burmese music [13].

E(3,10) = [x . . x . . x . . .] = (334), when started on the second onset, is the metric pattern of several Tuareg
rhythms played on tende drums [135].

E(3,11) = [x . . . x . . . x . .] = (443) is the metric pattern of the savārı̄ tāl of North Indian music [32].

E(3,14) = [x . . . . x . . . . x . . .] = (554) is the clapping pattern of the dhamār tāl of North Indian mu-
sic [32].

E(4,5) = [x x x x .] = (1112) is the rhythmic pattern of the Mirena rhythm of Greece [58]. When started on
the fourth onset, as in [x . x x x] it is the Tik rhythm of Greece [58].

E(4,7) = [x . x . x . x] = (2221) is another Ruchenitza Bulgarian folk-dance rhythm [101]. When started on
the second onset it is the metric pattern played with ching (small cymbals) in Thai songs used to accompany
dance-dramas dating back to the Ayudhia period (1350-1767) [92]. When started on the third onset it is
the Kalamátianos Greek dance rhythm [58], as well as the Shaigie rhythmic pattern of Nubia [58]. When
started on the fourth (last) onset it is the rhythmic pattern of the Dar daasa al mutawasit of Yemen [58].

E(4,9) = [x . x . x . x . .] = (2223) is perhaps best known as the Aksak rhythm of Turkey [23] (also found in
Greece) as well as the rhythm of the Macedonian dance Kambani Bijat Oro [119] and the Bulgarian dance
Daichovo Horo [109]. However, it is also the Indian gajalila tala dating back to the thirteenth century [117].
In Bulgarian music fast tunes with this metric pattern are called Dajchovata whereas slow tunes with this
same pattern are called Samokovskata [108]. It is the rhythmic ostinato of a lullaby discovered by Simha
Arom in south-western Zaı̈re [7]. It is the metric pattern used by Dave Brubeck in his well known piece
Rondo a la Turk [71]. When it is started on the second onset as in [x . x . x . . x .] it is found in Bulgaria
and Serbia [7]. When started on the third onset as in [x . x . . x . x .] it is found in Bulgaria and Greece [7].
It is the rhythm of the Macedonian dance Devojče [119]. Finally, when started on the fourth onset as in
[x . . x . x . x .] it is a rhythm found in Turkey [7], and is the metric pattern of Strawberry Soup by Don
Ellis [71].

An interesting statistical study by Cler [33] revealed that these four rhythms occur with decreasing fre-
quency in the following order: (2223), (3222), (2232), and (2322).

E(4,11) = [x . . x . . x . . x .] = (3332) is the metric pattern of the Dhruva Tisra tala of Southern India [84],
It is also used by Frank Zappa in his piece titled Outside Now [71]. When it is started on the third onset as
in [x . . x . x . . x . .] it is a Serbian rhythmic pattern [7]. We note that according to [94] this is the Dhruva
Tisra tala of Southern India, contradicting [84]. When it is started on the fourth (last) onset it is the Daasa
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al kbiri rhythmic pattern of Yemen [58].

E(4,15) = [x . . . x . . . x . . . x . .] = (4443) is the metric pattern of the pañcam savārı̄ tāl of North Indian
music [32].

E(5,6) = [x x x x x .] = (11112) yields the York-Samai pattern, a popular Arab rhythm [121]. It is also a
handclapping rhythm used in the Al Medēmi songs of Oman [50].

E(5,7) = [x . x x . x x] = (21211) is the Nawakhat pattern, another popular Arab rhythm [121]. In Nubia it
is called the Al Noht rhythm [58].

E(5,8) = [x . x x . x x .] = (21212) is the ubiquitous Cuban cinquillo pattern discussed in the preceding [69],
the Malfuf rhythmic pattern of Egypt [58], and a small-drum pattern of Burmese music [13]. as well as
the Korean Nong P’yǒn drum pattern [65]. It is also the Sangueo drum rhythm of Venezuela [137]. More
recently it is a popular rhythmic timeline used in electronic dance music [26]. When started on the second
pulse (anacrusis) as in [. x x . x x . x] it is a bass-drum pattern used in music from Burma [13]. When started
on the second onset it is a popular Latin-American rhythm used in many styles of music such as the Tango of
Argentina [53], the Merengue of the Dominican Republic [68], and the Calypso of Trinidad [68]. It is also
a popular Middle East rhythm [133] used in the Maksum of Egypt [58], and is a thirteenth century Persian
rhythm called the Al-saghil-al-sani [136]. In addition it is a rhythm used in Sub-Saharan Africa, for example
the Timini of Senegal, and the Adzogbo dance rhythm of Benin [30]. When it is started on the third onset it
is the Müsemmen rhythm of Turkey [16]. When it is started on the fourth onset it is the Kromanti rhythm of
Surinam and the Gabada timeline found in the music of West Africa [1]. When started on the fifth onset it
is a rhythm used in the Cuban habanera as well as ragtime music [68].

E(5,9) = [x . x . x . x . x] = (22221) is a popular Arab rhythm called Agsag-Samai [121], as well as the
Kaarika tala of the Carnatic classical music of India [94]. When started on the second onset, it is a drum pat-
tern used by the Venda in South Africa [105],[19], as well as a Rumanian folk-dance rhythm [102]. It is also
the rhythmic pattern of the Sigaktistos rhythm of Greece [58], and the Samai aktsak rhythm of Turkey [58].
When started on the third onset it is the rhythmic pattern of the Nawahiid rhythm of Turkey [58].

E(5,11) = [x . x . x . x . x . .] = (22223) is the metric pattern of the Sav ār ı̄ tala used in the Hindustani music
of India [84]. It is also a rhythmic pattern used in Bulgaria and Serbia [7]. In Bulgaria is is used in the
Kopanitsa [109]. This metric pattern has been used by Moussorgsky in Pictures at an Exhibition [71].
When started on the third onset it is the rhythm of the Macedonian dance Kalajdzijsko Oro [119], and it
appears in Bulgarian music as well [7].

E(5,12) = [x . . x . x . . x . x .] = (32322) is a common rhythm played in the Central African Republic by the
Aka Pygmies [6], [27], [29]. It is also the Venda clapping pattern of a South African children’s song [101],
and a rhythm pattern used in Macedonia [7]. When started on the second onset it is the Columbia bell pattern
popular in Cuba and West Africa [73]; it is a drumming pattern used in the Chakacha dance of Kenya [12],
and a metric pattern used in Macedonia [7]. When started on the third onset it is the Bemba bell pattern
used in Northern Zimbabwe [101], and the rhythm of the Macedonian dance Ibraim Odža Oro [119]. When
started on the fourth onset it is a clapping pattern used widely in West, Central, and East Africa [66], [2].
It is also the Fume Fume bell pattern popular in West Africa [73], a bell pattern used in Zaire [78], and a
metric pattern used in the former Yugoslavia [7]. Finally, when started on the fifth onset it is the Salve bell
pattern used in the Dominican Republic in a rhythm called Canto de Vela in honor of the Virgin Mary [54],
a rhythmic pattern used by the Tuareg nomadic people of the Sahara [135], as well as the drum rhythmic
pattern of the Moroccan Al Kudám [58].
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E(5,13) = [x . . x . x . . x . x . .] = (32323) is a Macedonian rhythm which is also played by starting it on
the fourth onset as follows: [x . x . . x . . x . x . .] [7].

E(5,16) = [x . . x . . x . . x . . x . . .] = (33334) is a popular rhythmic timeline used in electronic dance mu-
sic [26]. It is also the Bossa-Nova rhythm necklace of Brazil. The actual Bossa-Nova rhythm usually starts
on the third onset as follows: [x . . x . . x . . . x . . x . .] [125]. However, there are other starting places as
well, as for example [x . . x . . x . . x . . . x . .] [14].

E(6,7) = [x x x x x x .] = (111112) is the rhythmic pattern of the Póntakos rhythm of Greece when started
on the sixth (last) onset [58].

E(6,13) = [x . x . x . x . x . x . .] = (222223) is the rhythm of the Macedonian dance Mama Cone pita [119].
When started on the third onset it is the rhythm of the Macedonian dance Postupano Oro [119], as well as
the Krivo Plovdivsko Horo of Bulgaria [109].

E(7,8) = [x x x x x x x .] = (1111112), when started on the seventh (last) onset, is a typical rhythm played
on the Bendir (frame drum), and used in the accompaniment of songs of the Tuareg people of Libya [121].
When started on the eighth (last) pulse (anacrusis), it is a rhythmic pattern played on the calung panerus in
Indonesian music [57].

E(7,9) = [x . x x x . x x x] = (2112111) is the Bazaragana rhythmic pattern of Greece [58].

E(7,10) = [x . x x . x x . x x] = (2121211) is the Lenk fahhte rhythmic pattern of Turkey [58].

E(7,12) = [x . x x . x . x x . x .] = (2122122) is used by the Ashanti people of Ghana in several rhythms [101].
It is used in the Dunumba rhythm of Guinea [60], and by the Akan people of Ghana [98] as a juvenile song
rhythm. It is also a pattern used by the Bemba people of Northern Zimbabwe, where it is either a hand-
clapping pattern, or played by chinking pairs of axe-blades together [66], [67].

When started on the second onset it is a hand-clapping pattern used in Ghana [101], Southern Africa [66],
and Tanzania [132]. It is also played as a secondary bell pattern in the Cuban Bembé rhythm on a low pitched
bell [93].

When started on the third onset it is the most important rhythm in Sub-Saharan Africa. It is worth not-
ing that it is the same pattern as the pitch pattern of the major diatonic scale. This rhythm, denoted by
[x . x . x x . x . x . x], is probably the most (internationally) well known of all the African timelines. In-
deed, the master drummer Desmond K. Tai has called it the Standard Pattern [67], and it also goes by the
name African Signature Tune [1]. In West Africa it is found under various names among the Ewe and Yoruba
peoples [101]. In Ghana it is the timeline played in the Agbekor dance rhythm found along the southern coast
of Ghana [30], in the Agbadza [1], as well as in the Bintin rhythm [93] (see also chapter 22 of Collins [37]).
Among the Ewe this rhythm is also a bell pattern used in the Adzogbo dance music [81]. Furthermore,
among the Ewe people of Ghana there is a unique rhythm, for five bells only, called the Gamamla [73].
The standard pattern is one of the five Gamamla bell patterns played on the Gankogui (a double bell), with
the first note played on the low pitched bell, and the other six on the high pitched bell. The same is done
in the Sogba and Sogo rhythms of the Ewe people. It is played in the Zebola rhythm of the Mongo people
of Congo, and in the Tiriba and Liberté rhythms of Guinea [60]. This bell pattern is equally widespread in
America. In Cuba it is the principal bell pattern played on the guataca or hoe blade in the Batá rhythms [91].
For example, it is used in the Columbia de La Habana, the Bembé, the Chango, the Eleggua, the Imbaloke,
and the Palo. The word palo in Spanish means stick and refers also to the sugar cane. The Palo rhythm was
played during the cutting of sugar cane in Cuba. The pattern is also used in the Guiro, a Cuban folkloric
rhythm [73]. In Haiti it is called the Ibo [93]. In Brazil it goes by the name of Behavento [93]. In North
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America this rhythm is sometimes called the short African bell pattern [49].

When started on the fourth onset it is a rhythm found in Northern Zimbabwe called the Bemba [101] (not
to be confused with the Bembé from Cuba), and played using axe blades [66]. In Cuba it is the bell pattern
of the Sarabanda rhythm associated with the Palo Monte cult [132].

When started on the fifth onset it is the Bondo bell pattern played with metal strips by the Aka pygmies of
Central Africa [6].

When started on the sixth onset it is a bell pattern found in several places in the Caribbean, including
Curaçao, where it is used in a rhythm by the name Tambú [112]. Originally this rhythm was played with
only two instruments: a drum and a metallophone called the heru. Note that the word Tamb ú sounds like
tambor, the Spanish word for drum, and heru sounds like hierro, the Spanish word for iron. This bell pattern
is also common in West Africa and Haiti [101]. In Central Africa it is called the Muselemeka timeline [78],
and in North America it is sometimes called the long African bell pattern [49]. Strangely enough Changuito
uses this pattern in what he calls the Bembé, thus at odds with what everyone else calls Bembé, namely the
pattern [x . x . x x . x . x . x] [104].

When started on the seventh onset it is a Yoruba bell pattern of Nigeria, a Babenzele pattern of Central
Africa, and a Mende pattern of Sierra Leone [123]. Among the Yoruba people it is also called the konkonkolo
pattern [1].

When started on the tenth pulse (anacrusis) it is a palitos pattern used in the Columbia style of Cuban
Rumba dance music [42].

E(7,15) = [x . x . x . x . x . x . x . .] = (2222223) is a Bulgarian rhythm when started on the third onset [7].

E(7,16) = [x . . x . x . x . . x . x . x .] = (3223222) is a Samba rhythm necklace from Brazil. The actual
Samba rhythm is [x . x . . x . x . x . . x . x .] obtained by starting E(7,16) on the last onset, and it coin-
cides with a Macedonian rhythm [7]. When E(7,16) is started on the fifth onset it is a clapping pattern
from Ghana [101]. When it is started on the second onset it is a rhythmic pattern found in the former Yu-
goslavia [7]. Furthermore, when it is started at the midpoint between the third and fourth onsets (anacrusis)
it is the Partido Alto rhythm used in the Pagode style of Samba music in Brazil [97].

E(7,17) = [x . . x . x . . x . x . . x . x .] = (3232322) is a Macedonian rhythm when started on the second
onset [119].

E(7,18) = [x . . x . x . . x . x . . x . x . .] = (3232323) is a Bulgarian rhythmic pattern [7].

E(8,17) = [x . x . x . x . x . x . x . x . .] = (22222223) is a Bulgarian rhythmic pattern which is also started
on the fifth onset [7].

E(8,19) = [x . . x . x . x . . x . x . x . . x .] = (32232232) is a Bulgarian rhythmic pattern when started on the
second onset [7].

E(9,13) = [x . x x . x x . x x . x x] = (212121211), when started on the last onset, is the Bohlen-Pierce
scale [76].

E(9,14) = [x . x x . x x . x x . x x .] = (212121212), when started on the second onset, is the rhythmic pat-
tern of the Tsofyan rhythm of Algeria [58].

E(9,16) = [x . x x . x . x . x x . x . x .] = (212221222) is a rhythm necklace used in the Central African Re-
public [6]. When started on the first onset it is a palitos rhythm used in the Cuban Rumba [42], [15]. When
it is started on the second onset it is a bell pattern of the Luba people of Congo [103]. When it is started on
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the fourth onset it is a rhythm played in West and Central Africa [69], as well as a cow-bell pattern in the
Brazilian Samba [120]. When the referential beat is the seventh onset it is the Kachacha timeline used in
Central Africa [78]. When it is started on the penultimate onset it is the bell pattern of the Ngbaka-Maibo
rhythms of the Central African Republic [6].

E(9,20) = [x . . x . x . x . x . . x . x . x . x .] = (322232222), when started on the last onset, is Balzano’s 20-
fold scale [76].

E(9,22) = [x . . x . x . . x . x . . x . x . . x . x .] = (323232322) is a Bulgarian rhythmic pattern when started
on the second onset [7].

E(9,23) = [x . . x . x . . x . x . . x . x . . x . x . .] = (323232323) is a Bulgarian rhythm [7].

E(11,12) = [x x x x x x x x x x x .] = (11111111112), when started on the second onset, is the drum pattern
of the Rahmāni (a cylindrical double-headed drum) used in the Sōt silām dance from Mirbāt in the South of
Oman [50].

E(11,20) = [x . x x . x . x . x . x x . x . x . x .] = (21222212222), when started on the ninth onset, is the
eleven-note scale considered to be the correct analogue of the seven-note diatonic scale in the twelve-tone
system [139].

E(11,24) = [x . . x . x . x . x . x . . x . x . x . x . x .] = (32222322222) is a rhythm necklace of the Aka Pyg-
mies of Central Africa [6]. It is usually started on the seventh onset. When started on the second onset it is
a Bulgarian rhythm [7].

E(13,24) = [x . x x . x . x . x . x . x x . x . x . x . x .] = (2122222122222) is another rhythm necklace of the
Aka Pygmies of the upper Sangha [6]. When started on the penultimate (12-th) onset it is the Bobangi
metal-blade pattern used by the Aka Pygmies.

E(15,34) = [x . . x . x . x . x . . x . x . x . x . . x . x . x . x . . x . x .] = (322232223222322) is a Bulgarian
rhythmic pattern when started on the second to last onset [7].

E(19,30) = [x . x x . x . x x . x x . x x . x . x x . x x . x x . x . x] = (2122121212212121221), when started
on the seventeenth onset, is the nineteen-note scale generated by a group-theoretic method [139].

5. Aksak Rhythms

Euclidean rhythms are closely related to a family of rhythms known as aksak rhythms, which have been
studied from the combinatorial point of view for some time now [23], [33], [7]. B éla Bart ók [11] and
Constantin Brăiloiu [23], respectively, have used the terms Bulgarian rhythm and aksak to refer to those
meters which use units of durations 2 and 3, and no other durations. Furthermore, the rhythm or meter must
contain at least one duration of length 2 and at least one duration of length 3. Arom [7] referes to these
durations as binary cells and ternary cells, respectively.

Arom [7] has generated an inventory of all the theoretically possible aksak rhythms for values of n ranging
from 5 to 29, as well as a list of those that are actually used in traditional world music. He has also proposed
a classification of these rhythms into several classes, based on structural and numeric properties. Three of
his classes are considered here: authentic-aksaks, quasi-aksaks, and pseudo-aksaks.
• An aksak rhythm is authentic if n is a prime number.
• An aksak rhythm is quasi-aksak if n is an odd number that is not prime.
• An aksak rhythm is pseudo-aksak if n is an even number.
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A quick perusal of the Euclidean rhythms listed in the preceding reveals that aksak rhythms are well
represented. Indeed, all three of Arom’s classes (authentic, quasi-aksak, and pseudo-aksak) make their ap-
pearance. There is a simple characterization of those Euclidean rhythms that are aksak. From the iterative
subtraction algorithm of Bjorklund it follows that if n = 2k all cells are binary (duration 2). Similarly, if
n = 3k all cells are ternary (duration 3). Therefore, if we want to ensure that the Euclidean rhythm contains
both binary and ternary cells, and no other durations, it follows that n must fall in between. More precisely:

Observation 1 A Euclidean rhythm is aksak provided that 2k < n < 3k.

Of course, not all aksak rhythms are Euclidean. Consider the Bulgarian rhythm with interval sequence
(3322) [7], which is also the metric pattern of Indian Lady by Don Ellis [71]. Here k = 4 and n = 10, and
E(4,10) = [x . . x . x . . x .] or (3232), a periodic rhythm.

The following Euclidean rhythms are authentic aksak:

E(2,5) = [x . x . .] = (23) (classical music, jazz, Greece, Macedonia, Namibia, Persia, Rwanda), (authentic
aksak).
E(3,7) = [x . x . x . .] = (223) (Bulgaria, Greece, Sudan, Turkestan), (authentic aksak).
E(4,11) = [x . . x . . x . . x .] = (3332) (Southern India rhythm), (Serbian necklace), (authentic aksak).
E(5,11) = [x . x . x . x . x . .] = (22223) (classical music, Bulgaria, Northern India, Serbia), (authentic ak-
sak).
E(5,13) = [x . . x . x . . x . x . .] = (32323) (Macedonia), (authentic aksak).
E(6,13) = [x . x . x . x . x . x . .] = (222223) (Macedonia), (authentic aksak).
E(7,17) = [x . . x . x . . x . x . . x . x .] = (3232322) (Macedonian necklace), (authentic aksak).
E(8,17) = [x . x . x . x . x . x . x . x . .] = (22222223) (Bulgaria), (authentic aksak).
E(8,19) = [x . . x . x . x . . x . x . x . . x .] = (32232232) (Bulgaria), (authentic aksak).
E(9,23) = [x . . x . x . . x . x . . x . x . . x . x . .] = (323232323) (Bulgaria), (authentic aksak).

The following Euclidean rhythms are quasi-aksak:

E(4,9) = [x . x . x . x . .] = (2223) (Greece, Macedonia, Turkey, Zaı̈re), (quasi-aksak).
E(7,15) = [x . x . x . x . x . x . x . .] = (2222223) (Bulgarian necklace), (quasi-aksak).

The following Euclidean rhythms are pseudo-aksak:

E(3,8) = [x . . x . . x .] = (332) (Central Africa, Greece, India, Latin America, West Africa, Sudan), (pseudo-
aksak).
E(5,12) = [x . . x . x . . x . x .] = (32322) (Macedonia, South Africa), (pseudo-aksak).
E(7,16) = [x . . x . x . x . . x . x . x .] = (3223222) (Brazilian, Macedonian, West African necklaces), (pseudo-
aksak).
E(7,18) = [x . . x . x . . x . x . . x . x . .] = (3232323) (Bulgaria), (pseudo-aksak).
E(9,22) = [x . . x . x . . x . x . . x . x . . x . x .] = (323232322) (Bulgarian necklace), (pseudo-aksak).
E(11,24) = [x . . x . x . x . x . x . . x . x . x . x . x .] = (32222322222) (Central African and Bulgarian neck-
laces), (pseudo-aksak).
E(15,34) = [x . . x . x . x . x . . x . x . x . x . . x . x . x . x . . x . x .] = (322232223222322) (Bulgarian neck-
lace), (pseudo-aksak).
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6. Calculating Leap Years in Calendar Design

For thousands of years human beings have observed and measured the time it takes between two consec-
utive sunrises, between two consecutive full moons, and between two consecutive spring seasons. These
measurements inspired different cultures to design calendars in different ways [9], [107]. Let Ty denote the
duration of one revolution of the earth around the sun, more commonly known as a year. Let Td denote the
duration of one complete rotation of the earth, more commonly known as a day. The values of Ty and Td

are of course continually changing, since the universe is continually reconfiguring itself. However the ratio
Ty/Td is approximately 365.242199..... It is very convenient therefore to make a year last 365 days. The
problem that arizes both for history and for predictions of the future, is that after a while the 0.242199.....
starts to contribute to a large error. One simple solution is to add one extra day every 4 years: the so-called
Julian calendar. A day with one extra day is called a leap year. But this assumes that a year is 365.25 days
long, which is still slightly greater than 365.242199...... So now we have an error in the opposite direction
albeit smaller. One solution to this problem is the Gregorian calendar [115]. The Gregorian calendar defines
a leap year as one divisible by 4, except not those divisible by 100, except not those divisible by 400. With
this rule a year becomes 365 + 1/4 - 1/100 + 1/400 = 365.2425 days long, not a bad approximation. Another
solution is provided by the Jewish calendar which uses the idea of cycles [9]. Here a regular year has 12
months and a leap year has 13 months. The cycle has 19 years including 7 leap years. The 7 leap years
must be distributed as evenly as possible in the cycle of 19. The cycle is assumed to start with Creation as
year 1. Then, when the year number is divided by 19, the remainder indicates the resulting position in the
cycle. The leap years are 3, 6, 8, 11, 14, 17, and 19. For example, the year 5765 = 303 × 19 + 8 and
so is a leap year. The year 5766, which begins at sundown on the Gregorian date of October 3, 2005, is
5766 = 303 × 19 + 9, and is therefore not a leap year. Applying Bjorklund’s algorithm to the integers 7
and 19 yields E(7,19) = [x . . x . x . . x . . x . x . . x . .]. If we start this rhythm at the 7th pulse we obtain
the pattern [. . x . . x . x . . x . . x . . x . x], which describes precisely the leap year pattern 3, 6, 8, 11, 14,
17, and 19 of the Jewish calendar. Therefore the leap-year pattern of the Jewish calendar is a Euclidean
necklace.

The Islamic calendar is based on the time between two successive new moons (lunations), and one year is
defined as twelve lunations [107]. This method gives approximately 10632 days every 30 years, in which 11
leap years are needed. The common approximations used in the Islamic calendar put leap years at positions
2, 5, 7, 10, 13, 16, 18, 21, 24, 26, and 29 in the cycle. Applying Bjorklund’s algorithm to the integers 11 and
30 yields E(11,30) = [x . . x . x . . x . . x . . x . x . . x . . x . . x . x . .]. If we start this rhythm on the 11th
pulse we obtain the pattern [. x . . x . x . . x . . x . . x . x . . x . . x . x . . x .] which describes precisely the
leap year pattern 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, and 29 of the Islamic calendar. Therefore the leap-year
pattern of the Islamic calendar also is a Euclidean necklace.

7. Drawing Digital Straight Lines

Euclidean rhythms and necklace patterns also appear in the computer graphics literature on drawing digital
straight lines [72]. The problem here consists of efficiently converting a mathematical straight line segment
defined by the x and y integer coordinates of its endpoints, to an ordered sequence of pixels that most
faithfully represents the given straight line segment. Figure 3 illustrates an example of a digital straight line
(shaded pixels) determined by the two given endpoints p and q. All the pixels intersected by by the segment
(p, q) are shaded. If we follow either the lower or upper boundary of the shaded pixels from left to right
we obtain the interval sequences (43333) or (33334), respectively. Note that the upper pattern corresponds
to E(5,16), a Bossa-Nova variant. Indeed, Harris and Reingold [61] show that the well-known Bresenham
algorithm [21] for drawing digital straight lines on a computer screen is implemented by the Euclidean
Algorithm.
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Figure 3: The shaded pixels form a digital straight line determined by the points p and q.
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Figure 4: Two right-rotations of the Bemb é string: (a) the Bemb é, (b) rotation by one unit, (c) rotation by
seven units.

8. Sturmian Words, Markoff Numbers, and Two-distance Sequences

The Euclidean rhythms considered here are known by many different names in several areas of math-
ematics. In the algebraic combinatorics of words they are called Sturmian words [85]. They are called
two-distance sequences by Lunnon and Pleasants [86], and Beatty sequences by de Bruijn [43], [44]. See
also the geometry of Markoff numbers [114].

9. Euclidean Strings

In the study of the combinatorics of words and sequences, there exists a family of strings called Euclidean
strings [51]. In this section we explore the relationship between Euclidean strings and Euclidean rhythms.
We use the same terminology and notation introduced in [51].

Let P = (p0, p1, ..., pn−1) denote a string of non-negative integers. Let ρ(P ) denote the right rotation of
P by one position, i.e., ρ(P ) = (pn−1, p0, p1, ..., pn−2), and let ρd(P ) denote the right rotation of P by d
positions. If P is considered as a cyclic string, a right rotation corresponds to a clockwise rotation. Figure 4
illustrates the ρ(P ) operator with P equal to the Bembé bell-pattern of West Africa [126]. Figure 4 (a) shows
the Bembé bell-pattern, Figure 4 (b) shows ρ(P ), which is a hand-clapping pattern from West Africa [101],
and Figure 4 (c) shows ρ7(P ), which is the Tambú rhythm of Curaçao [112].

Ellis et al., [51] define a string P = (p0, p1, ..., pn−1) as a Euclidean string if increasing p0 by one, and
decreasing pn−1 by one, yields a new string, denoted by τ(P ), that is a rotation of P , i.e., P and τ(P )
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are instances of one and the same necklace. Therefore, if we represent rhythms as binary sequences, Eu-
clidean rhythms cannot be Euclidean strings because by virtue of the Euclidean algorithm employed, all
Euclidean rhythms begin with a ‘one’. Increasing p0 by one makes it a ‘two’, which is not a binary string.
Therefore, to explore the relationship between Euclidean strings and Euclidean rhythms, we will repre-
sent rhythms by their adjacent-inter-onset-duration-interval-vectors, (interval-vectors for short) which are
also strings of non-negative integers. As an example, consider the Aksak rhythm of Turkey [23] given by
E(4,9) = [x . x . x . x . .]. In interval-vector notation we have that E(4,9) = (2223). Now τ(2223) = (3222),
which is a rotation of E(4,9), and thus (2223) is a Euclidean string. Indeed, for P=E(4,9), τ(P ) =
ρ3(P ). As a second example. consider the West African clapping-pattern shown in Figure 4 (b) given
by P=(1221222). We have that τ(P ) = (2221221) = ρ6(P ), the pattern shown in Figure 4 (c), which also
happens to be the mirror image of P about the (0, 6) axis. Therefore P is a Euclidean string. However, note
that P is not a Euclidean rhythm. Nevertheless, P is a rotation of the Euclidean rhythm E(7,12)=(2122122).

Ellis et al., [51] have many beautiful results about Euclidean strings. They show that Euclidean strings
exist if, and only if, n and (p0 + p1 + ... + pn−1) are relatively prime numbers, and that when they exist
they are unique. They also show how to construct Euclidean strings using an algorithm that has the same
structure as the Euclidean algorithm. In addition they relate Euclidean strings to many other families of
sequences studied in the combinatorics of words [3], [85].

Note that in the operational definition of Euclidean strings increasing p0 by one, and decreasing pn−1 by
one in the interval vector representation of a rhythm is tantamount to performing a swap operation between
the last and first pulses (exchanging a one and a zero) of the rhythm expressed in binary (or box) notation.
In this setting, obtaining a rotation of a rhythm in the definition of Euclidean strings is a special case of the
notion of P-cycles studied in music theory [76]. In a P-cycle the swap operation, when applied repeatedly
on a suitable onset of a rhythm, will generate all rotations of the rhythm.

Let R(P ) denote the reversal (or mirror image) of P , i.e., R(P ) = (pn−1, pn−2, ..., p1, p0). For exam-
ple, for the Aksak rhythm where P = (2223), we obtain that R(P ) = (3222), i.e., R(P ) implies playing
the rhythm P backwards by starting at the same onset. Now we may determine which of the Euclidean
rhythms used in world music listed in the preceding, are Euclidean strings or reverse Euclidean strings.
The length of a Euclidean string is defined as the number of integers it has. This translates in the rhythm
domain to the number of onsets a rhythm contains. Furthermore, strings of length one are Euclidean strings,
trivially. Therefore all the trivial Euclidean rhythms with only one onset, such as E(1,2) = [x .] = (2),
E(1,3) = [x . .] = (3), and E(1,4) = [x . . .] = (4), etc., are both Euclidean strings as well as reverse Eu-
clidean strings. In the lists that follow the Euclidean rhythms are shown in their box-notation format as well
as in the interval-vector representation. The styles of music that use these rhythms is also included. Finally,
if only a rotated version of the Euclidean rhythm is played, then it is still included in the list but referred to
as a necklace.

The following Euclidean rhythms are Euclidean strings:

E(2,3) = [x x .] = (12) (West Africa, Latin America, Nubia, Northern Canada).
E(2,5) = [x . x . .] = (23) (classical music, jazz, Greece, Macedonia, Namibia, Persia, Rwanda), (authentic
aksak).
E(2,7) = [x . . x . . .] = (34) (classical music).
E(3,4) = [x x x .] = (112) (Brazil, Bali rhythms), (Colombia, Greece, Spain, Persia, Trinidad necklaces).
E(3,7) = [x . x . x . .] = (223) (Bulgaria, Greece, Sudan, Turkestan), (authentic aksak).
E(3,10) = [x . . x . . x . . .] = (334) (Tuareg necklace).
E(4,5) = [x x x x .] = (1112) (Greece).
E(4,9) = [x . x . x . x . .] = (2223) (Greece, Macedonia, Turkey, Zaı̈re), (quasi-aksak).
E(5,6) = [x x x x x .] = (11112) (Arab).
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E(5,11) = [x . x . x . x . x . .] = (22223) (classical music, Bulgaria, Northern India, Serbia), (authentic ak-
sak).
E(5,16) = [x . . x . . x . . x . . x . . . .] = (33334) (Brazilian, West African necklaces).
E(6,7) = [x x x x x x .] = (111112) (Greek necklace)
E(6,13) = [x . x . x . x . x . x . .] = (222223) (Macedonia), (authentic aksak).
E(7,8) = [x x x x x x x .] = (1111112) (Libyan necklace).
E(7,15) = [x . x . x . x . x . x . x . .] = (2222223) (Bulgarian necklace), (quasi-aksak).
E(8,17) = [x . x . x . x . x . x . x . x . .] = (22222223) (Bulgaria), (authentic aksak).

The following Euclidean rhythms are reverse Euclidean strings:

E(3,5) = [x . x . x] = (221) (India), (Korean, Rumanian, Persian necklaces).
E(3,8) = [x . . x . . x .] = (332) (Central Africa, Greece, India, Latin America, West Africa, Sudan), (pseudo-
aksak).
E(3,11) = [x . . . x . . . x . .] = (443) (North India).
E(3,14) = [x . . . . x . . . . x . . .] = (554) (North India).
E(4,7) = [x . x . x . x] = (2221) (Bulgaria).
E(4,11) = [x . . x . . x . . x .] = (3332) (Southern India rhythm), (Serbian necklace), (authentic aksak).
E(4,15) = [x . . . x . . . x . . . x . .] = (4443) (North India).
E(5,7) = [x . x x . x x] = (21211) (Arab).
E(5,9) = [x . x . x . x . x] = (22221) (Arab).
E(5,12) = [x . . x . x . . x . x .] = (32322) (Macedonia, South Africa), (pseudo-aksak).
E(7,9) = [x . x x x . x x x] = (2112111) (Greece).
E(7,10) = [x . x x . x x . x x] = (2121211) (Turkey).
E(7,16) = [x . . x . x . x . . x . x . x .] = (3223222) (Brazilian, Macedonian, West African necklaces), (pseudo-
aksak).
E(7,17) = [x . . x . x . . x . x . . x . x .] = (3232322) (Macedonian necklace), (authentic aksak).
E(9,22) = [x . . x . x . . x . x . . x . x . . x . x .] = (323232322) (Bulgarian necklace), (pseudo-aksak).
E(11,12) = [x . x x x x x x x x x x] = (11111111112) (Oman necklace).
E(11,24) = [x . . x . x . x . x . x . . x . x . x . x . x .] = (32222322222) (Central African and Bulgarian neck-
laces), (pseudo-aksak).

The following Euclidean rhythms are neither Euclidean nor reverse Euclidean strings:

E(5,8) = [x . x x . x x .] = (21212) (Egypt, Korea, Latin America, West Africa).
E(5,13) = [x . . x . x . . x . x . .] = (32323) (Macedonia), (authentic aksak).
E(7,12) = [x . x x . x . x x . x .] = (2122122) (West Africa), (Central African, Nigerian, Sierra Leone neck-
laces).
E(7,18) = [x . . x . x . . x . x . . x . x . .] = (3232323) (Bulgaria), (pseudo-aksak).
E(8,19) = [x . . x . x . x . . x . x . x . . x .] = (32232232) (Bulgaria), (authentic aksak).
E(9,14) = [x . x x . x x . x x . x x .] = (212121212) (Algerian necklace).
E(9,16) = [x . x x . x . x . x x . x . x .] = (212221222) (West and Central African, and Brazilian necklaces).
E(9,23) = [x . . x . x . . x . x . . x . x . . x . x . .] = (323232323) (Bulgaria), (authentic aksak).
E(13,24) = [x . x x . x . x . x . x . x x . x . x . x . x .] = (2122222122222) (Central African necklace).
E(15,34) = [x . . x . x . x . x . . x . x . x . x . . x . x . x . x . . x . x .] = (322232223222322) (Bulgarian neck-
lace), (pseudo-aksak).
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10. Concluding Remarks

A family of musical rhythms is described, dubbed Euclidean rhythms, which are obtained by using Bjork-
lund’s sequence generation algorithm, which has the same structure as the Euclidean algorithm.

As mentioned in the introduction, during the past thirty years a number of researchers have approached
the study of rhythmic timelines using generative methods, notably Kubik [77], Locke [80], Pressing [101],
Rahn [105], [106], Anku [4], Toussaint [125], [126], [127], [128], and Agawu [1]. Agawu [1] provides an
in-depth analysis of these methods applied to African timelines. On the other hand, the Euclidean algorithm
exposed here is a mathematical model of rhythmic timeline generation that applies to music from all over
the world. A notable exception are the Indian talas, which tend to have longer timelines than other music
(as many as 128 beats per cycle), and therefore use a greater variety of duration intervals, thus violating
the maximal evenness of Euclidean rhythms. A rhythm is said to be maximally even if its representation
on the circle of time maximizes the sum of its pairwise inter-onset straight line distances [34], [35]. For
example, of the 35 Sulaadi talas only 4 are maximally even, and of the 108 Astottara Sata talas only 9 are
maximally even [94]. It has been shown by Demaine et al., [45] that a rhythm is maximally even if and
only if it is Euclidean, or a rotation of a Euclidean rhythm. Euclidean (maximally even) rhythms have many
interesting mathematical and musical properties. For example, the complement of a Euclidean rhythm is
also Euclidean [124].

The three groups of Euclidean rhythms listed in the preceding section reveal a tantalizing pattern. The
Euclidean rhythms that are favoured in classical music and jazz are also Euclidean strings (the first group).
Furthermore, this group is not popular in African music. The Euclidean rhythms that are neither Euclidean
strings nor reverse Euclidean strings (group three) fall into two categories: those consisting of interval
lengths ‘1’ and ‘2’, and those consisting of interval lengths ‘2’ and ‘3’. The latter group is used only
in Bulgaria, and the former is used in Africa. Finally, the Euclidean rhythms that are reverse Euclidean
strings (the second group) appear to have a much wider appeal. Finding musicological explanations for the
preferences apparent in these mathematical properties raizes interesting ethnomusicological questions.
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