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Abstract. Previous experiments with low dimensional data sets have shown 
that Gabriel graph methods for instance-based learning are among the best ma-
chine learning algorithms for pattern classification applications. However, as 
the dimensionality of the data grows large, all data points in the training set tend 
to become Gabriel neighbors of each other, bringing the efficacy of this method 
into question. Indeed, it has been conjectured that for high-dimensional data, 
proximity graph methods that use sparser graphs, such as relative neighbor 
graphs (RNG) and minimum spanning trees (MST) would have to be employed 
in order to maintain their privileged status. Here the performance of proximity 
graph methods, in instance-based learning, that employ Gabriel graphs, relative 
neighborhood graphs, and minimum spanning trees, are compared experimen-
tally on high-dimensional data sets. These methods are also compared empiri-
cally against the traditional k-NN rule and support vector machines (SVMs), the 
leading competitors of proximity graph methods. 
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1 Introduction 

Instance-based learning algorithms are among the most attractive methods used today 
in many applications of machine learning to a wide variety of pattern recognition 
problems. The quintessential instance-based learning algorithm is the well-known k-
Nearest Neighbor (k-NN) rule, whereby a new unknown pattern is classified into the 
class most heavily represented among its k nearest neighbors present in the training 
set. Two of the most attractive features of this method are immediately evident: (1) its 
simplicity, and (2) the fact that no knowledge is required about the underlying distri-
bution of the training data. Nevertheless, unanswered questions about the rule’s per-
formance left doubts among its potential users. In 1967 Cover and Hart [4] showed 
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that, under some continuity assumptions the number n of patterns in the training data 
becomes infinite, the asymptotic probability of misclassification of the 1-NN rule is 
at most twice the Bayes error. Furthermore Devroye showed that for all distributions, 
the asymptotic probability of misclassification of the k-NN rule approaches the Bayes 
error provided that k and n approach infinity, and the ratio k/n approaches zero [7-8]. 
These constraints are satisfied for example when k = n1/2. Thus the ultimate classifica-
tory power of the k-NN rule was finally firmly established. Despite this great news, 
resistance to using k-NN rules in practice persisted, fueled by several misconceptions, 
one being that all n points must be stored, thus requiring too much storage. It was 
pointed out in 1979 that the decision boundary of the 1-NN rule remains unchanged 
when the data points surrounded by Voronoi neighbors of the same class are dis-
carded (in parallel) [23-24]. A second false claim frequently encountered is that in 
order to determine the nearest neighbor of an unknown query point X, the distances 
between X and all the n points in the training data must be computed. Today there 
exist a plethora of methods for avoiding such exhaustive search. 

The above-mentioned false claims notwithstanding, in practice it is desired to re-
duce the size of the training set, or the concomitant memory of the data structure into 
which the training set is embedded, as much as possible, while maintaining a low 
probability of misclassification. Therefore much research has been devoted to this 
topic, yielding a cornucopia of different approaches [20]. One elegant and promising 
approach generalizes Voronoi (or Delaunay triangulation) editing [23] to incorporate 
more general proximity graphs [24]. In the latter approach, for any definition of prox-
imity, data points with the property that all their proximity-graph neighbors belong to 
the same class are discarded (in parallel). Previous experiments with low-dimensional 
data sets have shown that proximity graph methods that used the Gabriel graph were 
among the best machine learning algorithms for pattern classification applications [2-
3, 24, 28]. However, as the dimensionality of the data grows large, all data points in 
the training set tend to become Gabriel neighbors of each other, effectively forsaking 
the notion of proximity, and bringing the efficacy of this method into question [14]. 
We conjectured that for high-dimensional data, methods that use sparser graphs, such 
as relative neighbor graphs (RNG) or minimum spanning trees (MST), would yield 
better results by avoiding proximity-graphs with too many edges. In this paper we 
conduct experiments that confirm this hypothesis. 

Here the performance of various proximity graph methods for instance-based 
learning is compared experimentally using Gabriel graphs, relative neighborhood 
graphs, and minimum spanning trees, on a group of high-dimensional data sets. These 
three graphs vary considerably in the number of neighbors they admit, thus allowing 
us to test the hypothesis. For completeness, these methods are also compared empiri-
cally against the traditional k-NN rule that does not condense the data, and the opti-
mization-based support vector machine (SVM), a leading competitor of proximity 
graph methods that has also enjoyed widespread success in practice. 
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2 Proximity Graphs 

Given a set S of n ≥ 3 points in the plane, two points a, b are Gabriel neighbors if all 
other points in S lie in the exterior of the smallest circle that contains a and b, i.e., the 
circle with diameter determined by points a and b. The Gabriel graph of S is obtained 
by joining all pairs of points with an edge provided they are Gabriel neighbors of each 
other. Figure 1 (left) shows the Gabriel graph of a set of 42 points in the plane. Note 
that the graph is adaptive in the sense that the number of edges it contains (or alter-
nately the number of bounded regions it encloses) may be large or small relative to 
the number of points in the set. This property allows proximity-graph decision rules to 
automatically vary the number and spatial location of the neighbors they utilize, as a 
function of the local density and structure of the data. The Gabriel graph in Figure 1 
(left) contains 27 bounded regions. 

             
Fig. 1. The Gabriel graph (left) and the MST (right) 

The properties of the Gabriel graph most relevant to the present research are that 
every minimum spanning tree (MST) of a set of points S is a sub-graph of the Gabriel 
graph of S, and that the Gabriel graph of S is a sub-graph of the Delaunay triangula-
tion of S [21]. Devroye [6] has shown that for almost all probability density functions, 
as the number of points grows to infinity, the expected number of edges in the Gabriel 
graph approaches 2d-1n, where d is the dimensionality of the space.  

The minimum spanning tree of a set of points is the sparsest connected proximity 
graph in terms of the number of edges it contains, whereas the Delaunay triangulation 
is much denser. Figure 1 (right) shows the MST for a similar set of points. Naturally, 
since this proximity graph is a tree it contains no bounded regions whatsoever. Figure 
2 (left) shows the Delaunay triangulation of a similar set of points along with its dual, 
the Voronoi diagram. 

               
Fig. 2. The Delaunay triangulation with Voronoi diagram (left) and the RNG (right) 
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Toussaint [21] defined the relative neighborhood graph (RNG) of a set S of n 
points as the graph obtained by adding an edge between every pair of points a and b 
provided that d(a, b) ≤ max [d(a, x), d(b, x)] for all x in S. The RNG is generally (for 
random configurations of points) much sparser than the Gabriel graph. Figure 2 
(right) shows the RNG of 42 points arranged much like the points in Figure 1, but 
here the number of bounded regions is only 6. All four graphs constitute snapshots of 
a continuum of proximity graphs called !-skeletons that vary from the dense Delau-
nay triangulation to the sparse minimum spanning tree, [15]. These proximity graphs 
have been applied to a wide variety of problems in different fields [14]. 

3 Reducing the Size of the Training Data 

The first published algorithm for reducing the size of the training data for use in near-
est neighbor decision rules was the condensed nearest neighbor rule [12]. The purpose 
of this algorithm was to discard as much data as possible by removing data points that 
were “far” from the decision boundary, in a heuristic fashion, without knowing pre-
cisely where the decision boundary lay. However, although the condensed training set 
discarded many points (one of its best features), and obtained zero misclassification 
errors when classifying the original full training set, a property referred to as training-
set consistency, the performance on separate testing data was modest. 

In 1972, Wilson [26] proposed an algorithm that did the exact opposite of Hart’s 
algorithm, by discarding the data that were “near” the decision boundary, also in a 
heuristic manner. This had the effect of “smoothing” the decision boundary. In the 
pre-processing stage of Wilson’s edited nearest neighbor rule, all the data are first 
classified using the k-NN rule in a leave-one-out setting, and all the data misclassified 
are then discarded. In the decision stage new data are classified using the 1-NN rule 
with the resulting (smaller) edited set. As would be expected, although this algorithm 
does not remove much of the training data, its redeeming feature is that for a large 
class of problems the asymptotic performance of the edited nearest neighbor rule is 
difficult to differentiate from that of the optimal Bayes decision rule. In effect, Wil-
son’s editing scheme makes the 1-NN rule perform like the k-NN rule with the optim-
al value of k. This edited nearest neighbor decision rule has come to be known in the 
literature as Wilson editing, and has left a lasting impact on subsequent instance-based 
learning algorithms. Indeed, almost all algorithms proposed since 1972 use Wilson 
editing as one of their initial steps, with the primary goal of lowering the final overall 
probability of misclassification. 

One of the best algorithms in the literature for considerably reducing the size of the 
training set without degrading its classification performance is the iterative case-
filtering algorithm (ICF) of Brighton and Mellish [1]. This algorithm consists of a 
two-step procedure for discarding data. The first step is Wilson editing, in which the 
k-NN rule is used to classify the data, in this case with k = 3. The second step is an 
original condensing step that makes use of novel notions of reachable sets and cover-
age sets. New query points are then classified using the 1-NN rule with the resulting 
condensed set. 
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An omnipresent concern with the k-NN rule has been the selection of the value of k 
that will yield the lowest probability of misclassification for the problem at hand. 
Furthermore, in the traditional k-NN rule, once the value of k has been chosen it re-
mains fixed for all subsequent classification decisions. Therefore, in this setting the k-
NN rule does not adapt its value of k to either the local density or the spatial distribu-
tion of the neighbors of a query point. Proximity graphs provide an approach that not 
only takes care of these issues, but does so in a fully automatic way without having to 
tune any parameters. Instead of taking a majority vote from among the k nearest 
neighbors of a query point X, the proximity graph decision rule takes a majority vote 
from among all the graph neighbors of X determined by a suitable proximity graph of 
the training data. As a concrete example, consider the Delaunay triangulation of the 
set of points in Figure 2 (left). It is evident that the number of Delaunay neighbors of 
a point varies greatly depending on the point’s location. The leftmost point for exam-
ple has only three neighbors, whereas the point in the center of the circularly arranged 
group of points has thirteen neighbors. Similarly, the point in the upper right has ele-
ven Delaunay neighbors, and furthermore these eleven do not even correspond to the 
eleven nearest neighbors. Proximity graph methods may then replace the k-NN rule in 
Wilson editing, thus dispensing with the problem of determining a suitable value of k. 

Proximity graph methods may also be used for discarding points that are far from 
the decision boundary, in condensing algorithms. The first condensing algorithm that 
used proximity graphs employed the Delaunay triangulation [23]. In this algorithm a 
data point X is first marked if all its Delaunay neighbors belong to the same class as 
that of X. Then all marked points are deleted. The strength of this condensing method 
lies in the fact that the 1-NN decision boundary of the original full training set is not 
changed after the data are deleted, a property referred to as decision-boundary consis-
tency. All the discarded data are completely redundant and hence do not play a role in 
determining the decision boundary of the original larger training set. Initial experi-
ments with Delaunay graph condensing, performed with cervical cancer data collected 
at McGill University that consisted of two thousand cells in four dimensions [18], 
revealed that the amount of data discarded was not particularly impressive [24]. An 
effect of the curse-of-dimensionality is that even in a space of only four dimensions, 
two thousand points are sufficiently scattered to allow points to have many Delaunay 
neighbors. Clearly, a point with a greater number of neighbors has a higher probabili-
ty that one of its neighbors belongs to a different class, especially if it lies near the 
decision boundary, and thus a smaller probability that it will be discarded. This obser-
vation prompted the application of proximity graphs that have fewer edges than  
the Delaunay triangulation. Furthermore, in order to minimize the distortion of the 
decision boundary of the entire set it was advocated that the proximity graphs em-
ployed should be sub-graphs of the Delaunay triangulation, such as Gabriel graphs 
and relative neighborhood graphs [24]. It was found experimentally that Gabriel 
graphs discarded a significantly greater number of data points without degrading the 
performance, whereas relative neighbor graphs (RNGs) significantly increased the 
probability of misclassification. For this reason minimum spanning trees (which are 
sparser than RNGs) were not even tried in those experiments. 
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The application of Gabriel and Relative Neighborhood graphs to editing as well as 
condensing methods was experimentally investigated using two data sets (Image data 
and Vowel data) by Sánchez, Pla, and Ferri [22]. For the Image data the RNG gave 
the best recognition accuracy if only editing was used, but the Gabriel graph did best 
when editing was followed by condensing. On the other hand, with the Vowel data 
the simple 1-NN rule gave the highest accuracy. The data sets used in these experi-
ments were composed of low-dimensional feature vectors: 5 for the Vowel data, and 2 
for the Image data. It is thus difficult, from this study, to make conclusions about 
other data sets in general, and high-dimensional data in particular. 

The promising results obtained independently by two very different approaches, 
namely, the iterative case-filtering (ICF) algorithm of Brighton and Mellish [1] and 
the Gabriel graph methods [22, 24], provided sufficient motivation to concatenate 
these approaches into a hybrid algorithm called GSASH that honed the best of both 
worlds [2-3]. GSASH employed Wilson-type editing but using a Gabriel decision 
rule, followed by Gabriel neighbor condensing and iterative-case filtering. The final 
decisions in queries were also made using the Gabriel decision rule. 

A word is in order concerning the acronym GSASH appended to the title of this 
hybrid algorithm. No practically efficient algorithm exists for computing the Gabriel 
graph of very large training data sets. The fastest algorithm available is essentially the 
brute-force method that runs in O(dn3) time, where d is the dimension, although at 
least one algorithm has been proposed to speed up the average computation time by a 
constant factor [24]. In order to obtain a truly efficient algorithm one must resort to 
computing approximate Gabriel graphs with a suitable data structure, in the spirit of 
SASH, an approximate nearest neighbor method originally proposed by Houle [13]. 
GSASH is a modification of SASH to handle Gabriel rather than nearest neighbors. It 
allows the data structure containing the training data to be computed in O(dn log n) 
time using O(dn) memory, so that the k approximate Gabriel neighbors of a query 
point may be computed in O(dk log n) time.  

Experiments with the 25 data sets available at the time in the UCI Repository of 
Machine Learning Database [16] demonstrated that the Gabriel condensed set, using 
the approximate Gabriel graph, preserved quite faithfully the original decision boun-
dary based on the exact Gabriel graph [2]. It was also experimentally observed that 
the ICF algorithm was overly zealous in discarding data, resulting in a slight decrease 
in recognition accuracy. The Hybrid GSASH algorithm on the other hand tends to 
incorporate the best of both worlds: preserve the decision boundary, thus maintaining 
the recognition accuracy, and reduce significantly the storage space required. Never-
theless, the sizes and dimensionalities of the 25 data sets used in the experiments were 
not particularly large compared to those of the data sets that have been added more 
recently to the UCI repository. Only two of the data sets used in [2] had more than 
4000 patterns; the maximum was 5000, the minimum 150, and the average 944. In 
addition, only 6 data sets had dimensions greater than 19, the maximum dimension 
was 69, the minimum 3, and the average 16. Only two data sets had a number of 
classes greater than 9. Therefore one goal of the present study was to investigate how 
well proximity graph methods perform with larger data sets in higher dimensions, and 
how their performance scales with respect to the sparseness of the proximity graphs 
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utilized. A second goal was to compare proximity-graph methods with the traditional 
k-NN rules and support vector machine (SVM) algorithms, a class of completely dif-
ferent methods for designing classifiers, based on optimization techniques, that also 
has a history of superlative performance [9, 28]. Support vector machines have re-
ceived widespread attention in the machine learning literature [5, 25]. Zhang and 
King [28] compared the performance of support vector machines with methods that 
employ the Gabriel graph. Indeed, it is conjectured that the Gabriel thinned set con-
tains the support vectors [28]. 

4 Experiments and Results 

The primary goal of this research project was to test the efficacy of the proximity 
graphs and their scalability with respect to their edge-density, rather than the running 
time of the algorithms used. For this reason, the k-NN, Gabriel, RNG, and MST deci-
sion rules were implemented using exact rather than approximate methods such as 
GSASH. Another drawback of using GSASH is that it puts a constraint on the maxi-
mum number of approximate neighbors it can return (to achieve computational effi-
ciency). In contrast, our goal was to investigate the true error rates that the proximity 
graphs can deliver, as well as the number of neighbors required. For this, an exact 
approach was needed. In the following, the terms “point” and “instance” are used 
interchangeably. 

For the k-NN, Gabriel, RNG, and MST decision rules, the voting neighbors of a 
query point were first calculated. Then the query point was classified by taking an un-
weighted majority vote of the voting neighbors' class memberships. Ties were broken 
arbitrarily by selecting the class with the smallest index value. The distances between 
pairs of instances were computed using the Hybrid Value Difference Metric (HVDM) 
described by Wilson and Martinez [27]. This metric allows the handling of both real-
valued and categorical attributes, and provides approximate normalization between 
the different attributes. 

The algorithm for the k-NN rule simply found the k nearest neighbors of the query 
point, by computing the distance to every point in the data set, and keeping the k 
smallest distances seen so far. No fancy data structure for computing neighbors more 
efficiently was used. In our implementation the time complexity of finding the k near-
est neighbors of each point was O((k+d)n), where n is the number of points, and d is 
the dimensionality. The algorithm for the Gabriel neighbor rule found the Gabriel 
neighbors of a query point q by trying each point p in the data set as a potential 
neighbor, and checking that no other point o lies in the sphere with diameter deter-
mined by q and p. A speedup for avoiding unnecessary checks [24] was used, but the 
worst-case time complexity for each query point was still O(dn2), where n is the num-
ber of points in the data set, and d is the dimensionality. The algorithm for the RNG 
neighbor rule operated exactly like the Gabriel algorithm, except that the distance 
check was different (lunes were used instead of diametral spheres). The algorithm for 
the MST neighbor rule computed the minimum spanning tree of the set of training 
points, into which the query point was first inserted. It then returned the neighbors of 
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the query point in the resulting MST. Source code used for computing geometric min-
imum spanning trees in arbitrary dimensions was provided by Giri Narasimhan [17]. 
In this code, the (un-normalized) Euclidean metric was used as the distance between 
instances, instead of HVDM. 

The algorithms for the k-NN, Gabriel, and RNG neighbor rules were implemented 
in C++. The imported geometric MST code was also written in C++. For the support-
vector machine classifier, the Sequential Minimal Optimization (SMO) [19] algorithm 
from the off-the-shelf Weka data mining package [29] was used. The algorithms were 
tested on a 64-bit Linux machine with a 2.26GHz CPU and 3GB of RAM. No editing 
or condensing was done in the experiments presented below, unless stated otherwise. 
The experiments used four data sets, including three from the UCI Machine Learning 
Repository [10] (Isolet, Dermatology, and Segmentation). 

Isolet Data 
The Isolet speech data set has 26 classes (the spoken name of each letter of the alpha-
bet), 6238 training instances, and 1559 testing instances, each with 617 real-valued 
features consisting of spectral coefficients, contour features, sonorant features, pre-
sonorant features, and post-sonorant features. The suggested split between training 
and testing subsets as indicated by the data set was used, rather than performing cross-
validation. This data set is truly massive in terms of both size and dimensionality. 

The accuracy (rate of correct classifi-
cation) of the k-NN rule as a function of k 
for the Isolet data is shown in Figure 3. 
The maximum accuracy was 91.9% for k 
= 7. The RNG accuracy was slightly low-
er at 88.1%. The SMO classifier (with 
parameters: complexity = 1.5, polynomial 
kernel exponent = 1.5) reached an accu-
racy of 96.0%, surpassing the other in-
stance-based methods. These results are 
summarized in the chart on the right. 

No results were obtained with the Gabriel and MST classifiers because the algo-
rithms were too slow to run to completion. In the MST classifier, every test instance 
required re-computing the MST. In the Gabriel classifier, there were simply too many 
neighbors. This underscores the fact that despite their similar theoretical worst-case 
time complexity, the actual running time required by the RNG and Gabriel algorithms 
can be vastly different. In this data set, each point has very many Gabriel neighbors, 
but only a few RNG neighbors. Verifying that two points are Gabriel (or RNG) 
neighbors requires checking that no other point lies in their diametral sphere (or lune). 
This test uses O(dn) time, an expensive operation in this context. For the RNG, most 
pairs of points are not neighbors. Thus most neighbors are discarded by promptly 
finding a counterexample. On the other hand, for the Gabriel graph most pairs of 
nodes are neighbors. Thus, the linear-time check will be required for almost every 
pair of nodes. 



230 G.T. Toussaint and C. Berzan 

 

From the theoretical point of view Devroye [6] has shown that for most probability 
density functions governing the data, the asymptotic expected number of edges in the 
Gabriel graph is essentially 2d-1n, where n is the number of instances in the training 
set, and thus the number of Gabriel neighbors of a point grows exponentially in terms 
of the dimension. To obtain some practical intuition for this curse of dimensionality, 
the Gabriel graph was computed for only 35 test instances, and the average number of 
neighbors already reached 4588. This result provided empirical evidence to support 
the hypothesis that the Gabriel graph, like its denser parent Delaunay triangulation, 
quickly becomes extremely dense in high-dimensional spaces. Furthermore, once  
the number of neighbors reaches a significant fraction of the entire data set, the result-
ing decisions are primarily based on the prior probability of the classes, effectively 
ignoring much of the feature information, and resulting in a natural degradation of 
performance. 

 

Fig. 3. The classification accuracy of the k-NN rule with the Isolet data 

Dermatology Data 
The Dermatology data set has six classes (skin diseases) and 366 instances, each with 
33 categorical attributes and one real-valued attribute. The total dimensionality of the 
feature space is therefore 34. Eight instances contained missing data, and were re-
moved from the data set. In these experiments, randomly selected subsets consisting 
of 20% of the data were used for the testing sets, leaving the remaining 80% for train-
ing. All the accuracy results were averaged over 10 trials. 

The classification accuracy of the k-NN rule as a function of k for the Dermatology 
data is shown in Figure 4. The k-NN rule does very well, achieving a maximum value 
of 98.6% for both k = 10 and k = 15, although it does pretty well for all the values of k 
tried. The following table and graph summarize the results, where the error bars indi-
cate ± one standard deviation. 
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Classifier Mean 
Accuracy (%) 

Standard 
Deviation 

10-NN 98.6 1.8 
SMO 96.9 2.8 
RNG 95.6 2.3 
MST 86.7 5.3 

Gabriel 65.4 6.8 
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The SMO algorithm performs slightly worse than 10-NN, obtaining a top mean ac-
curacy of 96.9% (for parameters: complexity = 2.0, polynomial kernel exponent = 
3.0). However, as the error bars show, the results with 10-NN, SMO, and RNG are 
not significantly different from each other. On the other hand, these three classifiers 
yield results significantly better than those with the MST, which in turn are signifi-
cantly better than those obtained with the Gabriel graph. 

Interestingly, this is the only data set for which an instance-based method appears 
to do better than the SMO (although not significantly). The k-NN rule is significantly 
better than all three proximity graph methods. The MST appears to be too sparse to 
capture the requisite discrimination information.  

 
Fig. 4. The classification accuracy for the k-NN rule with the Dermatology data 

Since the number of Gabriel graph neighbors grows so fast with d, it seemed con-
ceivable that capping might still capture local information better than the k-NN rule. 
Accordingly, an experiment was performed that looked at only the k closest Gabriel 
neighbors. The mean classification accuracy for this decision rule with the Dermatol-
ogy data is shown in Figure 5. For all values of k up to 30, the mean accuracy is better 
than all three proximity graph methods, and for k = 22 the value of 98.6% matches the 
accuracy of k-NN for k = 10 and k = 15. These results however do not appear to pro-
vide any additional insight into the workings of the Gabriel graph, since the values of 
k that yield results comparable to the k-NN rule are greater, and therefore the k closest 
Gabriel neighbors may in fact include the k nearest neighbors. 

 
Fig. 5. The mean classification accuracy for the closest k Gabriel neighbors rule with the Der-
matology data 
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Image Segmentation Data 
The Image Segmentation data set has 7 classes, 210 train instances, and 2100 test 
instances, each with 18 real-valued attributes. We used the suggested train/test split 
given by the data set, rather than performing cross-validation (see Figure 6). 

The 1-NN rule does best, and the SMO algorithm (with complexity = 3.0, poly-
nomial kernel exponent = 5.0) surpasses all methods (see table and chart below). 
Again, the RNG is superior to the Gabriel graph, and the MST does not perform as 
well. 

 
 

Classifier Classification 
Accuracy (%) 

SMO 92.9 
1-NN 90.3 
RNG 88.8 

Gabriel 82.1 
MST 76.7 

 
Fig. 6. The classification accuracy for the k-NN rule with the Image Segmentation data 

Figure 7 shows the results, and the amount of storage used (as a fraction of the ini-
tial training set) for different k used in Wilson editing. Storage was reduced by 15%, 
at the expense of accuracy. A top accuracy of 85.4% was achieved with k = 6. 

 
 
 
 
 
 
 

 

 

Fig. 7. The classification accuracy and storage used when applying Wilson editing to the Image 
Segmentation data 
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Music Data 
The Music data set has 2 classes (Western and Non-Western music) and 1641 in-
stances, each with 41 real-valued attributes, of which 1 was constant [11]. The total 
dimensionality of the feature space is therefore 40. In the experiments, 20% of the 
data was randomly set aside as the testing set, and the remaining 80% was used for 
training. All accuracy results were averaged over 10 trials. 

The classification accuracy of the k-NN rule as a function of k for the Music data is 
shown in Figure 8. The k-NN rule achieves a top mean accuracy of 84.6% for k = 3. 
The SMO support-vector machine classifier achieves an accuracy of 86.5% according 
to Gomez and Herrera [11], but they reported no standard deviations. Replicating 
their experiment using the same parameters (complexity = 1.5, polynomial kernel 
exponent = 1.5), a fairly significantly higher mean accuracy of 89.1% was obtained. 
The results are summarized in the following table and graph: 

 

 

Classifier 
Mean 

Accuracy (%) 
Standard 
Deviation 

SMO 89.1 2.0 
3-NN 84.6 1.6 
RNG 83.4 1.6 

Gabriel 79.6 1.3 
MST 72.9 2.6 

 
The RNG results are significantly better than those of the Gabriel graph, which are 

in turn significantly better than the MST results. It is worth noting that for the Gabriel 
rule, the test instances had an average number of 303 voting neighbors, further illu-
strating that the Gabriel graph becomes dense in high dimensions. With the RNG 
classifier, the average number of neighbors was only 4.2. The 3-NN rule is superior to 
all three proximity graph methods, although not statistically significantly better than 
the RNG. The SMO classifier yields results statistically significantly better than all 
the other classifiers, with a mean accuracy of 89.1%. 

 
Fig. 8. The classification accuracy for the k-NN rule with the Music data 
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5 Concluding Remarks 

In theory it is known that for almost all probability density functions governing the 
training data, the expected number of edges in the Gabriel graph grows exponentially 
with the dimensionality of the space in which the data are embedded [6]. The results 
of the experiments obtained here provide empirical confirmation of the theory. 

In previous research with data sets having small-dimensionality d, it has been  
frequently found that the Gabriel graph performed best among the proximity graph 
methods. It was hypothesized that with higher d a sparser graph would give better 
results. The empirical results obtained here confirm this hypothesis. In all the experi-
ments the relative neighbor graph (RNG) performed significantly better than the Ga-
briel graph, probably as a result of the explosive growth of the number of Gabriel 
graph neighbors as d increases. To determine the degree to which the sparseness of 
proximity graphs can help, experiments were performed with the (connected) proxim-
ity graph that has the fewest possible number of edges, the minimum spanning tree 
(MST). The experimental results showed conclusively that the MST is too sparse to 
capture sufficient discrimination information to achieve good performance, and thus it 
appears to be useless for this application in instance-based learning, thus settling a 
long-standing speculation. 

The traditional k-NN decision rule has a long recorded history of yielding high 
classification accuracy in practice. Its drawbacks of high memory and computation 
requirements motivated the introduction of proximity graph methods for reducing the 
size of the training data. For low values of d it appeared that little would be lost in 
terms of performance, by resorting to proximity graphs. However, the results obtained 
here with large d clearly indicate that k-NN methods are superior, thus challenging 
proximity graph methods, if performance is the only issue. In all the experiments the 
k-NN rule performed statistically significantly better than the Gabriel graph, and al-
though it also typically achieved better results than the RNG these were not statistical-
ly significant. 

It is known that in theory the k-NN rules are asymptotically Bayes optimal, and that 
therefore there should not exist any other classifier that gives strictly better average 
classification accuracy [7-8]. Nevertheless, as the experiments reported here demon-
strate, even for large real-world data sets, the SMO support vector machine yields statis-
tically significantly better results than k-NN. This suggests that in practice SVMs should 
be the classifiers of choice, other things being equal. The drawback of traditional im-
plementations of SVMs is high computation in the design stage of the classifier, al-
though the sequential minimal optimization (SMO) version offers improvements in this 
regard. Their advantage is fast classification of new query data. Proximity graph deci-
sion rules on the other hand are very slow for this task unless approximate methods such 
as GSASH are used. Therefore the results of this study suggest that the most fruitful 
approach for classification is to use SMO in order to obtain the best classification per-
formance, if the computation time spent on classifier design can be significantly re-
duced. Furthermore, since this computation time depends to a large extent on the size of 
the training data, it is worthwhile reducing the number of instances in a computationally  
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inexpensive manner before subjecting them to an SMO support vector machine training 
algorithm. This appears to be a more appropriate role for proximity graphs to play than 
to act as neighbor filters in decision rules. 
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