
Computational Aspects of Musical Rhythms:

COMP 251 Course Notes
Godfried Toussaint

1. Necklaces and Bracelets,
2. Homometric Rhythms,
3. The Hexachordal Theorem,
4. Patterson’s Theorems, and
5. Flat Rhythms and Deep Rhythms



All-Interval Flat Rhythms

Consider a rhythm withk onsets in a time-span
(clock) ofn (even) units.

The rhythm clock determinesn/2 different
possibledurations between pairs of pulse points.

A rhythm is calledall-interval flat if it contains
all the n/2 duration intervals, and each of the
intervals is usedprecisely once.

Example ofall-interval flat rhythm forn=6, k=3
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An (k = 4, n = 12) All-Inter val flat Rhythm Bracelet
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Another (k = 4, n = 12) All-Inter val flat Rhythm Bracelet
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The Two-Bracelets Theorem

For n = 12 there exist only two all-interval flat
bracelets yielding 16 all-interval rhythms.

The equation k(k-1)/2 = 6 has only one solution:
k = 4. Therefore only rhythms with 4 onsets are
candidates.

There are two cases: the longest interval is
either: (1) a diagonal or (2) an edge of the
resulting quadrilateral.
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The Two-Bracelets Theorem - cont.

case 1: diameter determined by diagonal
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The Two-Bracelets Theorem - cont.

case 1: diameter determined by diagonal
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case 2: diameter determined by edge
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Points with specifieddistance multiplicities

Paul Erdös - 1986

Can one findn points in the plane (no 3 on a line
and no 4 on a circle) so that for every i, i = 1, 2, ...,
n-1 there is adistance determined by these points
that occursexactly i times?

Solutions have been found forn = 2, 3, ..., 8.
Ilona Palásti for n = 7 and 8.
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Patterson’s example of ahomometric pair

A. Lindo Patterson,
“Ambiguities in the X-ray analysis of crystal
structures,” Physical Review, March, 1944.

A simplehomometricpair.
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Complementary homometric rhythms

V. G. Rau, L. G. Parkhomov, V. V. Ilyukhin and N.
V. Belov, 1980

Every n-point subset of a regular 2n-gon is
homometric to its complement.
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Patterson’sfirst theorem

A. Lindo Patterson,
“Ambiguities in the X-ray analysis of crystal
structures,” Physical Review, March, 1944.

If two subsets of a regularn-gon arehomometric,
then theircomplements are.
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Patterson’s secondtheorem

A. Lindo Patterson,
“Ambiguities in the X-ray analysis of crystal
structures,” Physical Review, March, 1944.

Every n-point subset of a regular 2n-gon is
homometric to itscomplement.
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Erdös infinite family of homometric pairs

Paul Erdös,
in personal communication toA. Lindo Patterson,
Physical Review, March, 1944.
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The Hexachordal Theorem

Theorem: Two complementary hexachords have
the same interval content.
First observed empirically: Arnold Schoenberg, ~ 1908.
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The Hexachordal Theorem: Music-Theory Proofs

Theorem: Two complementary hexachords have
the same interval content.
First observed empirically: Arnold Schoenberg, 1908.

Proofs:

1. Milton Babbitt and David Lewin - 1959, topology

2. David Lewin - 1960, group theory

3. Eric Regener - 1974, elementary algebra

4. Emmanuel Amiot - 2006, discrete fourier transform
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The Hexachordal Theorem: Crystallography Proofs

First observed experimentally: Linus Pauling and M. D.
Shappell, 1930.

Proofs:

1. Lindo Patterson - 1944, claimed proof not published

2. Martin Buerger - 1976, image algebra

3. Juan Iglesias - 1981, elementary induction

4. Steven Blau - 1999, elementary induction

1

2

3

4
5

6

7
0

1

1

2

3

3

4

1

2

3

4
5

6

7
0

1 1
2

33
4



Juan E. Iglesias,
“On Patterson’s cyclotomic sets and how to count
them,” Zeitschrift für Kristallographie, 1981.

Theorem: Let p of theN vertices of a regular
polygon inscribed on a circle be black dots, and
the remainingq = N - p vertices be white dots.
Let nww, nbb, andnbwdenote the multiplicity of the
distancesof a specified length betweenwhite-
white, black-black, andblack-white, vertices,
respectively.

Then the following relations hold:

p = nbb + (1/2)nbw

q = nww + (1/2)nbw

The interval-content theorem of Iglesias



Lemma: Any given duration value d occurs with
multiplicity N.

(1) If d = 1 or d = N-1 the multiplicity equals the number of
sides of an N-vertex regular polygon.

(2) If 1 < d < N-1, and d and N are relatively prime, the
multiplicity equals the number of sides of an n-vertex
regular star-polygon.

(3) If d and N are not relatively prime then the multiplicity
equals the total number of sides of a group of convex
polygons. There are g.c.d.(d,N) polygons with N/g.c.d(d,N)
sides each.
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Proof of Iglesias’ theorem:
For each duration value d

p = nbb + (1/2)nbw

q = nww + (1/2)nbw

case 1

change to white

change to white

change to white

case 2

case 3

nww + 2
nbw - 2

nbb - 2
nbw + 2

nbb - 1
nww + 1



Iglesias’Proof of Patterson’s Theorems

Theorem 1: If two different black sets form a homometric
pair, then their corresponding complementary white sets
also form a homometric pair.

Proof: If the black sets are homometric they must have the
same number of points.
Then, for each duration value d

p = nbb + (1/2)nbw= n*bb + (1/2)n*bw

q = nww + (1/2)nbw= n*ww + (1/2)n*bw

and thus
p - q = nbb - nww = n*bb - n*ww

Since the black sets are homometric nbb = n*bb
and thus nww = n*ww

Theorem 2: If p = q the two sets are homometric.

Proof: If p = q then

nbb + (1/2)nbw= nww + (1/2)nbw

and thus
nbb = nww



Popular (2/4)-time folk-dance rhythms of
northern Transylvania
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Ubiquitous rhythms in African, rockabilly, and
world music. The Habanera rhythms.

Which necklaces have the property that they are
deep and have deep complementary necklaces?



Complementary deep rhythms

Dave Brubek, Unsquare Dance,
in Time Further Out, 1961.
Columbia Records, CS 8490 (stereo).
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Deep Scales in Music Theory

Deep scales have been studied in music theory at
least since 1966 by Terry Winograd.
Carlton Gamer, Journal of Music Theory, 1967.
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