Sevannette Tours

Proposal By: Ryan Goodfellow Luis Montiel Victor Vidal

Outline

- Problem Overview
 - Objective
 - Constraints
- Problem Formulation
- Information Required
- Discussion

Problem Overview - Objective

- Sevannette Tours is a tour guide company that services 4 hotels in Montreal.
- 27 potential locations in 18 regions.
- Rather than planning set tour destinations, the clients are given a checklist of their top destinations to fill out prior to boarding.
- Our goal is to create personalized tours that satisfy the greatest number of customer.
 - A satisfied client has been defined as a customer who visits at least 4 of their preferred locations.

Problem Overview - Constraints

• Fleet:

Vehicle Type	Quantity Available	Maximum Capacity	Minimum # of Passengers	Fuel Cost (\$ /Tour)	Parking Cost (\$)
Van	8	8	6	80	12
Mini-Bus	5	20	14	130	15
Bus	3	30	24	200	25

• Restrictions:

• Vans cannot be used for night tours.

Problem Overview - Constraints

• Guides

Guide	Quantity	With / Without License	Pay With/ Without License
Anglophone	15	11	\$22/h
		4	\$13/h
Francophone	10	0	\$13/h

• Restrictions:

- Each vehicle must have a driver (Anglophone).
- Quebec law: each vehicle must have a French guide.
- One guide must be allocated for every 10 passengers.

Problem Overview - Constraints

- Tour requirements:
 - Must generate \$400 profit per day.
 - Must visit 2 regions per tour.
 - At least one of the regions that we visit must have a restaurant.
 - Tours must be approximately 4 hours.
- Income:
 - Day: \$45 / tour
 - Night: \$35 /tour

Problem Formulation - Variables Variables: *vehicle*_{*i*,*l*,*t*} \in {0,1} $i \in \{1, \dots, 16\}$ Type of vehicle $l \in \{1, \dots, 27\}$ Locations $t \in \{1,2\}$ Day or night $i \in \{1,2,3\}$ -**Buses** Mini buses $i \in \{4, \dots, 8\}$ $i \in \{9, \dots, 16\}$ – Van

Problem Formulation - Variables

*tourist*_{*j*,*i*,*t*} \in {0,1} $j \in$ {1,...,508} Potential satisfied customer. Customer *j* goes in a vehicle *i* in a time t

 $y_{j,i,t} \in \{0,1\}$ satisfied customer. Customer *j* goes on a vehicle *i* during a time of the day *t*

 $region_{n,i,t} \in \{0,1\}$ $n \in \{1,...,18\}$ set of locations

*inuse*_{*i*,*t*} \in {0,1} vehicle in use during day or night

Problem Formulation - Objective

$$z = \max \sum_{i=1}^{508} \sum_{l=1}^{27} \sum_{t=1}^{2} y_{i,l,t}$$

Maximize the number of satisfied customers.

Given that a tourist *j* wants to visit a location *l*, denoted as $choice_{l,j}$, it is possible to establish how a customer can be satisfied.

Choices \rightarrow input data

Problem Formulation - Constraints

$$\sum_{l=1}^{27} choice_{l,j} \cdot vehicle_{i,l,t} \ge 4 \cdot y_{i,l,t} \quad \forall j, i, t$$

$$\sum_{i=1}^{16} \sum_{t=1}^{2} tourist_{j,i,t} = 1 \quad \forall j$$

$$tourist_{j,i,t} \ge y_{j,i,t} \quad \forall j, i, t$$

First constraint \rightarrow turn the *y* variable on

Second constraint \rightarrow each tourist must be allocated to a vehicle only once

Third constraint \rightarrow the tourist can only be happy at most once (upper-bounded by the 2nd constraint).

Problem Formulation - Constraints

$$\sum_{l=1}^{27} vehicle_{i,l,t} \ge inuse_{i,t} \qquad \forall i,t$$

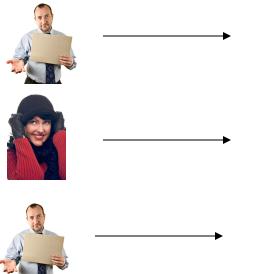
$$\sum_{l=1}^{27} vehicle_{i,l,t} \le 27 \cdot inuse_{i,t} \qquad \forall i,t$$

These constraints state that if we decide to use a vehicle, it will set the inuse variable to 1. Otherwise, the inuse will be 0.

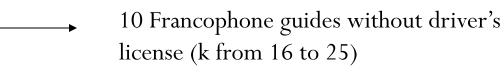
Problem Formulation - Constraints

$$\sum_{j=1}^{508} tourist_{j,i,t} \leq MaxCapacity_i \cdot inuse_{i,t} \quad \forall i,t$$

$$\sum_{j=1}^{508} tourist_{j,i,t} \geq MinCapacity_i \cdot inuse_{i,t} \quad \forall i,t$$


The above equations allocate tourists to vehicles.

If *inuse* for a vehicle is 1, then we must meet the minimum capacity requirements, while remaining under the maximum capacity requirements.


If *inuse* is 0, then 0 tourists can be assigned to that vehicle.

Problem Formulation – Assigning Guides

• Let *guide*_{*k,i,t*} be a binary variable that represents whether or not the guide *k* is assigned to the vehicle *i* at time *t* (day/night).

- 11 Anglophone guides with driver's license (k from 1 to 11)
 - 4 Anglophone guides without driver's license (k from 12 to 15)

Problem Formulation – Assigning Guides

• At least one guide with driver license per vehicle

$$\sum_{k=1}^{11} guide_{k,i,t} \ge inuse_{i,t}$$

$$\sum_{k=1}^{11} guide_{k,i,t} \le 11 \cdot inuse_{i,t}$$

• At least one francophone guide per vehicle

$$\sum_{k=16}^{25} guide_{k,i,t} \geq inuse_{i,t}$$

$$\sum_{k=16}^{25} guide_{k,i,t} \leq 10 \cdot inuse_{i,t}$$

Problem Formulation – Assigning Guides

• If the vehicle is a bus, an additional guide is needed:

$$\sum_{k=12}^{15} guide_{k,i,t} \geq inuse_{i,t}$$

$$\sum_{k=12}^{15} guide_{k,i,t} \leq 1 \qquad \forall i \in \{1,2,3\}, t$$

Problem Formulation – Tour Time Constraint

• The tour cannot exceed 4 hours

27 $\sum_{l=1}^{n} time_{l} \cdot vehicle_{i,l,t} \le 4 \cdot 60$ *l*=1 $\forall i, t$

Problem Formulation – Visiting Regions

- Let $region_{n,i,t}$ be a binary variable that represents whether or not a region *n* is visited by a vehicle *i* at time *t* (day/night).
- Each region contains at least one touristic place. We have 18 regions and 27 locations.

Region	Location	
	l=l _{1.intial}	
<i>n</i> =1	•	
	l=l _{1.final}	
	<i>l=l</i> _{n.intial}	
n=n		
	l=l _{n.final}	
	l=l _{18.intial}	
<i>n</i> =18	-	
	<i>l=l</i> _{18.final}	

Problem Formulation – Visiting Regions

$$\sum_{l=l(n.initial)}^{l(n.final)} \underbrace{\sum_{i,l,t} \leq 27 \cdot region_{n,i,t}}_{\forall i,n,t}$$

• At least two regions have to be visited in each tour

$$\sum_{n=1}^{18} region_{n,i,t} \ge 2 \cdot inuse_{i,t} \qquad \forall i,t$$

Problem Formulation – Visiting Regions

• If the vehicle *i* is not used at time *t* any region can be visited by that vehicle

$$\sum_{n=1}^{18} region_{n,i,t} \le 18 \cdot inuse_{i,t} \qquad \forall i,t$$

• At least one region with restaurant must be visited in each tour

$$region_{2,i,t} + region_{6,i,t} + region_{13,i,t} + region_{16,i,t} + region_{17,i,t} \ge inuse_{i,t}$$

$$\forall i, t$$

Problem Formulation - Profits

$$Income = \sum_{j=1}^{508} \sum_{i=1}^{16} \left(45 \cdot tourist_{i,j,1} + 35 \cdot tourist_{i,j,2} \right)$$

$$Fuel = \sum_{i=1}^{16} \sum_{t=1}^{2} FuelCost_{i} \cdot inuse_{i,t}$$

$$Parking = \sum_{i=1}^{16} \sum_{l=1}^{27} \sum_{t=1}^{2} ParkingCost_{i,l} vehicle_{i,l,t}$$

$$Employee = \sum_{i=1}^{16} \sum_{t=1}^{2} \sum_{k=1}^{11} 22 \cdot 4 \cdot guide_{k,i,t} + \sum_{i=1}^{16} \sum_{k=12}^{2} \sum_{k=12}^{13} 13 \cdot 4 \cdot guide_{k,i,t}$$

Income – *Fuel* – *Parking* – *Employee* \ge 400

Information Required

- List of the expected customers for the day/night tours.
- Choices of locations to visit for each customer.
- Preference of time (i.e. only day or night, or client is indifferent what time to go on a tour).

Discussion