Assignment 1 Solutions

COMP 760 - MATH 762

2006-01-11

Question 1

The following are two of many examples of a family such as that required in Question 1.

Figure 1: Graph G_{k} has $4 k+2$ vertices, $6 k+1$ edges, a unique perfect matching and at least 2^{k} perfect matchings.

Figure 2: Graph G_{k} has $4 k+2$ vertices, $5 k+2$ edges, a unique perfect matching and at least 2^{k} perfect matchings.

Question 2

Given an orientation of G in which every vertex satisfies $d^{-}(v) \leq k$ (a good orientation), it follows immediately that $|E(G)|=\sum_{v \in V} d^{-}(v) \leq k|V(G)|$.

Conversely, let G be any graph and orient G to form a digraph D. Let S be the set of vertices with $d^{-}(v)>k$ and let T be the set of vertices with $d^{-}(v)<k$. By our assumption on the average degree, the badness $b=\sum_{v \in S}\left(d^{-}(v)-k\right)$ is at most $\sum_{v \in T}\left(k-d^{-}(v)\right)$. We choose D to minimize b; if $b=0$ the orientation is good so assume that $b>0$.

In this case, let H be the component of G consisting of S together with all vertices at the head of an oriented path to S. If there were a vertex $t \in V(H) \cap S$, then reversing all the edges on a path from t to S would reduce b, contradicting its minimality. Therefore $V(H)$ is disjoint from T. By the definition of H, $d_{H}^{-}(v)=d^{-}(v)$ for every $v \in V(H)$; by the definition of T it follows that $d_{H}^{-}(v) \geq k$ for every vertex in H. As S is nonempty, there is some $s \in V(H)$ for which $d_{H}^{-}(s)>k$. Therefore $|E(H)|=\sum_{v \in H} d_{H}^{-}(v)>k|V(H)|$; this completes the proof.

Question 3

We start with any orientation D of G and define S, T as in Question 2. We repeatedly search for an oriented $S-T$ path and reverse all its edges until no such path exists. If S is empty then we have exhibited the desired orientation; if it is not, then by Question 2 no such orientation exists.

This procedure runs in polynomial time as each step consists an application of depth-first search in an oriented graph. Each step reduces the badness b by at least 1 . The initial badness is surely at most n^{2}; thus the whole procedure takes time at most n^{3}.

Question 4

Let G be a graph satisfying the conditions of Question 4. G contains no isolated vertices and any component with at least 2 vertices contains strictly greater than $2 n / 3$ vertices - thus G is connected.

Let P be a path of maximum length in G. Denote by v, w the endpoints of P.
Suppose $G[P]$ is Hamiltonian and $y \notin P$ has a neighbor $u \in P$. Letting Q be a Hamiltonian path in $G[P]$ starting at $y, y Q$ is a path of length strictly longer than P, contradicting the fact that P is maximum. Thus if $G[P]$ is maximum then it is a component, and thus $G[P]=G$ as G is connected.

We suppose that $G[P]$ is not Hamiltonian and derive a contradiction. Say that a is before b on P (or b is after a) if a is between v and b along P. Say that a is just before b (or b is just after a) if a is before b and $a b$ is an edge of P. Recall from class that Posa's flipping technique essentially consists of the observation that if $G[P]$ is not Hamiltonian the following property must hold
$\left(^{*}\right)$ If a is just before b and $w a \in E$ then $v b \notin E$.
Given a set of vertices S and vertices $a, b \in P$, let $S^{a b}$ be the intersection of S with the segment of P between a and b. For any vertex a, let $M(a)$ be the neighbours of a on P, let $B(a)$ (resp. $F(a)$) be the vertices that are just before (resp. just after) elements of $M(a)$. We then must have:
(1) $B(v)$ and $M(w)$ are disjoint,
for otherwise $(*)$ will fail to hold.
Note that by the maximality of P, the neighbourhoods of v and w are both contained in P, so in particular both v and w have at least two neighbours in P. Let x be the first neighbour of v that is not just after v and let z be just before x. There is a path Q from z to w obtained by following P from z to v, then traversing edge $v x$ and following P from x to w. A condition $\left({ }^{* *}\right)$ akin to $\left({ }^{*}\right)$ can then be stated for the path Q; the precise statement is ommited. We then have
(2) $B^{x w}(z)$ and $N(w)$ are disjoint, and
(3) $F^{v z}(z)$ and $N(w)$ are disjoint,
or else $\left({ }^{* *}\right)$ fails. (The details are left to the reader.) Note that $F^{v z}(z)-x$ is disjoint from $B(v)-z$, by our choice of x. Therefore $S=\left(F^{v z}(z)-x\right) \cup B^{x w}(z) \cup(B(v)-z)$ has cardinality at least that of $B(z) \cup B(v)-z-x$, which is at least $2 n / 3-4$ by assumption. Furthermore, $w \notin S$ by definition. As S is disjoint from $N(w)$ and $|N(w)|>\frac{n}{3}+4$ this implies that $|S \cup N(w)| \geq n$, so $|P| \geq|S \cup N(w) \cup w|>n$, a contradiction as $|P|<|V(G)|=n$.

