Assignment 1 Solutions COMP 760 — MATH 762 2006-01-11

Question 1

The following are two of many examples of a family such as that required in Question 1.

Figure 1: Graph G_k has 4k + 2 vertices, 6k + 1 edges, a unique perfect matching and at least 2^k perfect matchings.

Figure 2: Graph G_k has 4k + 2 vertices, 5k + 2 edges, a unique perfect matching and at least 2^k perfect matchings.

Question 2

Given an orientation of G in which every vertex satisfies $d^-(v) \le k$ (a good orientation), it follows immediately that $|E(G)| = \sum_{v \in V} d^-(v) \le k |V(G)|$.

Conversely, let G be any graph and orient G to form a digraph D. Let S be the set of vertices with $d^{-}(v) > k$ and let T be the set of vertices with $d^{-}(v) < k$. By our assumption on the average degree, the badness $b = \sum_{v \in S} (d^{-}(v) - k)$ is at most $\sum_{v \in T} (k - d^{-}(v))$. We choose D to minimize b; if b = 0 the orientation is good so assume that b > 0.

In this case, let H be the component of G consisting of S together with all vertices at the head of an oriented path to S. If there were a vertex $t \in V(H) \cap S$, then reversing all the edges on a path from t to S would reduce b, contradicting its minimality. Therefore V(H) is disjoint from T. By the definition of H, $d_{H}^{-}(v) = d^{-}(v)$ for every $v \in V(H)$; by the definition of T it follows that $d_{H}^{-}(v) \ge k$ for every vertex in H. As S is nonempty, there is some $s \in V(H)$ for which $d_{H}^{-}(s) > k$. Therefore $|E(H)| = \sum_{v \in H} d_{H}^{-}(v) > k|V(H)|$; this completes the proof.

Question 3

We start with any orientation D of G and define S, T as in Question 2. We repeatedly search for an oriented S - T path and reverse all its edges until no such path exists. If S is empty then we have exhibited the desired orientation; if it is not, then by Question 2 no such orientation exists.

This procedure runs in polynomial time as each step consists an application of depth-first search in an oriented graph. Each step reduces the badness b by at least 1. The initial badness is surely at most n^2 ; thus the whole procedure takes time at most n^3 .

Question 4

Let G be a graph satisfying the conditions of Question 4. G contains no isolated vertices and any component with at least 2 vertices contains strictly greater than 2n/3 vertices - thus G is connected.

Let P be a path of maximum length in G. Denote by v, w the endpoints of P.

Suppose G[P] is Hamiltonian and $y \notin P$ has a neighbor $u \in P$. Letting Q be a Hamiltonian path in G[P] starting at y, yQ is a path of length strictly longer than P, contradicting the fact that P is maximum. Thus if G[P] is maximum then it is a component, and thus G[P] = G as G is connected.

We suppose that G[P] is not Hamiltonian and derive a contradiction. Say that *a* is before *b* on *P* (or *b* is *after a*) if *a* is between *v* and *b* along *P*. Say that *a* is *just before b* (or *b* is *just after a*) if *a* is before *b* and *ab* is an edge of *P*. Recall from class that Posa's flipping technique essentially consists of the observation that if G[P] is not Hamiltonian the following property must hold

(*) If a is just before b and $wa \in E$ then $vb \notin E$.

Given a set of vertices S and vertices $a, b \in P$, let S^{ab} be the intersection of S with the segment of P between a and b. For any vertex a, let M(a) be the neighbours of a on P, let B(a) (resp. F(a)) be the vertices that are just before (resp. just after) elements of M(a). We then must have:

(1) B(v) and M(w) are disjoint,

for otherwise (*) will fail to hold.

Note that by the maximality of P, the neighbourhoods of v and w are both contained in P, so in particular both v and w have at least two neighbours in P. Let x be the first neighbour of v that is not just after v and let z be just before x. There is a path Q from z to w obtained by following P from z to v, then traversing edge vx and following P from x to w. A condition (**) akin to (*) can then be stated for the path Q; the precise statement is ommitted. We then have

- (2) $B^{xw}(z)$ and N(w) are disjoint, and
- (3) $F^{vz}(z)$ and N(w) are disjoint,

or else (**) fails. (The details are left to the reader.) Note that $F^{vz}(z) - x$ is disjoint from B(v) - z, by our choice of x. Therefore $S = (F^{vz}(z) - x) \cup B^{xw}(z) \cup (B(v) - z)$ has cardinality at least that of $B(z) \cup B(v) - z - x$, which is at least 2n/3 - 4 by assumption. Furthermore, $w \notin S$ by definition. As S is disjoint from N(w) and $|N(w)| > \frac{n}{3} + 4$ this implies that $|S \cup N(w)| \ge n$, so $|P| \ge |S \cup N(w) \cup w| > n$, a contradiction as |P| < |V(G)| = n.