
Assignment 1 Solutions

COMP 760 — MATH 762

2006-01-11

Question 1

The following are two of many examples of a family such as that required in Question 1.

Figure 1: Graph Gk has 4k + 2 vertices, 6k + 1 edges, a unique perfect matching and at least 2k perfect
matchings.

Figure 2: Graph Gk has 4k + 2 vertices, 5k + 2 edges, a unique perfect matching and at least 2k perfect
matchings.
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Question 2

Given an orientation of G in which every vertex satisfies d−(v) ≤ k (a good orientation), it follows immediately
that |E(G)| =

∑
v∈V d−(v) ≤ k|V (G)|.

Conversely, let G be any graph and orient G to form a digraph D. Let S be the set of vertices with
d−(v) > k and let T be the set of vertices with d−(v) < k. By our assumption on the average degree,
the badness b =

∑
v∈S(d−(v) − k) is at most

∑
v∈T (k − d−(v)). We choose D to minimize b; if b = 0 the

orientation is good so assume that b > 0.
In this case, let H be the component of G consisting of S together with all vertices at the head of an

oriented path to S. If there were a vertex t ∈ V (H) ∩ S, then reversing all the edges on a path from t to
S would reduce b, contradicting its minimality. Therefore V (H) is disjoint from T . By the definition of H,
d−H(v) = d−(v) for every v ∈ V (H); by the definition of T it follows that d−H(v) ≥ k for every vertex in H. As
S is nonempty, there is some s ∈ V (H) for which d−H(s) > k. Therefore |E(H)| =

∑
v∈H d−H(v) > k|V (H)|;

this completes the proof.

Question 3

We start with any orientation D of G and define S, T as in Question 2. We repeatedly search for an oriented
S − T path and reverse all its edges until no such path exists. If S is empty then we have exhibited the
desired orientation; if it is not, then by Question 2 no such orientation exists.

This procedure runs in polynomial time as each step consists an application of depth-first search in an
oriented graph. Each step reduces the badness b by at least 1. The initial badness is surely at most n2; thus
the whole procedure takes time at most n3.

Question 4

Let G be a graph satisfying the conditions of Question 4. G contains no isolated vertices and any component
with at least 2 vertices contains strictly greater than 2n/3 vertices - thus G is connected.

Let P be a path of maximum length in G. Denote by v, w the endpoints of P .
Suppose G[P ] is Hamiltonian and y /∈ P has a neighbor u ∈ P . Letting Q be a Hamiltonian path in G[P ]

starting at y, yQ is a path of length strictly longer than P , contradicting the fact that P is maximum. Thus
if G[P ] is maximum then it is a component, and thus G[P ] = G as G is connected.

We suppose that G[P ] is not Hamiltonian and derive a contradiction. Say that a is before b on P (or b is
after a) if a is between v and b along P . Say that a is just before b (or b is just after a) if a is before b and ab
is an edge of P . Recall from class that Posa’s flipping technique essentially consists of the observation that
if G[P ] is not Hamiltonian the following property must hold

(*) If a is just before b and wa ∈ E then vb /∈ E.

Given a set of vertices S and vertices a, b ∈ P , let Sab be the intersection of S with the segment of P
between a and b. For any vertex a, let M(a) be the neighbours of a on P , let B(a) (resp. F (a)) be the
vertices that are just before (resp. just after) elements of M(a). We then must have:

(1) B(v) and M(w) are disjoint,

for otherwise (∗) will fail to hold.
Note that by the maximality of P , the neighbourhoods of v and w are both contained in P , so in particular

both v and w have at least two neighbours in P . Let x be the first neighbour of v that is not just after v and
let z be just before x. There is a path Q from z to w obtained by following P from z to v, then traversing
edge vx and following P from x to w. A condition (**) akin to (*) can then be stated for the path Q; the
precise statement is ommited. We then have
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(2) Bxw(z) and N(w) are disjoint, and

(3) F vz(z) and N(w) are disjoint,

or else (**) fails. (The details are left to the reader.) Note that F vz(z) − x is disjoint from B(v) − z,
by our choice of x. Therefore S = (F vz(z) − x) ∪ Bxw(z) ∪ (B(v) − z) has cardinality at least that of
B(z) ∪ B(v)− z − x, which is at least 2n/3− 4 by assumption. Furthermore, w /∈ S by definition. As S is
disjoint from N(w) and |N(w)| > n

3 + 4 this implies that |S ∪N(w)| ≥ n, so |P | ≥ |S ∪N(w) ∪ w| > n, a
contradiction as |P | < |V (G)| = n.
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