Focusing Prover
for
Bunched Implications

Sabrina CHANTRELLE

Logic provides a good way to certifiably check the correctness in many systems. More specifically, the logic of Bunched Implications, BI, is a sub-structural logic, which provides a base for reasoning about resources. It serves as a foundation for reasoning about low-level program operations and constructs such as memory allocation and deallocation as well as mutable shared data-structures.

In this project we explore a proof theory with the aim of developing an automated theorem prover for the propositional fragment of BI so that the machine can find and check proofs too lengthy to be written out by hand. To achieve a practical implementation, we proceed in three steps to limit existing non-determinism: First, we develop a sequent calculus for BI where structural rules such as weakening and contraction are admissible. Second, we classify and prove certain proof rules to be invertible. As a consequence, these proof rules can be applied immediately during proof search without losing completeness. Once application of invertible proof rules has terminated, we can focus on non-invertible proof rules. Finally, we propose implementation techniques to handle the tree-like context by a constraint structure.

Based on these theoretical ideas, we have implemented a prototypical propositional theorem prover for BI. This is one of the few existing provers for BI and is a first step towards providing an automated reasoning tool for BI which allows us to reason about correctness and safety properties of programs that manipulate shared mutable data-structures.