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1 Introduction

An equitable k-coloring of a graph G is a proper k-coloring, for which any two color classes
differ in size by at most one. Equitable colorings naturally arise in some scheduling, parti-
tioning, and load balancing problems [1, 15, 16]. Pemmaraju [13] and Janson and Ruciński [6]
used equitable colorings to derive deviation bounds for sums of dependent random variables
that exhibit limited dependence. In 1964 Erdős [3] conjectured that any graph with maxi-
mum degree ∆(G) ≤ r has an equitable (r+ 1)-coloring. This conjecture was proved in 1970
by Hajnal and Szemerédi [5] with a surprisingly long and complicated argument. Recently,
Mydlarz and Szemerédi [11] found a polynomial time algorithm for such coloring.

In search of an easier proof, Seymour [14] strengthened Erdős’ conjecture by asking
whether every graph with minimum degree δ(G) ≥ k

k+1
|G| contains the k-th power of a

hamiltonian cycle. (If |G| = (r + 1)(s+ 1) and ∆(G) ≤ r then δ(Ḡ) ≥ s
s+1
|G|; each (s+ 1)-

interval of a s-th power of a hamiltonian cycle in Ḡ is an independent set in G.) The case
k = 1 is Dirac’s Theorem and the case k = 2 is Pósa’s Conjecture. Fan and Kierstead
[4] proved Pósa’s Conjecture with cycle replaced by path. Komlós, Sarkozy and Szemerédi
[7] proved Seymour’s conjecture for graphs with sufficiently many (in terms of k) vertices.
Neither of these partial results has a simple proof. In fact, [7] uses the Regularity Lemma,
the Blow-up Lemma and the Hajnal-Szemerédi Theorem.

A different strengthening was suggested recently by Kostochka and Yu [9, 10]. In the
spirit of Ore’s theorem on hamiltonian cycles [12], they conjectured that every graph in
which d(x) + d(y) ≤ 2r for every edge xy has an equitable (r + 1)-coloring.

In this paper we present a short proof of the Hajnal-Szemerédi Theorem and present
another polynomial time algorithm that constructs an equitable (r + 1)-coloring of any
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graph G with maximum degree ∆(G) ≤ r. Our approach is similar to the original proof,
but a discharging argument allows for a much simpler conclusion. Our techniques have paid
further dividends. In another paper we will prove the above conjecture of Kostochka and
Yu [9, 10] in a stronger form: with 2r + 1 in place of 2r. They also yield partial results
towards the Chen-Lih-Wu Conjecture [2] about equitable r-colorings of r-regular graphs and
towards a list analogue of Hajnal-Szemerédi Theorem (see [8] for definitions).

Most of our notation is standard; possible exceptions include the following. For a vertex
y and set of vertices X, NX(y) := N(y)∩X and dX(y) = |NX(y)|. If µ is a function on edges
then µ(A,B) :=

∑
xy∈E(A,B) µ(x, y), where E(A,B) is the set of edges linking a vertex in A to

a vertex in B. For a function f : V → Z, the restriction of f to W ⊆ V is denoted by f |W .
Functions are viewed formally as sets of ordered pairs. So if u /∈ V then g := f ∪ {(u, γ)} is
the extension of f to V ∪ {u} such that g(u) = γ.

2 Main proof

Let G be a graph with s(r+ 1) vertices. A nearly equitable (r+ 1)-coloring of G is a proper
coloring f , whose color classes all have size s except for one small class V − = V −(f) with
size s − 1 and one large class V + = V +(f) with size s + 1. Given such a coloring f , define
the auxiliary digraph H = H(G, f) as follows. The vertices of H are the color classes of f .
A directed edge VW belongs to E(H) iff some vertex y ∈ V has no neighbors in W . In this
case we say that y is movable to W . Call W ∈ V (H) accessible, if V − is reachable from W
in H. So V − is trivially accessible. Let A = A(f) denote the family of accessible classes,
A :=

⋃
A and B := V (G) \A. Let m := |A| − 1 and q := r −m. Then |A| = (m+ 1)s− 1.

Then |B| = (r −m)s+ 1. Each vertex y ∈ B cannot be moved to A and so satisfies

dA(y) ≥ m+ 1 and dB(y) ≤ q − 1. (1)

Lemma 1 If G has a nearly equitable (r+ 1)-coloring f , whose large class V + is accessible,
then G has an equitable (r + 1)-coloring.

Proof. Let P = V1, . . . , Vk be a path in H(G, f) from V1 := V + to Vk := V −. This means
that for each j = 1, . . . , k − 1, Vj contains a vertex yj that has no neighbors in Vj+1. So, if
we move yj to Vj+1 for j = 1, . . . , k− 1, then we obtain an equitable (r+ 1)-coloring of G.

Suppose V + ⊆ B. If A = V − then |E(A,B)| ≤ r |V −| = r(s − 1) < 1 + rs = |B|, a
contradiction to (1). Thus m+ 1 = |A| ≥ 2. Call a class V ∈ A terminal, if V − is reachable
from every class W ∈ A \ {V } in the digraph H − V . Trivially, V − is non-terminal. Every
non-terminal class W partitions A\{W} into two parts SW and TW 6= ∅, where SW is the set
of classes that can reach V − in H−W . Choose a non-terminal class U so that A′ := TU 6= ∅
is minimal. Then every class in A′ is terminal and no class in A′ has a vertex movable to
any class in (A \ A′) \ {U}. Set t := |A′| and A′ :=

⋃
A′. Thus every x ∈ A′ satisfies

dA(x) ≥ m− t. (2)

Call an edge zy with z ∈ W ∈ A′ and y ∈ B, a solo edge if NW (y) = {z}. The ends of
solo edges are called solo vertices and vertices linked by solo edges are called special neighbors
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of each other. Let Sz denote the set of special neighbors of z and Sy denote the set of special
neighbors of y in A′. Then at most r − (m + 1 + dB(y)) color classes in A have more than
one neighbor of y. Hence

|Sy| ≥ t− q + 1 + dB(y). (3)

Lemma 2 If there exists W ∈ A′ such that no solo vertex in W is movable to a class in
A \ {W} then q + 1 ≤ t. Furthermore, every vertex y ∈ B is solo.

Proof. Let S be the set of solo vertices in W and D := W \S. Then every vertex in NB(S)
has at least one neighbor in W and every vertex in B \ NB(S) has at least two neighbors
in W . It follows that |E(W,B)| ≥ |NB(S)| + 2(|B| − |NB (S))|). Since no vertex in S is
movable, every z ∈ S satisfies dB(z) ≤ q. By (2), every vertex x ∈ W satisfies dB(x) ≤ t+ q.
Thus, using s = |W | = |S|+ |D|,

qs+ q |D|+ 2 = 2(qs+ 1)− q |S| ≤ |E(W,B)| ≤ q |S|+ (t+ q) |D| ≤ qs+ t |D|

It follows that q + 1 ≤ t. Moreover, by (3) every y ∈ B satisfies |Sy| ≥ t − q + dB(y) ≥ 1.
Thus y is solo.

Lemma 3 If V + ⊆ B then there exists a solo vertex z ∈ W ∈ A′ such that either z is
movable to a class in A \ {W} or z has two nonadjacent special neighbors in B.

Proof. Suppose not. Then by Lemma 2 every vertex in B is solo. Moreover, Sz is a clique
for every solo vertex z ∈ A′. Consider a weight function µ on E(A′, B) defined by

µ(xy) :=

{ q
|Sx| if xy is solo,

0 if xy is not solo.

For z ∈ A′ we have µ(z, B) = |Sz| q
|Sz | = q if z is solo; otherwise µ(z, B) = 0. Thus

µ(A′, B) ≤ q |A′| = qst. On the other hand, consider y ∈ B. Let cy := max{|Sz| : z ∈ Sy},
say cy = |Sz| , z ∈ Sy. Using that Sz is a clique and (1), cy − 1 ≤ dB(y) ≤ q − 1. So cy ≤ q.
Together with (3) this yields

µ(A′, y) =
∑
z∈Sy

q

|Sz|
≥ |Sy| q

cy
≥ (t− q + cy)

q

cy
= (t− q) q

cy
+ q ≥ t.

Thus µ(A′, B) ≥ t |B| = t(qs+ 1) > qst ≥ µ(A′, B), a contradiction.
We are now ready to prove the Hajnal-Szemerédi Theorem.

Theorem 4 If G is a graph satisfying ∆(G) ≤ r then G has an equitable (r + 1)-coloring.

Proof. We may assume that |G| is divisible by r + 1. To see this, suppose that |G| =
s(r+ 1)− p, where p ∈ [r]. Let G′ := G+Kp. Then |G′| is divisible by r+ 1 and ∆(G′) ≤ r.
Moreover, the restriction of any equitable (r+ 1)-coloring of G′ to G is an equitable (r+ 1)-
coloring of G.

Argue by induction on ‖G‖. The base step ‖G‖ = 0 is trivial, so consider the induction
step ‖G‖ ≥ 1. Let e = xy be an edge of G. By the induction hypothesis there exists an
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equitable (r+ 1)-coloring f0 of G− e. We are done, unless some color class V contains both
x and y. Since d(x) ≤ r, there exists another class W such that x is movable to W . Doing so
yields a nearly equitable (r+1)-coloring f of G with V −(f) = V \{x} and V +(f) = W ∪{x}.
We now show by a secondary induction on q(f) that G has an equitable (r + 1)-coloring.

If V + ∈ A then we are done by Lemma 1; in particular, the base step q = 0 holds.
Otherwise, by Lemma 3 there exists a class W ∈ A′, a solo vertex z ∈ W and a vertex
y1 ∈ Sz such that either z is movable to a class X ∈ A \ {W} or z is not movable in
A and there exists another vertex y2 ∈ Sz, which is not adjacent to y1. By (1) and the
primary induction hypothesis, there exists an equitable q-coloring g of B− := B \ {y1}. Let
A+ := A ∪ {y1}.

Case 1: z is movable to X ∈ A. Move z to X and y1 to W \ {z} to obtain a nearly
equitable (m+1)-coloring ϕ of A+. Since W ∈ A′(f), V +(ϕ) = X∪{z} ∈ A(ϕ). By Lemma
1, A+ has an equitable (m+ 1)-coloring ϕ′. Then ϕ′∪ g is an equitable (r+ 1)-coloring of G.

Case 2: z is not movable to any class in A. Then dA+(z) ≥ dA(z) + 1 ≥ m + 1. Thus
dB−(z) ≤ q− 1. So we can move z to a color class Y ⊆ B of g to obtain a new coloring g′ of
B∗ := B− ∪ {z}. Also move y1 to W to obtain an (m + 1)-coloring ψ of A∗ := V (G) \ B∗.
Set ψ′ := ψ ∪ g′. Then ψ′ is a nearly equitable coloring of G with A∗ ⊆ A(ψ′). Moreover, y2

is movable to W ∗ := W ∪ {y1} \ {z}. Thus q(ψ′) < q(f) and so by the secondary induction
hypothesis, G has an equitable (r + 1)-coloring ψ′′.

3 A polynomial algorithm

Our proof clearly yields an algorithm. However it may not be immediately clear that its
running time is polynomial. The problem lies in the secondary induction, where we may
apply Case 2 O(r) times, each time calling the algorithm recursively. Lemma 2 is crucial
here; it allows us to claim that when we are in Case 2 (doing lots of work) we make lots of
progress. As above G is a graph satisfying ∆(G) ≤ r and |G| =: n =: s(r + 1). Let f be a
nearly equitable (r + 1)-coloring of G.

Theorem 5 There exists an algorithm P ′ that from input (G, f) constructs an equitable
(r + 1)-coloring of G in c(q + 1)n3 steps.

Proof. We shall show that the construction in the proof of Theorem 4 can be accomplished
in the stated number of steps. Argue by induction on q. The base step q = 0 follows
immediately from Lemma 1 and the observation that the construction of H and the recoloring
can be carried out in 1

4
cn3 steps. Now consider the induction step. In 1

4
cn3 steps construct

A,A′, B,W, z, y1. Using the induction hypothesis on the input (G[B−], f |B−), construct the
coloring g of B− in c(q(f |B−) + 1)(qs)3 ≤ cqn3 steps. In 1

4
cn3 steps determine whether Case

1 or Case 2 holds.
If Case 1 holds, construct the recoloring ϕ′ in 1

4
cn3 steps. This yields an equitable (r+1)-

coloring g ∪ ϕ′ in a total of 3
4
cn3 + cqn3 ≤ c(q + 1)n3.

If Case 2 holds then, by Lemma 2, q+ 1 ≤ t. Thus we used only 1
8
cqn3 steps to construct

g. Use an additional 1
4
cn3 steps to extend g to ψ′. Notice that W ∗ is non-terminal in ψ′.

Thus we can choose A′(ψ′) so that A′(ψ′) ⊆ B. If Case 1 holds for ψ′ then as above we can
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construct an equitable coloring in an additional 1
4
cn3 + 1

8
cqn3 steps. So the total number

of steps is at most c(q + 1)n3. Otherwise by Lemma 2 q(ψ′) < 1
2
q. Thus by the induction

hypothesis we can finish in c qn
3

16
additional steps. Then the total number of steps is less than

c(q + 1)n3.

Theorem 6 There is an algorithm P of complexity O(n5) that constructs an equitable (r+1)-
coloring of any graph G satisfying ∆(G) ≤ r and |G| = n.

Proof. As above, we may assume that n is divisible by r + 1. Let V (G) = {v1, . . . , vn}.
Delete all edges from G to form G0 and let f0 be an equitable coloring of G0. Now, for
i = 1, . . . , n− 1, do the following:
(i) Add back all the edges of G incident with vi to form Gi;
(ii) If vi has no neighbors in its color class in fi−1, then set fi := fi−1.
(iii) Otherwise, move vi to a color class that has no neighbors of vi to form a nearly equitable
coloring f ′i−1 of Gi. Then apply P ′ to (Gi, f

′
i−1) to get an equitable (r+ 1)-coloring fi of Gi.

Then fn−1 is an equitable (r+ 1)-coloring of Gn−1 = G. Since we have only n− 1 stages
and each stage runs in O(n4) steps, the total complexity is O(n5).
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