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A graph is called H-free if it contains no induced copy of H . We discuss the following
question raised by Erdős and Hajnal. Is it true that for every graph H , there exists an
ε(H) > 0 such that any H-free graph with n vertices contains either a complete or an
empty subgraph of size at least nε(H)? We answer this question in the affirmative for a
special class of graphs, and give an equivalent reformulation for tournaments. In order to
prove the equivalence, we establish several Ramsey type results for tournaments.

1. Introduction

Given a graph G with vertex set V (G) and edge set E(G), let α(G) and
ω(G) denote the size of the largest independent set (empty subgraph) and
the size of the largest clique (complete subgraph) in G, respectively. A subset
U⊆V (G) is called homogeneous, if it is either an independent set or a clique.
Denote by hom(G) the size of the largest homogeneous set in G, i.e., let

hom(G) = max (α(G), ω(G)) .

If H is not an induced subgraph of G, then we say that G is an H-free graph.
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According to classical Ramsey theory, hom(G)≥ 1
2 log2n for every graph

G with n vertices [8], and there exists some G with hom(G)< 2log2n (see
[6]). Erdős and Hajnal [7] raised the possibility that “the following could be
true.”

Conjecture 1. For every graph H, there exists a positive ε = ε(H) such
that every H-free graph with n vertices has a homogeneous set whose size
is at least nε.

Erdős and Hajnal confirmed their conjecture for every graph H which
belongs to the class H defined recursively as follows:

1. K1, the graph consisting of a single vertex, belongs to H;
2. if H1 and H2 are two vertex-disjoint graphs belonging to H, then their

disjoint union as well as the graph obtained from this union by connecting
every vertex of H1 to every vertex of H2 belongs to H.

Gyárfás [9] noticed that it follows from a well known result of Seinsche
[14] that Conjecture 1 is also true for all graphs generated by the above rules
starting with P4, a simple path with 4 vertices, and K1.

Our first theorem extends both of these results. If Conjecture 1 is true
for some graph H, then we say that H has the Erdős–Hajnal property.

For any graph H with vertex set V (H)= {v1, . . . ,vk} and for any other
graphs, F1, . . . ,Fk, let H(F1, . . . ,Fk) denote the graph obtained from H by
replacing each vi with a copy of Fi, and joining a vertex of the copy of Fi to
a vertex of a copy of Fj , j �= i, if and only if vivj ∈E(H). The copies of Fi,
i=1, . . . ,k, are supposed to be vertex disjoint.

Theorem 1.1. If H,F1, . . . ,Fk have the Erdős–Hajnal property, then so
does H(F1, . . . ,Fk).

In other words, the Erdős–Hajnal property is preserved by replacement.
This enables us to verify that Conjecture 1 is true, e.g., for the graphs
depicted in Figure 1, which answers some questions of Gyárfás [9].

No non-perfect graph is known to have the Erdős–Hajnal property. Un-
fortunately, in this respect Theorem 1.1 cannot offer any help. Indeed, ac-
cording to a result of Lovász [12], which played a key role in his proof of
the Weak Perfect Graph Conjecture [11], perfectness is also preserved by re-
placement. It is an outstanding open problem to decide whether the smallest
non-perfect graph, the cycle of length 5, has the Erdős–Hajnal property. As
Lovász pointed out, there is an even simpler unsolved
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Fig. 1. G1 and G2 have the Erdős–Hajnal property

Problem. Does there exist a positive constant ε so that, for every graph G
on n vertices such that neither G nor its complement Ḡ contains an induced
odd cycle whose length is at least 5, we have hom(G)≥nε?

It is easy to formulate analogous questions for tournaments. A tourna-
ment with no directed cycle is called transitive. If a tournament has no
subtournament isomorphic to T , then it is called T -free.

It is well known [5],[15] that every tournament of n vertices contains a
transitive subtournament whose size is at least c logn, and that this result
is tight apart from the value of the constant.

Conjecture 2. For every tournament T , there exists a positive ε = ε(T )
such that every T -free tournament with n vertices has a transitive subtour-
nament whose size is at least nε.

Theorem 1.2. Conjecture 1 and Conjecture 2 are equivalent.

In order to prove Theorem 1.2, we need a Ramsey-theoretic result for tour-
naments, which is interesting on its own right. A tournament T with a linear
order < on its vertex set is called an ordered tournament and is denoted by
(T,<). An ordered tournament (T,<) is said to be a subtournament of an-
other ordered tournament, (T ′,<′), if there is a function f : V (T )→ V (T ′)
satisfying the conditions

(i) f(u)<′ f(v) if and only if u<v,

(ii) f(u)f(v)∈E(T ′) if and only if uv∈E(T ).
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Theorem 1.3. For any ordered tournament (T,<), there exists a tourna-
ment T ′ such that, for every ordering <′ of T ′, (T,<) is a subtournament
of (T ′,<′). Moreover, if T has n vertices, there exists a T ′ with the required

property with O
(
n3 log2n

)
vertices.

We further show that the O(n3 log2n) estimate is not very far from being
tight. In fact, if (T,<) is any tournament on n vertices and T ′ satisfies the
condition above for T , then T ′ must have at least Ω(n2) vertices. The proof
of the above theorem is very similar to the proof of the main result of [13],
which deals with a similar statement for ordered induced subgraphs. This
can be extended to hypergraphs as well.

By choosing a bigger tournament T ′, one can ensure a single tourna-
ment that contains all ordered tournaments on n vertices, in any ordering.
Specifically, we prove the following.

Theorem 1.4. Given an integer N , let n0 be the largest integer such that(
N

n0

)
2−(n0

2 ) ≥ 1,

and put n=n0−2. Then, for all sufficiently large N , there exists an ordered
tournament T ′ on N vertices such that in any ordering it contains every
ordered tournament on n vertices.

Note that the above estimate for n is clearly tight, up to an additive error
of 2. A similar statement holds for induced subgraphs, as shown in [3].

The rest of this paper is organized as follows. Theorem 1.1 is proved in
Section 2. The proofs of Theorems 1.3 and 1.4 appear in Section 3. Section 4
contains the proof of Theorem 1.2.

2. Graphs with the Erdős–Hajnal property

In this section we prove Theorem 1.1. Obviously, it is sufficient to show the
following weaker version of the theorem.

Theorem 2.1. Let H and F be graphs having the Erdős–Hajnal property,
V (H)={v1,v2, . . . ,vk}. Then the graph H(F,v2, . . . ,vk), obtained by replac-
ing v1 with F , also has this property.

Proof. Let H0 denote the graph obtained from H by the deletion of v1. For
simplicity, write H(F ) for H(F,v2, . . . ,vk). Let G be an H(F )-free graph
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with n vertices, and assume that hom(G)<nε(H)δ. We would like to get a
contradiction, provided that δ>0 is sufficiently small.

Let m := 
nδ�> k. By the definition of ε(H), any m-element subset of
U ⊂ V (G) must induce at least one subgraph isomorphic to H. Otherwise,
we would find a homogeneous subset of mε(H)>hom(G) in the subgraph of
G induced by U , which is impossible. Therefore, G has at least

(n
m

)
/
(n−k
m−k

)
induced subgraphs isomorphic to H. For each of these subgraphs, fix an
isomorphic embedding of H into G.

Since the number of embeddings of H0 into G is smaller than
n(n−1) · · · (n−k+2), there exists an embedding, which can be extended
to an embedding of H in at least

(1) M :=
(n
m

)
(n−k
m−k

)
n(n− 1) · · · (n− k + 2)

different ways. In other words, there are k−1 vertices, v′2, . . . ,v
′
k∈V (G), and

there exists an at least M -element subset W ⊂ V (G) such that, for every
w∈W ,

f(v1) = w, f(vi) = v′i (i = 2, . . . , k)

is an isomorphic embedding of H into G.
Consider now the subgraph G|W of G induced byW . This graph must be

F -free, otherwise G would not be H(F )-free. Since F has the Erdős–Hajnal
property, we know that

hom(G|W ) ≥ |W |ε(F ) ≥M ε(F ).

On the other hand,

nε(H)δ > hom(G) ≥ hom(G|W ).

Comparing the last two inequalities and plugging in the value (1) for M , we
obtain that

nδε(H)/ε(F ) >

(n
m

)
(n−k
m−k

)
n(n− 1) · · · (n− k + 2)

=
n− k + 1

m(m− 1) · · · (m− k + 1)
> n1−kδ,

which gives the desired contradiction, provided that

δ <
ε(F )

ε(H) + kε(F )
.
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3. Ramsey-type theorems for tournaments

The proof of Theorem 1.3 uses the probabilistic method. The basic idea is
a slightly simplified version of the main argument of Rödl and Winkler in
[13]. We need the following lemma.

Lemma 3.1. Let t > n > 1 be two positive integers, and let S =
{a1,a2, . . . ,atn} be a tn-element set. Let g : S → R = {1,2, . . . , t} be a
function such that for every p ∈ R, we have |{i : g(ai) = p}| = n. Further,
let f : S → N = {1,2, . . . ,n} be a random function obtained by choosing,
for each element ai ∈ S, randomly, independently, and with uniform dis-
tribution a value f(ai) ∈ N . Let E be denote the event that there exist
1≤ i1< i2< .. . < in ≤nt such that g(aij ) �= g(aik) for all 1≤ j < k≤n, and
f(aij)=j for all 1≤j≤n.

Then the probability that E does not hold is at most

n−1∑
q=0

(
tn

q

)
nq(n−1)(n− 1)tn−nq

ntn
≤
(

4et
n

)n

e−t.

Proof. To estimate the number of functions f for which the event E fails,
we argue as follows. Given such an f , let i1 be the smallest integer (if it
exists) such that f(ai1)=1. Assuming i1<i2<.. .< ij−1 have already been
defined, and assuming that f(is) = s for all s < j and that the elements
g(ais),s<j, are pairwise distinct, let ij be the smallest integer (if it exists)
satisfying ij>ij−1, f(aij )=j and g(aij ) �=g(ais) for all s<j. Note that, since
the event E fails, this process must terminate after some q≤n−1 elements
is have been defined. Note also that if k is an index satisfying is−1<k<is,
and g(ak) differs from g(aij ) for all j ≤ q (or even just for all j < s), then
f(ak) cannot be equal to s (since otherwise we would have defined is = k).
Since there is a similar restriction for the value of f(ak) for k < i1 and for
k>iq, it follows that once the sequence i1<i2 . . .< iq has been defined, the
value of f(ak) can attain at most n− 1 values for all but at most tn−nq
elements ak. Therefore, the total number of functions f for which the event
E fails is at most

n−1∑
q=0

(
tn

q

)
nq(n−1)(n− 1)tn−nq.

Since the total number of possible functions f is ntn, the probability that E
does not hold is at most

n−1∑
q=0

(
tn

q

)
nq(n−1)(n− 1)tn−nq

ntn
≤

n−1∑
q=0

(
etn

q

)q ( nn

(n− 1)n

)q 1
nq

(
1 − 1
n

)tn
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≤
(
et

n

(
1 +

1
n− 1

)n)n

e−t ≤
(

4et
n

)n

e−t.

Proof of Theorem 1.3. Let (T,<) be an ordered tournament on the set
N = {1,2, . . . ,n} of n vertices, ordered naturally. We may and will assume
that n is sufficiently large. Let c > 3 be an absolute constant, and let t be
the smallest integer satisfying t>cn logn such that t−1 is a prime. By the
known estimates for the distribution of primes, t=(1+o(1))cn logn. Let P
be a projective plane of order t−1. Each line of P contains precisely t points,
and the number of points in P is (t−1)2 + t< t2. Replace each point p∈P
by a set Sp of n points, where all sets Sp are pairwise disjoint. Construct a
tournament T ′ on the set ∪p∈PSp of less than nt2 vertices as follows. For ev-
ery line l in P , let fl :∪p∈lSp→N={1,2, . . . ,n} be a random function, where
each image fl(u) is chosen randomly, uniformly and independently in N ,
and the functions corresponding to different lines are chosen independently.
For u,v∈∪p∈lSp, where u∈Sp, v∈Sp′ and p �=p′, let uv be a directed edge if
and only if fl(u)fl(v) is a directed edge of T . The edges with two endpoints
in the same set Sp are oriented arbitrarily.

To complete the proof, we show that almost surely (that is, with proba-
bility tending to 1 as n tends to infinity), T ′ contains an ordered copy of T
in any ordering. Fix an ordering <′ of T ′, and let us estimate the probability
that in this ordering (T ′,<′) contains no ordered copy of T . For each line l in
the projective plane, the ordering <′ induces an ordering of the tn vertices
∪p∈lSp. Let S=(a1,a2, . . . ,atn) be this induced ordering. Define g(ai)=p if
ai ∈ Sp. Then, for every p∈ l, |{i : g(ai) = p}|= |Sp|= n. Observe now that,
by Lemma 3.1, the probability that (T,<) is not a subtournament of the
ordered subgraph of (T ′,<′) consisting of all edges running between distinct
groups Sp (p ∈ l), is at most

(
4et
n

)n
e−t. This follows from the fact that, if

the event E in Lemma 3.1 holds for f = fl, then ai1 , . . . ,ain induce a copy
of T , as required. Since the events for distinct lines are totally independent,
the probability that (T ′,<′) contains no ordered copy of (T,<) is at most

((
4et
n

)n

e−t
)(t−1)2+t

= e−(1+o(1))c3n3 log3 n.

The total number of orderings of T ′ is (n((t−1)2 + t))!≤ e(1+o(1))3c2n3 log3 n,
and as c>3, by our choice, the probability that T ′ fails to contain a copy of
T in some ordering is o(1), completing the proof.

We next show that the O(n3 log2n) upper bound cannot be replaced by
o(n2). We need the following well-known result.
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Lemma 3.2 ([4], [2]). The number |Aut(T )| of automorphisms of any tour-
nament T on n vertices does not exceed 3(n−1)/2.

Theorem 3.3. There exists an absolute constant b≥ 1√
3e2

with the follow-

ing property. Let (T,<) be an ordered tournament on n vertices, and suppose
T ′ is another tournament such that for every ordering <′ of T ′, (T,<) is an
induced subtournament of T . Then T ′ has at least bn2 vertices.

Proof. Let N be the number of vertices of T ′. Then the total number of
induced labelled (but not necessarily ordered) copies of T in T ′ is at most(N

n

)
|Aut(T )|, which, by Lemma 3.2, does not exceed

(
eN
n

)n
3n/2. It follows

that the probability that for a random ordering <′ of T ′, at least one of
these copies is ordered, is at most(

eN

n

)n

3n/2 1
n!

≤
(√

3e2N
n2

)n

.

If N < n2/(
√

3e2), this number is less than 1, implying that there is an
ordering <′ with no ordered copy of (T,<). Thus, we have N ≥n2/(

√
3e2),

completing the proof.

The discussion for tournaments can be easily adapted to induced sub-
graphs of graphs. A simple undirected graph H with a linear order < on its
vertex set is called an ordered graph and is denoted by (H,<). An ordered
graph (H,<) is said to be an induced subgraph of another one, (H ′,<′), if
there is a function f :V (H)→V (H ′) such that, for any u,v∈V (H),
(i) f(u)<′ f(v) if and only if u<v,
(ii) f(u)f(v)∈E(H ′) if and only if uv∈E(H).

The proof of Theorem 1.3 can be easily modified to deal with ordered
graphs, giving the following result of Rödl and Winkler.

Theorem 3.4 ([13]). For any ordered graph (H,<), there exists a graph
H ′ such that, for every ordering <′ of H ′, (H,<) is an induced subgraph of
(H ′,<′). Moreover, if H has n vertices, there exists an H ′ with the required

property with O
(
n3 log2n

)
vertices.

Note that there is no nontrivial analogue of Theorem 3.3, since the num-
ber of automorphisms of an undirected graph on n vertices can be as large
as n!. In fact, if (H,<) is an ordered complete graph on n vertices, then the
graph H ′ =H has only n vertices and contains an induced ordered copy of
(H,<) in any ordering.
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Combining the above arguments with some known results about packings,
we can extend the last result to induced hypergraphs as well. Moreover, the
estimate for hypergraphs with no edge of size less than 3 is slightly better
than the corresponding result for graphs.

A hypergraph H with a linear order < on its vertex set is called an
ordered hypergraph and is denoted by (H,<). An ordered hypergraph (H,<)
is said to be an induced subhypergraph of another one, (H ′,<′), if there is
a function f :V (H)→V (H ′) such that, for any u,v∈V (H), f(u)<′ f(v) if
and only if u<v, and a set of vertices forms an edge iff its image under f
forms an edge.

Theorem 3.5. For any ordered hypergraph (H,<) in which each edge con-
tains at least 3 vertices, there exists a hypergraph H ′ such that, for every
ordering <′ of H ′, (H,<) is an induced subhypergraph of (H ′,<′). More-
over, if H has n vertices, there exists an H ′ with the required property with
O
(
n3
)
vertices.

Proof. Let (H,<) be an ordered hypergraph on the set N={1,2, . . . ,n} of
n vertices, ordered naturally, where each edge of H is of size at least 3. Let
c be an absolute constant such that 4ece−c < 1/2 (c= 5, for example, will
do). Let t be the smallest prime satisfying t>cn (then t=(1+o(1))cn.) As
described in [10], there is a simple, explicit construction of a family L of t3

subsets of a set P of size t2 such that each member of l is of cardinality t and
the intersection of no two members of L is of size more than 2. Replace each
element p∈P by a set Sp of n points, where all sets Sp are pairwise disjoint.
Construct a hypergraph H ′ on the set ∪p∈PSp of nt2 vertices as follows.
For every l ∈ L, let fl : ∪p∈lSp → N = {1,2, . . . ,n} be a random function,
where each image fl(u) is chosen, randomly, uniformly and independently
in N , and the functions corresponding to different members l∈L are chosen
independently. If u1, . . . ,ur are vertices in ∪p∈lSp, then {u1,u2, . . . ,ur} is
an edge of H ′ iff the vertices ui belong to pairwise distinct sets Sp, and
{fl(u1),fl(u2), . . . ,fl(ur)} is an edge of H. Note that, since the intersection
of any two distinct members of L is of size at most 2, and H has no edges
with fewer than 3 vertices, none of the edges defined above can lie in the
union ∪p∈l′Sp, for any l′∈L,l′ �= l.

To complete the proof, we show that almost surelyH ′ contains an ordered
induced copy of H in any ordering. Fix an ordering <′ of H ′, and let us
estimate the probability that in this ordering (H ′,<′) contains no ordered
induced copy of H. For each l ∈ L, the ordering <′ induces an ordering
of the nt vertices ∪p∈lSp. Let S= (a1,a2, . . . ,atn) be this induced ordering.
Define g(ai) = p if ai ∈ Sp. Then, for every p∈ l, |{i : g(ai) = p}|= |Sp|= n.
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Observe now that, by Lemma 3.1, the probability that (H,<) is not an
induced subhypergraph of the induced ordered subhypergraph of (H ′,<′)
on S, is at most

(
4et
n

)n
e−t ≤ 2−n. This is true, because if the event E in

Lemma 3.1 holds for f=fl, then the vertices ai1 , . . . ,ain induce a copy of T ,
as required. Since the events for distinct sets l∈L are totally independent,
the probability that (H ′,<′) contains no ordered copy of (H,<) is at most

(2−n)t
3
= 2−(1+o(1))c3n4

.

The total number of orderings of H ′ is (nt2)!≤ e(1+o(1))3c2n3 logn, and thus
the probability that H ′ fails to contain a copy of H in some ordering is o(1),
completing the proof.

It is worth noting that the argument in the proof of Theorem 3.3 also
works for hypergraphs whose group of automorphisms is not too large. In
particular, if the hypergraph H in the statement of the last theorem has no
nontrivial automorphisms, then the number of vertices of any hypergraph
H ′ satisfying the assertion of the theorem must be at least Ω(n2).

Returning to tournaments, we now describe a proof of Theorem 1.4,
using Talagrand’s Inequality [16]. An alternative proof can be given using
the methods of [3].
Proof of Theorem 1.4. Let N,n0 and n be as in the statement of the
theorem, and let T ′ be a random tournament on the vertices 1,2, . . . ,N ,
obtained by choosing, for each pair of vertices i,j of T ′, randomly, uniformly,
and independently, either the edge ij or the edge ji. Whenever it is needed,
we assume that N is sufficiently large. To complete the proof, we show
that almost surely in every ordering, T ′ contains an ordered copy of every
tournament on n vertices. To this end, fix an ordering <′ of T ′, and fix an
ordered tournament T on n vertices. We use Talagrand’s Inequality (see,
e.g., [1], Chapter 7) to estimate the probability that in this ordering T ′

contains no ordered copy of T . The computation here is very similar to the
one estimating the probability that the clique number of the random graph
G(n,1/2) is less than its expected value by at least 2.

For each set K of n vertices of T ′, let BK be the event that the induced
subgraph of (T ′,<′) on K is an ordered copy of (T,<). Then the probability
Pr(BK) of each event BK is precisely 2−(n

2). Define µ=
(N

n

)
2−(n

2), and note
that this is the expected number of ordered copies of (T,<) in (T ′,<′). A
simple computation shows that the number n0 defined in the statement of
the theorem satisfies n0 =(1+o(1))2log2N , implying that for the function
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f(m) =
(N
m

)
2−(m

2 ) and for every m close to n0, we have f(m+1)/f(m) =
N−1+o(1). Therefore, µ≥N2−o(1).

For two subsets K and K ′, each containing n vertices of T ′, let K∼K ′

stand for the fact that 2≤|K∩K ′|≤n−1. Define, further,∆=
∑

K∼K ′ Pr(BK∧
BK ′), where the sum ranges over all ordered pairs (K,K ′) with K ∼ K ′.
Therefore, 1

2∆ is the expected number of pairs of ordered copies of T that
share an edge.

The technical part of the proof is a careful estimate of the quantity ∆/µ2.
Observe that if |K∩K ′|= i (≥2) then

Pr(BK ∧BK ′) ≤ 2−2(n
2)+(i

2).

In fact, Pr(BK∧BK ′) is equal either to zero, or to the right-hand side of the
above expression. Thus, it follows that ∆≤∑n−1

i=2 ∆i, where

∆i =

(
N

n

)(
n

i

)(
N − n
n− i

)
2−2(n

2)+(i
2).

Therefore,

∆i

µ2
=

(N
n

)(n
i

)(N−n
n−i

)
2−2(n

2)+(i
2)(N

n

)2
2−2(n

2)

=

(n
i

)(N−n
n−i

)
2(

i
2)(N

n

) ≤
(
n

N

)i
(
n

i

)
2(

i
2) ≤

(
n2

N
2(i−1)/2

)i

.

It follows that
∆2

µ2
≤ 2
n4

N2
,(1)

and that for each i satisfying, say, 3≤ i≤100, we have

∆i

µ2
= O

(
n6

N3

)
.(2)

Furthermore, for 100<i≤1.9log2N , we have

∆i

µ2
≤
(
n2

N0.05

)i

<
1
N5
.(3)
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For every i in the range 1.9log2N ≤ i≤n−1, put i= n− j, and note that
1≤j≤(0.1+o(1)) log2N and

∆i

µ2
≤ 1
N2−o(1)

∆i

µ
=

1
N2−o(1)

(N
n

)(n
j

)(N−n
j

)
2−(n

2)−j(n−j)−(j
2)(N

n

)
2−(n

2)

≤ 1
N2−o(1)

(
n

j

)(
N − n
j

)
2−j(n−j) ≤ 1

N2−o(1)

(
nN2−(n−j)

)j

≤ 1
N2−o(1)

(
n

N0.9−o(1)

)j

≤ 1
N2.9−o(1)

.

Combining the last inequality with inequalities (1), (2) and (3), we conclude
that ∆

µ2 ≤(2+o(1)) n4

N2 .

Let X = h(T ′) denote the maximum number of pairwise edge-disjoint
ordered copies of T in (T ′,<′). We claim that the expected value ofX=h(T ′)
satisfies

E(X) ≥
(

1
4

+ o(1)
)
N2

n4
.(4)

To see this, define p= N2

2n4µ , and note that, by a simple computation, we have
p < 1. Let S be a random collection of ordered copies of T in T ′ obtained
by choosing each ordered copy of T in T ′ to be a member of S, randomly
and independently, with probability p. The expected number of copies of T
in S is pµ, and the expected number of pairs of members of S that share an
edge is 1

2∆p
2. By omitting an arbitrarily chosen member of each such pair,

we obtain a collection of pairwise edge-disjoint copies of T whose expected
number is at least pµ− 1

2∆p
2. Thus

E(X) ≥ pµ− p
2∆

2
≥ N

2

2n4
− N

4

8n8
(2 + o(1))

n4

N2
=
(

1
4

+ o(1)
)
N2

n4
,

establishing (4).
To apply Talagrand’s Inequality (in the form presented, for example, in

[1], Chapter 7), note that h(T ′) is a Lipschitz function, that is |h(T ′)−
h(T ′′)| ≤ 1 if T ′,T ′′ differ in the orientation of at most one edge. Note also
that h is f -certifiable for f(s) =

(n
2

)
s. That is, whenever h(T ′) ≥ s there

is a set of at most
(n
2

)
s oriented edges of T ′ such that for every ordered

tournament T ′′ which agrees with T ′ on these edges, we have h(T ′′)≥s.
By Talalgrand’s Inequality we conclude that for every b and t

Pr[X ≤ b− t
√
f(b)] Pr[X ≥ b] ≤ e−t2/4.(5)
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Let B denote the median of X = h(T ′). Without trying to optimize the
absolute constants, we claim that

B ≥ N2

16n4
.(6)

Indeed, assume this is false, and apply (5) with b = N2

8n4 and t = N
4n3 . As

f(b)=
(n
2

) N2

8n4 ≤ N2

16n2 , we obtain that

Pr[X ≤ N
2

8n4
− N2

16n4
] Pr[X ≥ N

2

8n4
] ≤ e−N2/(64n6).

Since, by assumption, B< N2

16n4 , the first term of the left-hand side is at least
1/2, and we conclude that

Pr

[
X ≥ N

2

8n4

]
≤ 2e−N2/(64n6).

As X=h(T ′)≤
(N

n

)
for every T ′, this implies that

E(X) ≤ N
2

8n4
+

(
N

n

)
2e−N2/(64n6) =

N2

8n4
+ o(1),

contradicting (4) and hence proving (6).
We can now apply (5) with b= N2

16n4 and t= N
4n3 to obtain that

Pr[X = 0]Pr[X ≥ b] ≤ Pr[X ≤ b− t
√
f(b)]Pr[X ≥ b] ≤ e−N2/(64n6).

By (6), we have Pr[X≥b]≥1/2, and hence Pr[X=0]≤2e−N2/(64n6).
Thus, we have proved that, for every fixed ordering of T ′ and for every

fixed ordered T , the probability that T ′ contains no ordered copy of T is
at most 2e−N2/(64n6). Since the total number of orderings of T ′ is less than
NN =eN logN and the total number of tournaments T on n vertices is 2(

n
2) we

conclude that the probability that (T ′,<′) fails to contain some tournament
of size n in some ordering is at most

eN log N2(
n
2)2e−N2/(64n6) = o(1).

This completes the proof.

The above proof can be modified to deal with graphs in the place of
tournaments. We obtain the following, which is a very slight numerical im-
provement of the main result in [3].
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Theorem 3.6 (see also [3]). Given an integer N , let n0 be the largest
integer such that (

N

n0

)
2−(n0

2 ) ≥ 1,

and put n = n0 − 2. Then, for all sufficiently large N , the following holds
almost surely. The random graph G(N,1/2) contains, in any ordering, an
induced copy of every ordered graph on at most n vertices.

4. Tournaments and H-free graphs

In this section, we prove Theorem 1.2. We need the following wellknown

Lemma 4.1 ([8]). For any two total orderings of the same (k2+1)-element
set V , there is a (k+1)-element subset U ⊆ V such that either the order
of any two elements of U is the same, or the order of any two elements is
opposite in the two orderings.

We say that a tournament T has the Erdős–Hajnal property if there exists
a positive ε=ε(T ) such that every T -free tournament with n vertices has a
transitive subtournament whose size is at least nε.

To any tournament T and to any ordering < of its vertex set, assign an
ordered graph (H(T ),<) on the same vertex set, as follows. Join two vertices
u<v by an edge of H(T ) if and only if the edge connecting them in T was
directed towards v. Similarly, assign to any ordered graph (H,<) an ordered
tournament (T (H),<) with the same vertex set, by connecting u< v with
an edge directed towards v if uv∈E(H) and with an edge directed towards
u if uv /∈E(H).

Now we have everything needed for the

Proof of Theorem 1.2. Assume first that Conjecture 1 is true, i.e., every
graph has the Erdős–Hajnal property. Let T be a tournament. We want to
show that T also has the Erdős–Hajnal property.

Choose an arbitrary ordering < of the vertex set of T . Applying Theo-
rem 3.4 to the ordered graph (H(T ),<) associated with T and <, we obtain
that there exists a graph H ′ with the property that, for any ordering <′ of
H ′, (H(T ),<) is an induced subgraph of (H ′,<′). By Conjecture 1, there
exists an ε(H ′) > 0 such that every H ′-free graph with n vertices has a
homogeneous subset of size at least nε(H′).

Consider now a T -free tournament T ′ with n vertices and an ordering <′

of V (T ′). Then the ordered graph (H(T ′),<′) associated with them cannot
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contain an induced subgraph isomorphic to H ′ (because, no matter how
it is ordered, this would yield a copy of T in T ′). Thus, H(T ′) must have
a homogeneous set of size at least nε(H′). However, a homogeneous set in
(H(T ′),<′) corresponds to a transitive subtournament in T ′.

The proof of the reverse statement is very similar, but the roles of graphs
and tournaments have to be switched. Assume that Conjecture 2 is true,
and let H be an arbitrary graph. To establish that H has the Erdős–Hajnal
property, fix a linear order < on V (H), and denote the associated ordered
tournament by (T (H),<).

By Theorem 1.3, there exists a tournament T ′ with the property that,
for any ordering <′ of T ′, (T (H),<) is a subtournament of (T ′,<′). By
Conjecture 2, there exists an ε(T ′)> 0 such that every T ′-free tournament
with n vertices has a transitive subtournament of size at least nε(T ′).

Consider now an H-free graph H ′ with n vertices and an ordering <′

of V (H ′). Then the ordered tournament (T (H ′),<′) associated with them
cannot contain a subtournament isomorphic to T ′ (because, no matter how
it is ordered, this would yield a copy of H in H ′). Thus, T (H ′) must have a
transitive subtournament of size at least nε(H′). However, by Lemma 4.1, any
such subtournament has at least nε(H′)/2 vertices such that, with respect to
the ordering <′, either all edges connecting them are directed towards their
larger endpoints, or all of them are directed towards their smaller endpoints.
These vertices induce a complete or an empty subgraph of H ′, respectively.
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