We want to prove the following lemma:

Key Lemma: For every d>0 and integer >0, there are %2>eq,>0, Ng), and aq;>0 such
that if Xj,...,Xiare subsets of V(G), each of size N > Ng,; and for all 1< i<j< [, the pair
(X X;j) is eq-regular with density at least d then G contains at least aqiN' cliques each
containing one vertex in each of the X;.

Proof: It is enough to prove the result for d<1/2 as it then holds for all larger d as
well. We proceed by induction on l. The base case when lis 2 is trivial, since by the
definition of density, we can set aq2 to be d.

So we assume that 1 is at least three and that the lemma holds for (I-1,d) for all
values of d<1/2.

We set eq) to be the minimum of (1/1, d/2. deq;2).1/2). We set Ng, to be 2Ng,2,.1/d.
We set aq; to be (d/2)"1(aq/2,-1/1).

For each i between 1 and I-1 we let Y; be the set of vertices of X which have fewer
than d/2 neighbours in X; Since eq) < d/2, the regularity of (X;Xi) implies that |Yj| is
at most eqIN < N/I and that the subset X" of vertices of Xj in none of the Y; has size
at least N/1. We shall show that each vertex v in X" is in (d/2)"1aq4,2,-1N"1 cliques,
each containing one vertex in each of the X; To this end, we let X';be a subset of the
neighbourhood of v in Xjwhose size is the round up N* of dN/2 and apply
induction on XVy,...,X"1.1.

Since Ng,is 2Ng;.1/d, N* is at least Ng/2,.1. So it remains to show that every pair
(Xvi,Xvj) is eq/2-1-regular. To this end, suppose, X’ (resp. X’j) is a subset of at least
ed/2-1N* vertices of XV; (resp. X¥j). Then, since N*>dN/2, the eq,-regularity of (X;X;)
implies that both d(X’;,X’j) and d(XV;,X";) lie within eq, of d(X;X;) so they differ by
at most 2eq,<eq,2,-1 and the proof is complete.

We immediately obtain the following:

Keyer Lemma: For every d>0 and integer >0, there are %2> eq,>0, N4, and aq;>0
such that if H is a graph on vertices vy,...,viand Xj,...Xi are subsets of V(G), each of
size N > Ng; and for all 1< i<j< [, the pair (X X)) is eqi-regular with density which is
atleast d if vjvjis an edge of G and at most 1-d otherwise then G contains at least
aqN"! induced copies of H, each containing one vertex in each of the Xi.

Proof: A pair is e-regular in G if and only if it is e-regular in the complement of G,
since the density of a pair in G and the complement of G sums to 1. We simply
complement the edges between every pair corresponding to a non-edge of H and
apply the Key Lemma.

We now present a variant of this result which allows us to require fewer sets at the
expense of a double-sided density bound.

Definition: t(H) is the minimum integer t such that foranyaandb summingtot, H
can be partitioned into a stable sets and b cliques.



Remark: t(H) is clearly at least the chromatic number of H, at least the chromatic
number of the complement of H, and at most the sum of these two numbers.

Keyest Lemma: For every %>d>0 and graph H, there are equ>0, Nq,u, and aqu >0
such that if t(H) is ], and Xj,...,Xi are subsets of V(G), each of size N > Ngn and for all
1<i<j< [, the pair (X;X;) is eqn-regular with density which is atleastd and at most
1-d then G contains at least aquN"IVI induced copies of H.

Proof: We need an auxiliary result which we prove below:

Refinement Lemma: for every k>1,1/2>d>0, e>0 there is an Nk and Sk,e such that if
G has at least Ny vertices then there is an e-regular partition (Xo,X,...Xp) of G
where p is at at most Sk,e such that for some k of these parts, either (i) every pair is

e-regular with density at least d, or (ii) every pair is e-regular with density at most
d.

Proof of Keyest Lemma: We consider Ngq,2,jv(n),e=€d,2,|v(H),ad/2,|v(H)| as in the Keyer
Lemma. We set k to be |[V(H)| and consider Sk as in the refinement lemma. We set
Na,u to be N, vy Ske/(1-€).

We set eqn to be (1-e)e/Ske. We set aqn to be ad 2, v (Ske/1-€) VL

We apply the Refinement Lemma to each Xi; WLOG, we can assume that for some
a<t(G), the partions of Xj,... Xa satisfy (i), while the remaining partitions satisfy (ii).
We consider a partition of G into cliques Sy,...,Sa and stable sets Sa+1,...,S1. For each i,
we choose |Si| of the k special parts of Xi whose existence is guaranteed by the
refinement lemma and a bijection between these parts and the vertices of H in S;.
For each vertex viof H, we let Z; be the corresponding part in the bijection. We can
easily verify that the Z; verify the hypotheses of the Keyer Lemma for |V(H)| and
d/2. So, applying that lemma we obtain the desired result. QED.

Proof of the Refinement Lemma: We can assume that e is at most 10-k, as if the
result is true for e it is true for e’>e. We let kK’ be 102k*1 and set Ske to be the My e
given by the Regularity Lemma. We apply the Regularity lemma with e and k. From
the resultant parts, we choose a setSo of p/10 which are in the fewest irregular
pairs. It follows each is in at most p/103k irregular pairs. We now proceed for a
sequence of 2k iterations. After i iterations we will have construced a sequence
Yi,...Yi of parts and a set S; of at least p/10'*! parts such that:

For each j between 1 and i, we have either (i) for every part X which is in S;or is
Yjfor some j>i, (X;Y) is e-regular with density>d, or (ii) for every part X which isin S;
or is Yjfor some j>i, (X;Y) is e-regular with density<1-d.

To extend this sequence in iteration i+1, we consider any part Xi+1 in S;. It is irregular
with at most p/103k<|Si| /10 of the parts in Si. Since each of the other pairs
containing it either has density exceeding d or less than 1-d, we can clearly choose
Si+1in S;j so that (i) or (ii) holds for j=i+1 and hence for all j.

Now, we have k of the Y; for which (i) holds, or k for which (ii) holds. QED.



