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HEAPS ON HEAPS*

GASTON H. GONNET" AND J. IAN MUNRO,"

Abstract. As part of a study of the general issue of complexity of comparison based problems, as well
as interest in the specific problem, we consider the task of performing the basic priority queue operations
on a heap. We show that in the worst case:

lg lg n + O(1) comparisons are necessary and sufficient to insert an element into a heap. (This improves
the previous upper and lower bounds of lg n and O(1).)

lg n + log* n + O(1) comparisons are necessary and sufficient to replace the maximum in a heap. (This
improves the previous upper and lower bounds of 2 lg n and lg n.)

1.625n + O(lg n log* n) comparisons are sufficient to create a heap. 1.37... n comparisons are necessary
not only in the worst case but also on the average.

Here lg indicates the logarithm base 2 and log* denotes the iterated logarithm or number of times the
logarithm base 2 may be taken before the quantity is at most 0.

Key words, heap, comparisons, lower bound

1. Introduction. One of the most elegant of storage structures is the representation
of a priority queue as a heap. A heap [8], [1], [4], [2] is defined as a structure on
locations 1 through n of an array with the property that the element in location is
smaller than that in location [i/2J, thus inducing a complete binary tree with the
property that the value of the parent is greater than that of the child. Such a pointer
free representation has been called an implicit data structure [5]. It is well known that
a heap enables us to perform the basic priority queue operations, insert an element
and rebalance after extracting the maximum in O(lg n) basic operations. Furthermore,
a heap can be created in about 2n comparisons 1], [4]. These results are very old by
the standards of our field, dating back to the decade before the last. Our aim, in this
paper, is to re-examine the algorithms for performing these basic operations on a heap.
We are able to establish new upper and lower bounds on the number of comparisons
necessary in the worst case to perform these tasks. While our algorithms may be of
some interest in implementing heaps, we are using this structure primarily as a paradigm
for the study of computation complexity of comparison based problems.

2. Insertion and promotion. Observe that the elements on the path from any node
to the root must be in sorted order. Our idea is simply to insert the new element by
performing a binary search on the path from location n + 1 to 1. As, for n-> 2, this
path contains [lg (n + 1) old elements, the algorithm will require [lg( 1 + lg (n + 1)
comparisons in the worst case. This expression may be rewritten as [lg lg (n + 2) which
also indicates the number of comparisons required when n 0 or 1. We note that the
number of moves will be the same as those required in a carefully coded standard
algorithm. It was this simple observation, also used in [3] and [6] for priority queues
on a bounded domain, that sparked our interest in heap manipulation algorithms.
Indeed, it is very useful as a basis for the extraction algorithm presented in the next
section. However, the reader may find the fact that this bound is tight more interesting.

* Received by the editors August 7, 1984, and in revised form August 23, 1985. A preliminary report
on some of the results in this paper appeared in ICALP 1982. This research has been supported by the
Natural Sciences and Engineering Research Council of Canada under grants A8237 and A3353.
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HEAPS ON HEAPS 965

THEOREM 1. lg lg (n / 2) comparisons are sufficient and [lg lg (n / 2) 2 are
necessary in the worst case to insert an element into a heap of size n.

Proof. The upper bound has been given. The lower bound comes from considering
a path in the updated heap from the root through the new element and on to a leaf.
Such a path is of length either Jig(n+2)] or lg(n/2)J and so contains at least
lg (n/2)J -1 values from the old heap.

We develop an adversary strategy as follows. The adversary answers queries in a
manner consistent with the elements in positions 2 through 2i+1-1 of the old heap
being ofranks 2 through 2/1 1 in the structure, although not necessarily in consecutive
order among themselves. We refer to such elements, which were the same distance
from the root in the old heap, as being of the same level. The adversary answers queries
involving the new element in a manner consistent with it falling in one of the (lg (n /
1)] / 1 interlevel gaps. Indeed it will answer any comparison so as to maximize the
number of gaps into which the new element could fall.

On the other hand, observe that if k elements from any level of the old heap occur
on such a path, then at least k-1 comparisons between elements of that level must
have been performed. Hence the algorithm outlined above appears to be optimal. We
must, however, take into account that every such path could be of length Llg (n / 1)J
rather than [lg (n / 1)] as in our algorithm, and that it may contain an element from
the bottom (incomplete) level of the old heap. Taking these into account we can make
the more modest claim that [lg lg (n + 2)]- 2 comparisons are necessary in the worst
case. D

We emphasize that the above bound is on the number of comparisons required
to perform on insertion. The number of data items that are moved is also an interesting
metric. Our method and the standard one use exactly the same number of moves. If
the new element is larger than any currently in the structure this number is 1/

lg (n / 1)J. Under such circumstances, and if the old heap is arranged in the manner
suggested in the proof, it follows immediately that this number of elements must be
moved to perform an insertion.

3. Extractioa anti tlemotioa. Based on the insertion algorithm of the previous
section, we can easily extract the maximum and reorder the heap in lg n/lg lg n
comparisons. Simply let the "empty location" filter down to the bottom level (lg (n /
1) 1 comparisons) and then perform an insertion ofthe element previously in location
n (or a new element if one is to be added) along the path from the empty spot to the
root. This bound can, however, be improved as follows. For simplicity assume we are
removing the maximum and simultaneously inserting a new element.

begin
Remove the maximum, creating a "hole" at the top of the heap;
Find the path of maximum children down r levels to A(i);
if New element A(i)
then Perform a binary search with new element along path of length r
else Promote each element on the path to the location of its parent and

recursively apply the method starting at location A(i)
end

The number of comparisons required is, then,

C(n)- r/ 1 /max (lg (r/ 1)], C(n/2r])).
Choosing r [lg n- lg lg n ], we see that C(n) can be reduced to [lg n + log* n

where log* (x) 0 for x 1 and log* n log* ([lg n ]) / 1. Indeed the optimal choice
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966 GASTON H. GONNET AND J. IAN MUNRO

of r may differ by 1 from the bound suggested and the bound on C(n) may also be
reduced by 1 for certain values of n. However, we omit these awkward details.

As it happens, this algorithm, with judicious choice of r, essentially minimizes the
number of comparisons necessary to perform the update. The key idea of our proof
is, very informally, to give outcomes to comparisons in a manner consistent with the
worst case of the algorithm outlined and to provide extra information so that any
algorithm "might as well" have followed the given technique. The lower bound then
follows from the optimal choice of r in the method presented. More formally:

THEOREM 2. lg n + log* n + O(1) comparisons are necessary and sufficient to perform
the operation replace maximum on a heap.

Proof. Suppose that the heap upon which the extraction is to be performed is of
the form indicated in Fig. 1.

(i) The largest j (j unknown but =<lg n) elements are arranged along a path
from the root. Call this path of elements j the shaft.

(ii) The smallest elements in the structure are the (n/2 or so) descendants of
the bottom element of the shaft.

(iii) The other elements lie between these, satisfying the heap property, and
furthermore, tend to be arranged so that the higher their closest shaft ancestor is
located, the larger the element.

(iv) The new element is smaller than all shaft elements but larger than all others.
The crucial property is that the last element of the shaft must be determined in

order to perform the update. This follows since on removal of the maximum, the shaft
element of level is the (i-1)st largest element in the heap and so must be moved to
a higher level. On the other hand, the largest of the small elements has the property
that it cannot be raised to a higher level as there are not enough smaller elements to
support it.

/ shaft of large
nts

others \ __smallest
elements

FIG. 1. A hard case for heap update "the way it is".

The adversary strategy is based on viewing the information which has been gathered
as finding the path of maximum children to some level (see Fig. 2). Call this path the
chain. The chain partitions the remaining elements into those which are descendants
of the last chain element (the inside) and those which are not (the outside). Notice
that the chain (what we have learned) and the shaft (what we are to discover) coincide
for the length of the shorter. The general approach of the adversary is to respond to
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HEAPS ON HEAPS 967

outside inside

FIG. 2. Information yielded by the adversary "what we know".

queries so that the algorithm learns (almost) nothing about the relation of the inside
elements to any but their ancestors. Furthermore, note that anything learned about the
outside alone is of no help in determining the end of the shaft. The chain is, of course,
permitted to be extended one level per comparison, and the algorithm can always
check to see whether the shaft is shorter than the chain.

The outcome of comparisons is given below:

Chain element--New element
--Answer according to the worst case as implied by the algorithm
Chain element--Outside element
--Answer as Chain element--New element.
Inside--Outside
--Outside element is larger, supply the additional information that the chain is extended
by the one element which is not an ancestor of the (hitherto) inside element
considered.

Inside--New
--As inside-outside. The new element is declared to be smaller and the additional

information is given that the chain can be extended by an element avoiding the path
to the hitherto inside element

Outside--New
--The new element is smaller. No other information need be given.
Outside--Outside
--Answer arbitrarily but consistently.
Insidemlnside (this may be a compound step)
--If both elements are descendants of the same child of the last chain element, give

an arbitrary outcome and extend the chain 1 step to avoid both.
--If both are children of the last chain member, extend the chain arbitrarily.
--If one is a child of the last chain member and the other is not, extend the chain to

include the former.
--Otherwise we cannot avoid giving up some information about inside elements and

so delay advancing the chain as sketched below.

If the next comparison does not involve an inside element it is answered as
indicated above. If it does involve at least 1 inside element but is not of this (awkward)
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968 GASTON H. GONNET AND J. IAN MUNRO

subtype, then the outcome is as indicated above and the chain is extended 2 steps
avoiding all hitherto inside elements that were involved in comparisons. We must be
careful of a minor lacuna that this strategy may prohibit an element on the chain from
being the end of the shaft. It will, however, not prevent 2 elements in a row from being
the end. Hence the lower bound is weakened by at most one comparison over all.

This leaves the case in which the next comparison involves a pair of inside elements
which are proper descendants of different children of the chain end. If one is a

grandchild of the chain end, it wins the comparison and the chain is extended two
positions as indicated above. Otherwise, we declare the higher element to be larger
and defer chain extension for the last time. On the next query involving an inside
element we follow the basic approach by the previous query, except that the chain
may be extended 3 steps. This follows since at most 6 elements on the inside have
been involved in comparisons and there are 8 subtrees three steps from the chain end,
and so an "open" node may be found to which the chain may be extended. Again
some chain elements may be precluded from being the chain end, but no more than
3 in a row. Hence we see the algorithm presented is within one comparison of
optimal.

A bound on performing a simple extraction follows easily.
COROILAR 3. lg n+log* n+ O(1) comparisons are necessary and sufficient to

remove the maximum element from a heap and reconstitute the heap structure.

4. Creating a heap. The usual algorithm for creating a heap [1] requires 2n-
O(lg n) comparisons. It is most easily described by a call to Create (A, 1, n) which
creates a heap in place on elements in locations 1 to n of the array A.

Create (A, i, n)
Do case 2. i’n

=if A(i)<A(n) then Swap (A(i),A(n))
> do nothing
< Begin

Create (A, 2 i, n)
Create (A, 2 + 1, n);
Perform replace maximum operation as if a large element in
A(i) has been replaced by the actual value of A(i)

end

Using the "standard" replace maximum technique this leads to the recurrence

T(n)=2T(n/2)+21gn, T(2’- 1) 2(2’- k- 1)

and hence the stated bound on the number of element to element comparisons. Clearly
the method of the previous sections can be employed to reduce this bound. This is an
improvement, but disappointing, as about 1.77... n comparisons are required. By way
of contrast the following lower bound is easily derived.

THEOREM 4. 1.3644... n + O(lg n) comparisons are necessary, not only in the worst

case, but also on the average to create a heap on n elements.
Proof A reasonably straightforward enumeration shows that there are H(n)=-

n !/Ilti valid heaps on a set on n numbers where ti is the size of the heap rooted at
node i. A lower bound on the average number of comparisons required to permit one
of n! possible input sequences to one of these orders is

lg(n!/H(n))=lg t.

D
ow

nl
oa

de
d 

02
/0

4/
13

 to
 1

42
.1

57
.9

6.
10

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



HEAPS ON HEAPS 969

We are unable to give an algorithm which achieves this bound. Indeed we
conjecture that it is not achievable and that the algorithm below minimizes the number
of comparisons to create a heap on n elements in the worst case.

THEOREM 5. !n d-O(log* n lg n) comparisons are sufficient to construct a heap on
n elements.

Proof. We will outline a method of constructing a heap on 2k elements using
2k- k-2 comparisons (k_-> 3). A heap on n nodes can be viewed as a maximum
element, a heap on 2k 1 elements (k -[lg (n 1) 1 or lg (n 1) 1J and a heap
on the remaining nodes. Using the technique below to form structures of size 2k- 1
for appropriate values of k < lg n, a set of at most lg n such heaps are grafted in about
(lg n)(lg n / log* n)/2 comparisons using the technique of the preceding section. The
(lg n)2/2 term in this expression balances the "-k" term in the following construction
for n 2k, leaving the bound claimed.

As seen in the discussion above, what we require is a method of constructing a
heap of size 2k- 1. We find it easier to express our method for size 2. Since these
structures are created and used serially, the task is easily completed by "throwing
away" the single element on the "bottom level". The basis of the method is the
formation of binomial trees of size 2 (see [7]). As illustrated in Fig. 3, this is simply
a tree structure on 2 elements such that

(i) a single element is a binomial tree of order 2;
(ii) a binomial tree of order 2 is constructed from two of order 2-1 by making

the smaller of the maximum values in these trees a child of the larger.

84

50 6 14 32

2 10 8 21 9 28

5 4 7 24

14

FIG. 3. A binomial tree of order 16.

Our method proceeds as follows; the procedure Convert (see also Fig. 4) converts
a binomial tree to a heap.

Procedure Convert T, 2 r)
Begin

Convert (subtree of root of order 2r-l, 2r-1);
This leaves an "extra element" on the bottom level
of this heap, make it a child of the root of T;
We now have 1 binomial tree of order 2

(i 1, , r- 2) and 2 singleton nodes
all hanging from the root;

Construct a binomial tree, S, of order 2r-1 from these;
Convert (S, 2r-)

end

The number of comparisons required by this method, including binomial tree creation,
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970 GASTON H. GONNET AND J. IAN MUNRO

Procedure Convert (T, 2r)
begin
Convert (subtree of root of order 2r-l, 2r-l);
This leaves "extra element" the bottom level
of this heap, make it child of the root of T;

84

We have binomial tree of order 2 (i 1,...,r--2) and 2
singleton nodes all hanging from the root;
Construct binomial tree, S, of order 2r-I from these;

84

21 28

Convert(S, 2r-l)

84

ff 32

14 14 2 28

/,4

14

end.

FIG. 4. Illustration of heap the construction algorithm with the approach construct a binomial tree of 2
nodes and convert it to a heap.

can be shown to be

T(2k)=2T(2k-1)+k.
A binomial tree of order 2 or 4 is a heap; hence the recursive call on these small
binomial trees can be omitted. A more important observation is that a binomial tree
on 8 nodes can be converted to a heap in 1 comparison (rather than 2). Jumping out
of the recursion in the above algorithm on trees of size 8 and using T(8)= 8 as a basis
yields the solution.

T(2)=l, T(4)=3 and

T(2k) 2 k 2 (for k _-> 3).

We are inclined to believe our technique is optimal in the worst case when n is
of the form 2k or 2k- 1 and within a lower order term otherwise. By a careful
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HEAPS ON HEAPS 971

examination of structures on 3 and 4 elements we can show that the method is optimal
for 7-heaps.

THEOREM 6. 8 comparisons are necessary and sufficient, in the worst case, to form
a 7-heap.

However, a 7-heap can be constructed using 7 comparisons on the average based
on the binomial tree "building blocks". This yields an improvement in the average
behavior of our algorithm"

THEOREM 7 15ln 1.5357... n comparisons are sufficient, on the average, to construct
a heap on n nodes.
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