JOURNAL OF ALGORITHMS 10, 352-365 (1989)

Building Heaps Fast
C.]. H. McDI1ARMID*

Institute of Economics and Statistics, Oxford University, Oxford, England
AND

B. A. REED

Bell Communication Research, 435 South Street, Morristown, New Jersey 07960

Received May 26, 1987; accepted September 27, 1988

We present an algorithm to construct a heap which uses on average (a + o(1))n
comparisons to build a heap on n elements, where a = 1.52. Indeed on the
overwhelming proportion of inputs our algorithm uses this many comparisons. This
average complexity is better than that known for any other algorithm. We conjec-
ture that it is optimal. Our method is a natural variant of the standard heap
construction method due to Floyd. © 1989 Academic Press, Inc.

1. INTRODUCTION

Heaps [W, G, F]] are the most studied type of priority queue. This is
because they are simple, efficient, and elegant. A heap (min-heap) is a
binary tree on a totally ordered set such that each node is greater than (less
than) its children. Furthermore, all the leaves in a heap are on at most two
adjacent levels and the leaves on the bottom level are as far to the left as
possible. Heaps were originally developed by Williams [W] to be used in an
in-place sorting algorithm which runs in O(» log #) time. Since that time,
they have been used extensively both in practice and in the development of
theoretically efficient algorithms.

The standard heap construction algorithm is due to Floyd. His algorithm
uses at most [2 + o(1)]n comparisons to build a heap on » elements and
about 1.88n comparison on average [K]. We present a natural variant of

*This research was performed under a consulting agreement with Bell Communications
Research.

352

0196-6774 /89 $3.00
Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

BUILDING HEAPS FAST 353

Floyd’s algorithm which uses, on average, about 1.52n comparisons to
build a heap on n elements. Indeed on the overwhelming proportion of
inputs our algorithm uses close to this number of comparisons. It has the
same worst-case behavior as Floyd’s algorithm.

Previously, the fastest algorithm for building heaps was due to Gonnet
and Munro {GM1]. This algorithm takes (1.625 + o(1))n comparisons in
the worst case and can be modified slightly so that it runs in (155 + o(1))n
= 1.5803n comparisons on average ({(GM2]; this corrects a figure in [GM1]).
Their algorithm first builds a binomial queue (another type of priority
queue: see [V]) and then converts it into a heap.

One particularly appealing property of heaps is that a heap of size n can
be implicitly stored in the first n cells of an array. In an array representa-
tion of a heap, the father of the element with index j has index | j/2]. In
this representation, the next available leaf position corresponds to the
(n + Dth cell in the array. In discussing algorithms in this paper, we are
assuming that they are to be implemented by an array. However, we shall
not discuss the details of this implementation; instead we shall outline our
algorithms informally.

2. Two OLD ALGORITHMS

The first heap construction algorithm was proposed by Williams ([W}, see
also, for example, [AHUY)). This algorithm builds a heap by sequentially
inserting elements into an initially empty heap. An element x is added to a
heap by placing it in the first available leaf and then bubbling it up until it
is smaller than its father. In the worst case, x bubbles up to the root of the
heap and the insertion algorithm requires k comparisons where k is the
depth of the new heap (the depth of a node in a heap is the number of
edges in the path from the node to the root; the depth of a heap is the
depth of a leaf on the bottom level of the heap). It follows easily that
Williams’ algorithm takes n log n + O(n) comparisons in the worst case to
build a heap on n elements. The expected number of comparisons is
between about 1.75n and 2.76n for sufficiently large n (see [Fr, BS)).

Floyd ([Fl}, see also [AHU,K]) proposed an algorithm which makes
(2 + o(1))n comparisons in the worst case. It uses smaller heaps as building
blocks for larger ones. For example, we build a perfect heap of depth &
from two of depth k — 1 and a new element x as follows. First we form a
binary tree with root x and left and right subtrees the two heaps. If x were
larger than both its sons, the tree would be a heap. If not, we simply swap
the positions of x and its larger son. After repeating this step at most k
times, we obtain a heap. This “trickle-down” procedure is the core of
Floyd’s algorithm.

354 MCDIARMID AND REED
3. A NEwW ALGORITHM

Our algorithm combines the ideas of Floyd and Williams. As in Floyd’s
algorithm, we construct a heap from two smaller heaps and an extra
element, x. However, instead of putting x at the root and trickling it down,
we trickle down an empty position to the bottom of the heap and then put
x in this position and bubble it up. Thus, the core of our algorithm is the
following procedure (see Fig. 1).

Merge (H: a tree which satisfies all the heap conditions except that the key x at the
root may fail to be larger than the keys of its children);

Begin {trickle-down phase}
While x is not at a leaf do: compare the keys of the two children of x; swap
x with the larger of these keys; end while
{bubble-up phase}
while x is not at the root and it is larger than the key of its father do: swap x
with the key of its father; end while

End

We call the path formed by the larger children in the trickle-down phase,
the trickle-down path.

Note that out method uses five comparisons on this example while
Floyd’s method would require six. Since most of the elements of a heap are
at the bottom, we expect that, in general, the new element will end up there.
Thus, our algorithm should be faster, on average, than Floyd’s.

In discussing this algorithm further, we will restrict our attention to
merging perfect heaps (heaps in which all the leaves are at the same depth).
Note that for any heap on n elements all but at most log n of the merges

BUILDING HEAPS FAST 355

are of this type. Furthermore, each of these merges takes at most 2logn
comparisons. This O(log2n) term can be ignored.

Let H(k) be the expected time (number of comparisons made) taken to
construct a k-heap (a perfect heap of depth k) using our technique, and let
M(k) be the expected time taken to merge two (k — 1)-heaps into a
k-heap. Clearly H(0) = 0 and for k > 1,

H(k) = 2H(k — 1) + M(k). (1)

Let H(k) be the expected time per element to construct a k-heap. That is
H(k) = H(k)/(2*"! = 1). By a k-merge, we mean an application of our
algorithm in which we merge two (k — 1)-heaps into a k-heap. Obviously,
the trickle down phase of a k-merge takes k comparisons. The time taken
by the bubble-up phase depends on the height of (the node with key) x in
the new heap (the height of a node is the depth of the subheap rooted at
that node). Clearly, x is at the root of the new heap if and only if it is the
maximum of all the 2%¥*! — 1 elements in the created heap. Thus, the
probability that x is at height k in the new heap is 1/(2¢*! — 1). In fact, as
we show in the next section, for each i = 0,1,..., k the probability that x
has height i, given that it has height at most i is 1/(2°*! — 1). Thus for
each such i,

o ko2t -1) -1 1
Prob{ x has height i } = R S v Tz
k=i
=T

Clearly, if x is at height i < k — 1, then the bubble-up phase required
i + 1 comparisons. If x has height k, then we required k& comparisons.
Thus, on average, the bubble-up phase takes

kol (2k70) k-1 k+2 ‘
L+ | I gy | oy T2 gy comparsons

Now, M(k) = (k +2)— (k+2)/(2¥*! — 1). Approximating recurrence
(1), we find that H(k) = @ as k — oo, where a@ = 1.649271. (We note that
Carlsson [C] has independently investigated this algorithm.)

However, the algorithm may make unnecessary comparisons. For exam-
ple, if the roots of both (k — 1)-heaps were bubbled up to the top in the
last phase and we remember comparisons made then after only one further

356 MCDIARMID AND REED

comparison, we will be able to compute the whole trickle-down path. Thus,
by using sibling orders known from previous merges, we may be able to
reduce the number of comparisons we make.

In the next section we show that the expected number of comparisons we
save during a k-merge by doing this is 1 — k/(2¥ — 1). Thus, the trickle-
down phase of a k-merge takes k — 1 + k/(2F — 1) comparisons on aver-
age and now M(k)=k+ 1+ k/(2¥ - 1) — (k + 2)/(2*1 — 1). When
we approximate recurrence (1), we find that H(k) - a as k — oo, where
a = 1.521288.

It turns out that all “extra” comparisons known are sibling comparisons,
which can be recorded with one extra bit per node. Indeed we can make the
expected number of comparisons per element arbitrarily close to a while
using only a (suitably large) constant amount of extra storage.

Floyd’s method can be treated in a similar though easier way. For the
basic method, when we do not record sibling comparisons, the expected
number of comparisons to form a perfect heap on n elementsis (8 + o(1))n,
where B = 1.881373 (see [K]). When we do record all comparisons, 8 drops
to B = 1.791415.

4. ANALYZING OUR ALGORITHM: AVERAGE COMPLEXITY

In this section we analyze the average time complexity of our algorithm.
We begin with some definitions and basic observations. We build a k-heap
on the set X = {x, X,,..., Xpxc1_;} as follows:

(1) Insert the elements of X into a complete binary tree of depth k. We
shall think of the nodes of the tree as being labeled by elements of X.
Initially, x, labels the root and for i = 1,...,2* — 1, the node labeled by x,
has children labeled by x,; and x,, ;.

(i) For j =1 to k do: For each node y at height j, create a heap
rooted at y by running our merge algorithm on the tree rooted at y.

An input to the algorithm is a permutation (i.e., linear order) 7 of X. We
assume that all such inputs are equally likely. We are interested in counting
the expected number of comparisons needed to construct a heap using our
algorithm. During the execution of the algorithm, we gain some partial
order information on #. Some of this information is recorded in the heap
structure we create. We will also record this information by assigning each
node one of three colors, red, blue, and green. Initially all leaves are colored
red. During the trickle-down phase of a merge, we color all the nodes on the
trickle-down path blue. Then, during the bubble-up phase, we change to

BUILDING HEAPS FAST 357

green the color of all the nodes on the trickle-down path past which x
bubbles up; and we color red the node finally labeled x. Note that a green
node is known to be greater than its sibling. By a colored heap, we mean a
heap labeled by elements of X with each node colored red, blue, or green.
We now make two observations.

Observation 1. At any stage during the execution of the algorithm we
have constructed a family of heaps. Each of these colored heaps corre-
sponds to a partial order on its labels. It is easy to see that these partial
orders capture all the information we have yet discovered about the input
linear order # on X. Thus, the inputs which lead to the construction of this
family are precisely those which extend the corresponding partial order.

Observation 2. Consider a partially ordered set (X, <;). Let C be a
subset of X such that for all x,x" in C and y in X — C, x <, y (resp.
x >, y) if and only if x’ <, y (resp. x’ >, y) (we shall call such a set a
faction) Let II be any set of linear extensions of (C, <,), where < is the
restriction <, to C. Then, the proportion of linear extensions of (X, <;)
whose restriction to C lies in II equals the proportion of linear extensions
of (C, <,) which are in II.

Observation 2 allows us to prove that the probability that we bubble-up
to height i during a k-merge is 2¢~//(2*! — 1) as claimed in Section 3.

LEMMA 3. The probability that we bubble-up to height i in a k-merge given
that we bubble-up no higher is 1/(2"*1 — 1) (for i = 0,1,..., k).

Proof. We can think up performing the bubble-up from the top down,
for this does not change the final position of x. Let y and z be the elements
on the trickle-down path at heights i and i + 1, respectively. To prove
Lemma 3 we need only note that if x loses to z then x along with the
subheap rooted at y is a faction (since y is blue; x < z; y <z). O

As we showed in Section 3, Lemma 3 implies that the bubble-up phase of
a k-merge takes 2 — (k + 2)/(2¥"! — 1) comparisons on average. This
completes the analysis of the simplified algorithm. We turn now to an
analysis of the trickle-down phase.

For a node v at height i, let a,(v) be the ancestor of v at height j. By
the ancestor sequence of v we mean the sequence of colors (¢;,...,¢;),
where c; is the color of a,(v). An ancestor sequence is valid if every green
node is followed by a red or green node. We consider only valid sequences.
We shall use a; for a;(v) when no confusion can arise.

358 MCDIARMID AND REED

LEMMA 4. The probability that a node at height i in a k-heap has ancestor
sequence (c,, ..., ¢;) is TT}_,p;, where

1
SATC] ifc;isredandc;. isblueorj =k
27+ -2
ST ifc;isblueandc;,, is blueorj = k
1
=135 if ¢; is green (this implies ¢ +1 s red or green)
1 1
E(ZJT_I) ifc;isredandc;, , is red or green
1/2/%1 -2
5(21*—1-—-7) ifc; is blue and c; . , is red or green.

Proof. We need only prove the lemma for leaves. The general case
follows by a simple summation. We note that the theorem is true for k = 0
and proceed by induction on k. We shall consider a k-merge, assume the
formula was correct for the two (k — 1)-heaps and prove that it is correct
for the k-heap.

Let S¥~! and S denote a leaf v’s ancestor sequences in the k — 1 and
k-heaps, respectively. Consider the following generic form for a leaf’s
ancestor sequence in the k-heap:

A= (¢,) is blue.

c; is red.

B = (¢/41,---5€¢j_1) 1S green.

¢, is not green.

C = (¢g,-.., ;) is an arbitrary valid sequence.
(A, B, C may be empty.)

We call this sequence S(j, C).
We want to show that

k 2m+1 -2 1
Prob{5, = 5(.O)} = | Tl soer—7| 2777
me=j

(7 i

2= ! D P(C
B N)

BUILDING HEAPS FAST 359

where P(C) is our computed probability for the sequence {cy,..., ¢;} as an
ancestor sequence in a /-heap (set 2 - P(C) = 1and / = —1if C is empty).
Now, S(j,C) can arise from any of the following types of old ancestry
sequences and only these types:

() A" =(cp41p---> 1) Is blue, ¢, is red, B" = (c/yy,..., ¢, 1) 18
green, C’ = C. (Call this S'(p, C).)

(i) A" = (c;4q,---»>) is blue, C" = C. (Call this $”(C).)

(i) A" =(cppy---»Ce—1) 18 blue, ¢, is red, A" = (¢pyy,...5€,_1) I8
green, A" = (ch,...,cq) is blue, ¢ is red, B’ = B, C’ = C. (Call this
S (p, Jj,C))

We consider each of these three cases in turn. First however, we make two
observations.

Observation 5. Let v be a leaf of one of the two (k — 1)-heaps with
ancestor sequence (¢, ..., C,_1), Where ¢, is red and ¢, is blue for each
i > t. Then, for each such i the probability that the trickle-down path of
the k-merge passes through a; is (3)*7".

Proof. 1If we fix a colored heap where v has an appropriate ancestor
sequence, the result follows from Observation 2. By summing over all such
colored heaps we obtain the desired result.

Observation 6. Whatever the configuration following the trickle-down
phase, the probability that x bubbles up to height s is
2k—s
2k+1 -1 °

Proof. See Lemma 3 and its proof.

Case 1. v has an ancestor sequence of type (i) in a (k — 1)-heap. In this
case, if p # j then x must trickle-down through a, and then bubble-up to
a;. If p =j, then the trickle-down path does not necessarily pass through
a,.

Case 1.1. a, is on the trickle-down path. Fix p and C. By the
induction hypothesis:

Prob{S*~* = §'(p,C)}
1 1\7f
2bv—1-(5) - P(C).

2% -1
By Observation 5, given that S¥~! = S’(p, C), the probability that a, is on
the trickle-down path is (3)*~7. By Observation 6, the probability that x

360 MCDIARMID AND REED

bubbles up to a , given that Sk-1=§"(p,C)and a p 15 on the trickle-down
path is 27/ /(2¥*1 — 1). Summing over all p we obtain

P = Prob{ Sy~ !is of type (i) and a, is on the trickle-down path}

k+1 1 1\?2! 1\ kP 2k—j
5 [3) o (1 A
p=I+

P(C) 2k=J (1)

. __2i—k
k¢l 1 2k -112

Case 1.2. a, is not on the trickle-down path. In this case, p = j and
the trickle-down path branches off from v’s ancestors at some point above
a,. Now,

Prob{Sf~' = §'(j,C)} =

j—1
Lokl l ’ - P(C).
2k -1 2

Given that S¥~! = §'(j, C), the probability that a,, , is on the trickle-down
path but a, is not is (3)*~* for ¢ > j (see Observation 5). Given that both

these events occur, the probability x does not bubble-up to a,, , or above is
(2K*1 — 2571 /(2%*1 — 1) (see Observation 6). Thus,

P, = Prob{ S¥~! = §°(},C), Sk = S(j, C),

a; is not on trickle down path}

2

k-1/1 k—t 2k+1 _ 2k—! 1 1 J=1
. . Lokl . P
L) 5] e

P(C) 1

= SET T] . 2k — . (22k—2j+l — 2k—j+1 _ 2k—2j+l—l(k —J))

Case 2. v has an ancestor sequence of type (ii) in the (k — 1)-heap. In
this case, C cannot be empty. Note that, by the induction hypothesis:

I+1_1

2
Prob{S~' = §7(C)} = P(C) - 2¢~/1. T

Given this, the probability that a,,, is on the trickle-down path and a ; is
not is (1)*~'. Given all this, the probability that x bubbles up to a ; is

BUILDING HEAPS FAST 361

2%/ /(2%*1 - 1) (by Observation 6). Thus,
Q = Prob{Sf~! = §7(C), Sk = 8(j,C)}
21+1 -1 1 k~1 2k—j
1 ()

ok _ 5 '2k+1_1-

= P(C) -2kt
(©) >

Case 3. v has an ancestor sequence of type (iii) in the (k — 1)-heap. In
this case, for fixed p, ¢, and C,

Prob{S}~'=5"(p,q,C)}

j-1 1 q 2m+1 -2 1 r—q
=P(C)(—2-) .Fr_—l'ml—j1+1 2m+1_1 .(E)
1 k=1 g+l 9

’ 2p+1 -1) t=p+1 2t+1 -1

1 ! q9-j.2a-p ! k=p—1
ZP(C).(E) '2‘1_'_—1_{'2 -2 '2k_1'2 .

Given that Sf~1 = 8" (p, g, C), for 8} to be S(j, C), a, must be on the
trickle-down path and we must not bubble up to a,,, or above. This occurs
with probability

2 2k+1 -1
Summing over all appropriate choices of p and g we obtain

R

(1)k—p 2k+1 _ 2k—-q

Prob{ S¥~! is of type (iii) and S¥ = §(j, C)}

k-1 p—1 1 k—-p 2k+1 _ 2k—q 1 j—=1 1
= _ .__.____.p(c).(_) N —
ar Pt (2) 24— 2 2071 -1
2497 . 09-P. . Qk—p-1
2k—1
P(C) 1

T v i Tl (2K+=2 Yk = j — 2) + 2/7).

Finally, we put all three cases together. We find
Prob{Sf = §'(j,C)} =P, + P, + Q + R.
It is a routine but tedious matter to verify that this gives

P(C)

1/~
ST 2"‘f(5) as required. O

Prob{ Sk = 5(j,C)} =

362 MCDIARMID AND REED

The number of comparisons made during the trickle-down phase of our
algorithm depends on the height of the first (in fact: only) red node
encountered on the trickle-down path. The above lemma allows us to
calculate the expected height of this node.

LEMMA 7. The probability that the red node on the trickle-down path of a
k-merge is at height i is 2¥7~1 /(2% — 1).

Proof. Let us call a red node exposed if all its ancestors are blue. Let v
be a node of height / in the original (k — 1)-heap. By Lemma 4, the
probability that v is a red exposed node is 2=/~ /(2¥ — 1). By Observa-
tion 5, the probability v is on the trickle-down path given that it is an
exposed red node is 1/2*~", Since exactly one of the 2~ nodes at height i
is on the trickle-down path, we obtain

Prob { the red node on the trickle-down path has height J }
1 2k—i~1 2k—i—1
k=i T2k T 2k

= 2k—i N O

LEmMMA 8. The expected number of comparisons during the trickle-down
phase of a k-merge is k — 1 + k/(2¥ — 1).

Proof. The number of comparisons is just { k-the height of the first red
node on the trickle-down path}. By Lemma 7 we see that the expected
number of comparisons during the trickle-down phase of a k-merge is

k=1 (kg — j)2k—i-1
— = k-1+ i
) 2k -1 k 2k—1

i=0

5. ANALYZING OUR ALGORITHM: DEVIATIONS
FROM THE AVERAGE

In this section, we show that for the overwhelming proportion of inputs,
the number of comparisons our algorithm uses is close to the average
number. A similar result holds for all other variants of Floyd’s algorithm.
(See also [D].) More precisely, let H, be the random number of compar-
isons used to build a perfect heap of depth k (with n = 2¢*! — 1 elements).
Then we have,

THEOREM. Foranyt > 0,

Prob{|H, — E[H,]| >t} < 2exp{—12/34 - 2%+1}.

BUILDING HEAPS FAST 363

Now let B, denote the random number of comparisons used to build a
heap on n elements. As before, forming imperfect subheaps leads to an
O(log? n) correction term, which will be swallowed up in larger terms.

COROLLARY. For any £ > 0, if n is sufficiently large
Prob{|B, — E(B,)| > en} < 2exp(—(&2/35)n).
COROLLARY. For any € > 0 there is a constant c such that for all n,

Prob{|B, — E(B,)| > cn'/?} <.

Our analysis works because the numbers of comparisons used in the
different merges are “nearly independent.” We may thus use the powerful
martingale inequality described below.

Let X;, X, ..., X, be random variables, and for each i = 1,..., ¢ let X®
denote (X, ..., X;). Suppose that the random variable M is determined by
X® so that E(M|X®") = M. Foreachi=1,...,¢ let

d; =|E(M|X¢) — E(M|X®)|.

Here E(M|X©) means just E(M), and || - || is the (essential) supremum
norm. Thus d; bounds the change in the conditional expectation of M
given one further piece of information, namely the value of X,.

LemMa. For any t > 0,

Prob{|M - E(M)| > 1) < 2exp(—t2/zi:d,.2).

This lemma is a special case of a martingale inequality due to Azuma
(see [S)).

Proof of Theorem. Consider the ith call of merge: let X; be the
sequence of comparisons made, let N; be the number of comparisons the
naive algorithm would make, let M, be the number of actual comparisons
made, and let F, = N, — M, be the number of old (free) comparisons used.
Further let X denote (X,,..., X,), and let N=3.N, M =2 M, F=
3,F.

A key observation (see Observation 6 above) is that for each i > 1, N, is
independent of the entire history X¢~V. Thus

E(N|X¢D) — E(N|X®) = E(N,) - N,.

364 MCDIARMID AND REED

Suppose that the ith merge is an h-merge. Then 2+ 1 < N, < 2h, and
h+1<E[N]<h+2So

|E(N|X¢D) — E(NIX®)| =|E(N,) - N| <h - 1.

Next we consider the free comparisons. Note that the random number of
times that the trickle-down path visits the current subheap during later
merges is independent of X(?; and it has an expected value < ¥, _,(3)’ = 1.
So, for any possible value x~P of XU~ and any two possible values
x;, x] of X,,

‘E[Y FIXU™D 4 x(-D ¥, = x,]

J>i

__E[Zl;}lx(i—l) + x(i—l)’ Xl = x’ll < h.

i

So

<h.

E| Y FIX(D| - E| ¥ FIXO
ez mee] £ 2]

j>i J>i

Also, of course,
|E[FIX¢] - E<h-1.
Hence
|E(FIX¢=Y) — E(FIX®)|| < 2k - 1.
The above results for N and F show that
|E(M|X0~D) — E(M|XD)| <3k - 2.
Now let us suppose that the ith merge is an & -merge. Then

D = 3 E(M|XGD) — E(M|XD)]

< Ei(3hi - 2)2
k
= Y 2¥*(3h - 2)°
h=1
<34.2%,

The theorem now follows from the last lemma. O

BUILDING HEAPS FAST 365
6. Two QUESTIONS

As noted in the abstract, we believe that our algorithm is optimal with
respect to the expected number of comparisons. Our sole reason for
believing this is its simplicity. The best lower bound known on the expected
number of comparisons is the straightforward information theory bound
which is asymptotically about 1.3644n (see [GM1]). This is also the best
known lower bound on the number of comparisons used in the worst case.

Question 1. Can you raise this lower bound for either the average or
worst case?

The main cost of heapsort arises from a sequence of Floyd’s trickle-down
operations. It seems likely that using our method would reduce the overall
cost of heapsort on average. For a discussion see [C].

Question 2. What is the average-time behavior of this modified heap-
sort?

Note that in the selection stage of heapsort we could just trickle-down
and not bubble-up. The total number of comparisons needed for any input
is then nlog n + O(n) (which is asymptotically optimal) though we require
extra storage.

REFERENCES

[AHU] A. V. AHo, J. E. HOPCROFT, AND J. ULLMAN, “Data Structures and Algorithms,”
Addison—-Wesley, Reading, MA, 1983.

[BS] B. BoLLOBAS AND I. SIMON, Repeated random insertion into a priority queue structure,
J. Algorithms 6 (1985), 466-477.

[C] S. CarLssoN, Heaps, department of Computer Science, Lund University, Sweden,
1987.

[D] E. E. DOBERKAT, An average case analysis of Floyd’s algorithm to construct heaps,
Inform. and Control 61 (1984), 114-131.

[FL] R. W. FLOYD, Algorithm 245: TREESORT, Comm. ACM 7 No. 12 (1964), 701.

[FR] A. M. Friezg, “On the Construction of Random Heaps,” Queen Mary College,
London, 1986.

[G] G. H. GonNnEt, “Handbook of Algorithms and Data Structures,” Addison—Wesley,
Reading, MA, 1984.

[GM1] G. H. GoNNET AND J. I. MUNRO, Heaps on heaps, SIAM J. Comput. 15 (1986),
964-971.

[GM2] G. H. GONNET aND J. 1. MUNRO, private communication.

[K] D. E. KNUTH, “The Art of Computer Programming, Vol. IIL. Sorting and Searching,”
Addison—-Wesley, Reading, MA, 1973.

[S] W. F. Stour, “Almost Sure Convergence,” Academic Press, New York /London, 1974.

v] J. A. VULLEMIN, A data structure for manipulating priority queues, Comm. ACM 22
(1978), 309-314.

[W] J. W.J. WILLIAMS, Algorithm 232: HEAPSORT, Comm. ACM 7 (1964), 347-348.

