
1 An Overview

In COMP252, you developed algorithms to solve a variety of problems and
analyse the complexity of these algorithms, usually by bounding their (worst
case) running time. You performed such analyses of algorithms for sorting, se-
lection, graph searching, and other problems in COMP252. Many of the tools
developed in that course will be used in this course. (eg. big O notation, vari-
ous data structures, and the sorting, selection and graph searching algorithms
themselves).

We use the order of growth of the running time as a measure of the speed
of an algorithm. We can compare the performance of algorithms using this
measure. Thus we say one algorithm is faster than another if its time complexity
has smaller growth rate. We say an algorithm is efficient if its running time is
a sufficiently slowly growing function of the input size.

To a large extent, in previous courses the focus has been on developing
efficient algorithms for problems for which such algorithms exists. In this course,
we consider how to show that a given problem is hard in that there is unlkely
to be an efficient algorithm to solve it. We then discuss how to handle such
problems.

One techniquae for showing that problems are hard is also a technique for
solving problems which is central to computer science: programming or reduc-
ing one problem to another. If we have a fast algorithm to reduce problem π to
problem π′ and a fast algorithm to solve problem π′ then we have a fast algo-
rithm to solve problem π. So a fast reduction allows us to use a fast algorithm
for one problem to efficiently solve a different problem. Note that if we have
such a fast reduction and there is no fast algorithm for problem π then there
is no fast algorithm for problem π′. Thus fast reductions also allow us to use a
proof that some problem is hard to prove another problem is hard.

Another new topic we intoduce is the notion of certificates which allow us to
verify quickly that the output of an algorithm is correct. Thus, for example,it
is much easier to verify that an algorithm has correctly determined that n is
prime, if it provides us with two integers f1 and f2 both less than n whose
product is n. For then, we need only multiply f1 and f2 together and check
that the product is n.

It is natural to ask for certificates from algorithms for solving hard problems
so that we can efficiently verify that they have provided a correct solution . As
we shall see, the existence, or apparent non-existence, of certificates appears to
be intimately related to whether or not a problem can be solved efficiently.

In the first part of the course, we introduce the notion of reductions and
certificates via a discussion of Mathematical Programming and more specifically
Linear and Integer Linear Programming.

In the second part of the course, we discuss the use of reductions in proving
that problems are hard. This is the theory of NP-completeness.

In the third part of the course we discuss a number of techniques for handling

1



hard problems algorithmically. For example we may settle for approximate not
exact solutions, restrict our attention to easy instances of the problem, or settle
for a randomized algorithm which we expect to work quickly.

2


