Dynamic Programming on Graphs of Bounded Tree Width

1. Preprocessing

We assume that the vertices of G are labeled with the integers 1 to n, where n=|V(G)|, so that
every edge is simply a pair of integers. If the vertices of G are labeled with arbitrary labels from
an alphabet, we can sort these labels, and then replace each vertex name with its position in
the ordered list. To replace the pair of old vertex names in an edge with the appropriate new
vertex names we simply need to find each of these two names in our ordered list which takes
O(log n) time. So, in total this relabeling process takes O((|V(G)|+|E(G)|)log(|V(G))]|) time.

We will also do some preprocessing after which we can test if two vertices are joined by an
edge in O(1) time. We could simply build an array Adjacent[1..n,1..n] where A[i,j] is 1 if ij is and
edge of G and 0 otherwise. This would require zeroing the array and then going through the
edge list to insert the 2 entries of Adjacent which are 1 corresponding to each edge. However,
zeroing the array takes O(n?) time and we want to do things a bit more quickly. So, we will not
zero the array. Instead we will use an auxiliary integer variable number_of edges and an
auxiliary array Edge whose entries are pairs of integers and which is indexed from [1..n2]. To
begin we process the edge list of G, updating these variables, so that at the end,
number_of_edges is the value it claims to be and for [between 1 and number_of_edges Edge[i]
is the endpoints of the ith edge of G. Also if the ith edge is (j,1) then we set Adjacent[j,l]=i. We do
this as follows:

number_of_edges:=0

while there is an unread edge of G, read the next edge (j,1)
number_of_edges:= number_of edges+1
E[number_of_edges]:=(j,1)
Adjacent[j,l]=number_of_edges
Adjacent[l,j]=number_of_edges

endwhile

Given this preprocessing which takes O(|E(G)|) time, we can test if two vertices j and 1 of G are
adjacent as follows.

If Adjacent[j,l]<1 or Adjacent[j,1]> number_of_edges then return nonadjacent
Else
If E[Adjacent[j,1]]=(j,1) or (1,j)] then return adjacent else return nonadajacent.

For any w’, given a graph G we can either determine that it has tree width exceeding w’ or find
a (rooted) tree decomposition of it of width at most w=4w’+4 with O(|V(G)|) nodes and such
that each internal node has 2 children in O(|E(G)|) time (the algorithm presented in class and
the text runs in O(|V(G)||E(G)|) time but there is a faster more complicated algorithm to solve
the problem).

So. we assume we are given a tree decomposition of a graph G of width some constant w
consisting of (i) a rooted tree T with root r and O(]|V(G)|) nodes such that each internal node
has 2 children, and (ii) for every node t of T, a subset W; of V(G). We consider the nodes via a
post-order transversal. For each node t, T(t) is the subtree of T consisting of t and its
descendants while Gt G has V(Gi)= Us q node of 7(t) Ws and E(Gg)= {xy € E(G)| x,y €V(G)}.

2. The Paradigm

We want to solve various optimization programs using dynamic programming on this tree
decomposition. Our paradigm for doing so is as follows:

We construct an array F indexed by the nodes of t, and for each node t, the possible
intersections of the restriction of a solution to our problem to G: with W;. For each t and
“intersection pattern” X, F(t,X) stores the best possible solution cost/value for a restriction of
a solution to G: which has this intersection pattern. We may also record the cost/value as
infinity /- infinity to indicate there is no partial solution with this intersection pattern.

To design/analyze such an algorithm we first need to understand what the restrictions of
solutions to G: look like and specify what the “intersection patterns” with W; should be. We
then need to describe how to compute the table for a leaf, and for a non-leaf given tables for its
children. The time complexity of our algorithm depends on the size of the table entries for a
node, and how long each entry takes to compute.

3. Maximum Stable Set

For the Maximum Stable Set problem considered in the lecture(the text considers a very
similar algorithm for Maximum Weight Stable Set), the restriction of a solution to Gt is simply a
stable set of G: and the intersection pattern of this solution with W; is simply a subset of W..
Thus, we have a table entry F(t,X) for every subset X of Wi which records the largest stable set
of Gt whose intersection with W; is X (where if X is not a stable set then F(t,X) is - infinity). We
return the maximum of F(r,X) over all subsets X of W.. It remains to describe how to compute
the F(t,X).

If X is not a stable set then we set F(t,X) to - infinity.
If Xis a stable set and tis a leaf, then F(t,X) is |X]|.

If X is a stable set and t has two children c(1) and c(2) then we perform the following
computation:

F(tX):=[X]
For each subset X1 of W¢(1) and subset Xz of W¢(2)
If X1 "W=XNW,1) AND XoNn W=XNW¢2) AND |X]|+F(c1,X1)-|X N X1|+F(c2,X2)-|XN X2|>F(£,X)
F(tX):= |X|+F(c1,X1)-|X N X1|+F(c2,X2)-|XN X2|

We note that determining if a set X is stable can be done in O(]X|?)=0(w?) time using our
adjacency testing routine. For X which are stable, computing F(t,X) involves running through
all of at most 22% pairs of table entries, one from the table for c1 and the other from the table
for c2. For each such pair of entries and each i in {1,2}, it takes O(w?) time to check if Xin W=
X N Wegy. So we can compute F(t,X) in O(22ww?) time. Since there are at most 2% subsets of Wt
it follows that we can compute the table entries for t in 0(23¥w?) time. Since T has O(|V(G)])
nodes and w is a fixed constant, we see that the total time taken by our procedure is O(|V(G)|).

4. Dominating Set

For the Dominating Set problem, the restriction of a solution to G is simply a subset of V(Gt)
which dominates all of the vertices of G--W: (some vertices of W; can be dominated by their
neighbours in the rest of the graph). The intersection pattern of such a restriction of the
solution with W consists of two subsets D and C of Wywith D € C where D is the intersection
of the dominating set with W; and C is a set of vertices of W; each of which is adjacent to a
vertex of the restriction of the dominating set to G. Thus, we have a table entry F(t,D,C) for
every such pair C and D which records the size of a smallest dominating set of Gi-(W:-C)
whose intersection with W is D (where if no such dominating set exists then F(t,D,C) is
infinity). We return the maximum of F(r,D,W;) over all subsets D of W.. It remains to describe
how to compute the F(t,D,C).

If tis a leaf then if every vertex of C-D is adjacent to a vertex of D then F(t,D,C)=|D| and
otherwise F(t,D,C) is infinity.

If t has two children c(1) and c(2) then we perform the following computation:

F(t,D,C):=infinity
For each table entry (c1,D1,C1) for c1 and each table entry (c2,D2,Cz) for c
If D1NW=DNW¢1j) AND DN W=DNW,2) AND C; contains all of W(1)-W;
AND C; contains all of W¢2)-W AND every vertex of C-D is either in C;UC; or is adjacent to a
vertex in D AND |D|+F(c1,D1,C1)-|D N D1|+F(c2,D2,C2)-|DN D2|<F(t,D,C)
F(t,D,C):= |D|+F(c1,D1,C1)-|D N D1]|+F(c2,D2,C2)-|DN D2|

As in the previous example, since T has O(|V(G)|) nodes and w is a fixed constant, we see that
the total time taken by our procedure is O(|V(G)|).

5. K-DRP

The restriction of a solution to an instance (G,S,T) of k-DRP to G: consists of a set of paths with
their endpoints in Xe=W: U [(S U T) N V(G¢)]. The intersection pattern corresponding to such a
solution is a set Z of disjoint paths whose vertex sets form a partition of X:. For each node t of
T and every such set of paths Z={Qj,...,.Qi}. we have a table entry F(t,Z) which is True if there is
a set of disjoint paths {Ry,.,Ri} of G¢such that the vertices of Qi appear along R; in the same
order they appear along Q; and False otherwise. The answer to our problem is the OR of F(r,Z)
over all those Z such that for each I between 1 and k, Z contains a path whose intersection with
SUTis {s;ti}. HOW DO WE CONSTRUCT THESE TABLES?

