Tutorial on Rever se Search with C Implemenatations

David AVIS

School of Computer Science
McGill University
3480 Unversity, Montreal, Quebec, Canada H3A 2A7
avis@cs.mcgill.ca
13 July 2000

1. Introduction

This paper is a tutorial onverse search, a techniquevd®ped by Komei Fukuda and the author
for the generation of large sets of discrete objects [1]. Althougdises search as originally used for
generating all vertices of a ommx lyhedron, it has been applied to mather geometric and combina-
torial problems.The purpose of this tutorial is to illustrate the basic technique on some siapieles
and go through some basic implementations indiods refinements are studied, along with thdeoef
on the time complexity and running time of the implementatifinis is an informal introduction, and the
reader is referred to [1] for a rigorous approach and other more coexplaples.

2. Basic Components: Adjacency and Local Search

Reverse search is a technique for generatingdarelatiely unstructured, sets of discrete objects.
In its most basic form, it can be viewed as theensal of a spanning tree, called ttewerse search tree,
of a graphG whose nodes are the objects to be generated. Edges in the graph are specifiadjdy an
cency oracle, and the subset of edges of theame search tree are determined by an auxiliary function,
which can be thought of aslecal search function f for an optimization problem defined on the set of
objects to be generated. Orertex, V', is designated as theptimum vertex. For every other \ertexv of
G, repeated application of must generate a path @ from v to v'. The set of these paths defines the
reverse search tree, which has raot A reverse search is initiated at, and only edges of the verse
search tree are wrarsed. Whera rode is visited the corresponding object is output. Since there is no
possibility of visiting a node by ddrent paths, the nodes are not stored. Backtracking can be performed
in the standard way using a staclt this is not required as the local search function can be used for this
purpose. This means that it is not necessargép knore than one node of the tree gtgawen time, and
this memoryless property is the main feature wénse search.

For a gven problem, there may be marchoices of adjacencoracle and local search function.
However, in the basic setting described here,a peoperties are required. Firstire underlying graple
must be connected and an upper bound on the maxiratis degee, maxdeg, must be knan. Aswe
will see the performance of the method depend& draving maxdeg as lav as pssible. Theadjacency
oracle must be capable of generating the adjacent vertices of smm&agiexv sequentially and without
repetition. This is done by specifying a functioAdj(v,i), where v is a ‘ertex of G and
i=1,2,...maxdeg. Each value ofAdj(v,i) is @ther a \ertex adjacent tov or null. Each \ertex adjacent
to v appears precisely onceiasnges wer its possible &lues. Finallythe local search functioh should
be easy to compute, so that it is easy to determine edges obétsereearch tree that will be teased.
These ideas can be illustrated on a simple example: generating all permutations of a set of integers.

Example 1: Permutations

Given an ntegern we are asked to generate all permutations of the integ2ys- 1,n. For example, if
n = 3 the required output is:

123, 231, 312, 213, 132, 321.
From the discussion in the previous section we require:
(i) a graphG defined on the set of permutationsegi by an a@jaceng oracle;
(i) a starting vertex ; and
(iii) a local search functiori which defines a spanning tree of the gr&phith rootv’.

For given n, we represent a permutation of2l; - -, n by X1 X, - - - X,, There are manchoices for an adja-
ceng oracle to defing. One is as follows: foreryi=1,... n-1,

2.
Ad] (X1X2 < Xpys |) = Xp o X1 Xi+1 Xt X

In other words, we can swap piwo adjacent integers in agn permutation to get one of its neighbours
in G. For example

Adj(213,1)= 123, Adj(213,2)=231

and
Adj (3124, 1)= 1324, Adj(3124,2)=3214, Adj(3124,3)=3142.

From the definition, we see th@tis a regular graph of deeen—1 and so we hae maxdeg=n-1. In
fact, whenn = 3, G is the cycle of length 6, see Figure 2.1(a).

123 123=v*

213 132 213 132

231 312 231 312

321 321
Figure 2.1(a)Graph of permutations with=3 (b) Spanning tree defined by

Next we define a spanning tree Gnby means of a local search functibn For the starting ertex
we choose the identity permutation, so that

v =12...n.

To define the spanning tree, we define a funcfiam the vertices o& whose repeated application yields
a path inG to v . Here is one choice fof:

f(XaXz -+ Xn) = X+ X1 Xis1 X -+ - X

wherei is the smallest integer such that> x;,;. To complete the definition, seft(v’) = v". For exam-
ple, withn =5 we have

f(31245)= 13245, f(13245)= 12345 f(12345)= 12345.

It is easy to seé has the required properties. Clearly foy amrtex of G that is notv” it gives an ajacent
vertex in G. In fact it behaes like bubble sort, in that large integers wedo the right and small inggers
move B the left. It is an easyxercise to shw that starting at anpermutation, repeated application bf
leads tov', ie. the permutation is "sortedf.therefore defines a unique path frony aertex of G to v,
and the set of these paths is the desired spanning t@e Efjure 2.1(b) gies the spanning tree when
n = 3, where the edges are directeddals the root, as induced by the functibn

Exercises.
2.1. Drav the graph of permutations far= 4 and corresponding verse search tree.

2.2. LetD be a directed graph annodes, so that for each edgeof D, u < v. A permutation of 1 2 ..n

is compatible with D if for each edgev, u occurs beforer in the permutationFor example if D has the
single edge 12, the compatible permutations are 1 2 3, 1 3 2, &éreralize the results of this section
to the problem of generating all permutations compatible Withote that 1 2 ... n is\abys compatible).

3. Reverse Search Algorithm

The reverse search algorithm can be stated generally in terms of the basic components described in
the previous sectionWe wse these components to describe four functiomst;, reverse, backtrack and
reversesearch. In this section we ge C-like pseudo code for the simplest generic implementation of
these functions. Depending on the application, specifically tailored implementations can greathg impro
overall performance.

-3-
The boolean functionoot(v) returnstrue if v is v, the root of the neerse search tree, otherwise it
returnsfalse. The boolean functioneverse(v,i) is used to determine if the neighbour= Adj(v,i) of v

is a child ofv in the reverse search tree. It returtrgie in this case, otherwise it returriglse. Note that
Adj(v, i) may benull for some values af

reverse(v, i)
w = Adj(v,i);
if (w!=null)
return (v==f(w));
ese
return FAL SE;

The integer functiorbacktrack(v) is used to return from a nodeto its parentw = f(v) in the
reverse search tree. It also finds treuei such thatv = Adj(w, i), and this is returned to the calling func-
tion.

backtrack(v)
i =0;
child=v; /[*keepacopofv*
v = f(v);
doi++;
while (child ! = Adj(v,i));
returni;

With these three functions we can specify the funatemersesearch(v, maxdeg) which traverses
the reverse search tree rootedat

reversesearch(v, maxdeg)

i =0; [* adjaceng counter ~ */

count = 1;

output(v);

while (!root(v) || i <maxdeg) /* main loop */
do i++;

while (i < maxdeg && ! reverse(v,i));
if (i < maxdeg) /* go deeper in reerse search tree */

v = Adj(v,i);
count++;
output(v);
i =0;
}
else /* backtrack and restore i*/
i = backtrack(v);
}

return count;

In the code theariablev is the tree node currently being processed, and is initially the root of the
tree. Inthe main loop each neighboAdj(v, i) of v is examined to see if it is a child ofin the tree. This
is the function of thelo .. while loop, and uses the functioaverse. If this loop terminates with aalue
i < maxdeg a child has been found, andis updated to be this node. Otherwise no further childxest, e
and a backtrack step is performed, replacify its parent, and restoringo the value it had pvéously.
This is performed by the functidracktrack. The program terminates when the last potential child of the
root has been examined, that is wivda the root and = maxdeg, and returns the number of objects gen-
erated.

We row consider the time and space complexity eersesearch. Suppose the grap@ hasY/| ver-
tices and| edges. Letespectiely treverses tagjs s thackirack treversescarch D€ the time required tocecute
reverse, Adj, f, backtrack andreversesearch. In each eecution of the main loop, the current nodés
either replaced by a child or by its parent in the tree. Therefore this loggcigedl at most §/| times.
For each \ertex the do statement isxecuted fori =1, ... maxdeg, hencereverse is executed a total of
maxdeg [V| times. Inreversesearch, the if statement and these statement are bottkecuted once for
each vertew, for a total ofY| times each. Adding up we see that

-4-
treversmearch = O(|V| (maXdeg treverse + tAdj + tbacktrack)) (3-1)
In the implementation afeverse above the functionAdj is evaluated each time, but the functidns only

evduated whenAdj returns a neighbouiTherefore inreverse, Adj is executed a total ofmaxdeg |V|
times, wheread is executed a total offf| times. For backirack we hare

thacktrack = O(t¢ + maxdeg tag).
If we substitute into (3.1) and simpljfysing the fact thafg| = V|- 1, we get

treversesearch = O(maxdeg V| tag + [E| ts). (3.2)

From this equation we see the importance of a smahlevofmaxdeg and an efficient implementation of
both Adj and f.

For the space comptéy, we dosene that no data structures are used in the search apart from that
required to holds and perhaps its parent and one of its children. The space complexity is therefore pro-
portional to the space required to hold a single nod#& of

Exercise
3.1 Trace the application oéversesearch on the example of Figure 2.1.

4. A C Implementation for Permutations

In this section we>amine a possible C implementation oferse search for the problem of gener
ating permutations. The first step is to decide the datapggqe to hold a permutation. For simplicity we
choose a static array and use the global variabdekeep the size of the permutations to be generated:

typedef int perm[100];
int n;
Next we define the functiong(v) and Adj(v,i). Sincepermis a static arrgythese functions cannot return

a permutation. Instead we update the permutation supplied asgim@emtv. The implementations are
straightforward from the definitions in Section 2.

void swap (perm ymnt i)
{

int t;

t=V[i;

V[i] = v[i + 1];

Vi + 1] =t;
}

void Adj (perm v int i) [* adjaceng oracle */
{

swap (vi);
}

void f (perm v) /* local search function */

inti=1;
while (i <n && V[i] <=V[i + 1]) i++;
if (i < n) swap (vi);

}

Now we can implement the three basic functions foverse searchroot(v), reverse(v,i) and back-
track(v). The first functions is simply:

int root (perm v)

inti;
for (i=1;i<=n;i++)
if (v[i]! =1) return FALSE;
return TRUE;
}

To implementreverse(v, i) we need to ma& a opy, w, of v before making the required test, which is
implemented by the functiosgual. Note that bothAdj and f update the value of:

int equal (perm wperm v)
{ . .
int i;
for (i=1;i<=n;i++)
if (w[i] ! = v][i]) return FALSE;
return TRUE;
}

int reverse (perm yint i)
{

perm w;

copy (w, v);

Adj (w, i);

f(w);

return equal (Wv);

}

In this implementation obacktrack(v) we agan need a cop child, of v. This is used in thelo..while
loop that restores the value iofNote that in this loop it is necessary to restor@ each iteration, as it
gets updated in the cafdj(v,i). Herewe use the fact that in this applicationoteonsecutre @lls
Adj (v, i) will result in v being unchanged.

int backtrack (perm v)
{
perm child;
inti=0;
int found = FALSE;
copy (child, v);
f(v); /* v is parent of child */
do{
i++;
Adj (v, i); /* v replaced by jth child */
found = equal (child, v);
Adj (v, i); /* restore v */
} while (found);
return i;

}

Having assembled all the pieces, we complete the program by implemeatengesearch(v, maxdeg)
which controls the search itself. This is virtually identical to the pseudoceeteigithe last section:

int reversesearch (perm int maxdeg)
{

int i=0, count=1;

output (v);

while (root (V) | | i < maxdeg)

do i++;
while (i <= maxdg && ! reverse (vi));
if (i <= maxdeg)
{
Adj (v, i);
output (v); count++;
i=0;
}

else i = backtrack (v);

}

return count;

}
The program can be tested by the simpleedri

int main ()

{

permv;
int i, count;

scanf ("%d", &n); /* enter size of permutation */
for (i=1;i<=n;i++) V[i] =i; /* set root */

count = rgersesearch (\n - 1;

printf ("\nnumber of permutations=%d\n", count);
return O;

}

Let us analyze the time and space coxipleof this implementation. It is easy to see thgtd n!,
|E| = (n—=1) M|, maxdeg = n -1, tag = O(1) andt,qese = O(N). Thereforeusing equation (3.2) we see
that

treversesearch = O(n(n — 1) n!),
or quadratic time per permutation.
Exercise
4.1 Implement the algorithm for listing compatible permutations described in Exercise 2.2.

5. An Improved | mplementation

The implementation gen in the previous sections is very basic. It can be iwvgatan two dovious
places: restoring the inde in backtrack and performing the test ireverse. Analysis of equation (3.2)
shaw that these are the bottlenecks in the programmprove the functionbacktrack we rewrite f(v) so
that it is an intger function that returns the value of the kdesuch thatv = Adj(f(v),i). Thenback-
track becomes a function call tb, with running timeO(n):

int f (perm v) /* local search function */
inti=1;
while (i< n && V[i] <= V[i + 1]) i++;
if (i < n) swap (vi);
return i;

}

int backtrack (perm v)

return f(v);

}

Improving reverse(v, i) is more subtle. The basic idea is to determing # f (Adj(v,i)) without
directly computingAdj(v,i) and f. Consider the permutation= 12354786 and suppose we knthat
the smallest indes for whichv[s] > v[s+ 1] iss=4.

Casel.i<s=4

SinceV[i] < v[i +1], these integers are out of orderAdj(v,i). Sinces > i, they will be restored byf,
and sareverse(v, i) is true.

Case?2. i =s=4.

Sincev[i] > Vv[i + 1] we can immediately conclude thaterse(v,i) is false. This is becausidj(v, i) will
place these twentries in orderand this cannot be undone by which is a sorting function.

Case3.i>s+1=5
In this casef will swapv[s] and v[s+ 1], soreverse(v, i) is false.
Cased.i =s+1=5,v[s] <V[s+2].

In this case, the first out of order pairAdj(v,i) are v[s+ 1] andv[s + 2]. These get put in order by, so
reverse(v,i) is true. Note that i/[s] > v[s+ 2] (eg. v = 12384756) thers is not changed bydj(v, i) and
reverse(v,i) is false.

These cases arghaustve, and can be summarized by the feliag proposition whose proof is left as an
exgacise.

-7-

Proposition. Let v be a permutation of lengthand lets be the smallest indeor whichv[s] > v[s+ 1].
Then reverse(v, i) is true if and only if
(@i<sor
(b)i=s+1l<n-1landv[s] <Vv[s+2]. a

We @an use the proposition to implemeeterse in O(1) time, praiding we knav the value ofs.
This can be calculated once each twnie updated by a functiofindindex(v) and stored in the unused
positionv[0] of the array storing.

findindex(perm v) /* find first out of order position in v */
{. .
inti;
for(i=1; i < n && V[i] < V[i+1]; i++);
v[0]=i;
}
The statemenfindindex(v) is inserted as the first statement in the main loama sesearch, just before
thedo statement. Finally we can replawserse by:

int reverse (perm yint i)
{
perm w;
ints =v[0]; /*smallest indes.t.v[s]>V[s+1]*/
if (i <=s-1) return TRUE;
if (i ==s+1 && s <=n-2 && v[s] < v[s+2]) return TRUE;
return FALSE;
}

We @n measure the imprements analytically by using equation (3.1) of Section 2. As notegeabo
thackirack = tf andt,eere = O(1). However for each recution of the main loop we muskeeute findin-
dex, at a @st ofO(n) time. Makingthe substitutions in (3.1) we obtain

treversesearch = O(n nl),
or linear time per permutationMe can test this empirically by running theavwrograms. Forxample,

on a Sun Solaris with = 10 there are 3,628,800 permutations. The original version took 28 seconds and
the improved version took 5 seconds, 5.6 times faster.

Exercise

5.1 Generalize the proposition to the problem of listing compatible permutations describedrtiéed=x
2.2.

6. Example 2: Trees

In this section we shwhow to devdop a reverse search algorithm for generating all labeled trees on
n+1 points. V\& label the vertices 0,1, .n,and consider the tree rooted attex O. It is corvenient to
direct the edges in a treemard the root. Eachertexi is the endpoint of one directed ed@eand we
definetree(i) = j. It is well known that there aren@ 1)"* such trees. Figure 6.1 shows the three labeled
trees on three points.

0 0 0
1/\2 1/ @ 2 1__ \2

Figure6.1 Labeled trees on 3 points

The first step in designing aveese search algorithm for generating trees is to define the adjacenc
relationship. Gien a reeT, consider a ertexi = 1. There is a unique directed edigen T. For ary ver-
tex j # k we construcl’ from T by deleting edgék and inserting edgg. T' is a tree if and only if the
path fromj to the root ofT does not includeartexi. For example, in Figure 6.2, edge 51 may replace
edge 52, but edge 15 may not replace 10, since 1 is on the path from 5 to O.

Using this idea we can construct the adjagemacle, for 1<i<n,0< j<n, j #i:

2 @< @5
Figure6.2 Adjaceng for trees

Adi(T.1, j) = Or — ik +ij where k =tree(i) andi is not an ancestor of |
SUERR _S nil otherwise

In this definition we hae wed two parameters and j for clarity. They could of course be replaced by a

single parameter to conform to the definition in Section 2. The essential point is that all neighbours of a

vertex (which is a tree in this case) can be found by trying all possible indésesj. Notice also that in
this example, some valuesiadnd j do not gie a reighbour ofT.

For the starting tred *, we choose the star with edgés i =1,... n. A local search function is
easy to define. For gitreeT # T * choose ay nodei not adjacent to the root and sede(i) = 0. In other
words:

f(T)=T-ik+i0 wherei is the smallest index such that k = tree(i) # 0.

Clearly for aly treeT # T * at mostn — 1 goplications off leads to the star *. We ae nav ready to
describe the implementation.ekefine the data typiee as a static array:

typedef int tree[100];
int n;

The starT * is represented by setting the array to zero, and the proceshi(g) simply tests this condi-
tion. Theadjaceng oracle can be implemented:

int Adj (tree vinti, int) /* adjaceny oracle */
{

int p=v[jJ;

while (p!'=0&& p !=1i) p=v[p];

if (p == i) return RLSE; *iis ancestor of j */
viil=j; /* jbecomes parent of i */
return TRUE;

}

For the local search functioh(v), we implement the impxed version described in Section 5 that returns
the indices andj such thatv = f(Adj(v,i, j)). Since C allars only one value in a return statement, we
pass parametersand j explicitly as pointers:

void f (tree v int* i, int*) /* local search function */
{ /* seti,j s.t v=Adj(f(v),i,}) then set v=f(v) */

int k=1;

while (k<=n && v[k] == 0) k++;

if (k <=n) [* v is not root of tree */

{ (*)=k; (*))=vIK];

v[K]=0;

}

}

Using these functions we Yma vey simple procedureeverse(v, i, j):

int reverse (tree yint i, int j)
{
tree w;
copy (w, v);
Adj (w,i,));
f (w,&i,&j); /* i, j get changed, but are not returned wersesearch */
return equal (Wv);

}

As we sav in Section 5, the procedutmcktrack becomes redundant, and we can write procedwees-
esearch:

int reversesearch (tree v)
{
inti=1, j=1, count=1, depth=0;
output (v,depth);
while (i<=n)
{
do next(v,&i,&j);
while (i <= n && !'reverse (v,i,)));
if (i<=n)
{
Adj (v.i);
count++; depth++;
output(v,depth);
i=1; =1,
}

else if (Iroot(v))

f(v,&i,&j);
depth--;
}

}

return count;

}

In the code we use the functioext(v, i, j) to cycle through the possible valuesi@ind j:

next(int* i, int* j)

{

CP++;if () == () (D)++

if ((*J)_ >n) _

{ (xi)++; (=1 }

}
This concludes the implementation. A sample outpunfer3 is gven in Hgure 6.3. Each line lists the
parent of node 1,2 and 3 of the tree, respegtiand the depth of theevtex in the reverse search tree. As
noted abwe, the maximum depth is—1 = 2.

For the complexity analysis, the definition Aélj implies thatmaxdeg = n?. The implementations of
Adj and f both hae time compleaity O(n). Therefore from equation 3.2 we see that the time coqityple
is O(n®) per tree generated.

Exercises

6.1. Shav that the procedureext can be impreed by adding the statement
if(v[*i] 1= 0) (*i)=n+1;

just before the final parenthesis.

Hint: Shawv thatreverse will be false for all remaining values bandj.

6.2. Obserg that if the arraytree is read in reerse orderthe output in Figure 6.3 comes ixieographi-
cally increasing orderProve this fact and use it delop a simple iteratie dgorithm for listing lableled
trees.

6.3. Generalize the method to find all trees whose edges come from the edgeseofgeagh onn +1
points.

-10-

000 cepth=0
200 cepth=1
300 cepth=1
010 cepth=1
310 cpth=2
030 cpth=1
230 cpth=2
330 cpth=2
001 cepth=1
201 cpth=2
011 cepth=2
031 cpth=2
002 cpth=1
202 cpth=2
302 cpth=2
012 cpth=2
Figure 6.3 All 16 labelled trees on 4 nodes

7. Euclidean Trees

In this section we describe a geometrical version of the spanning tree problem. The input is a set of
n points in the plane, no three of which are collinearEuclidean tree is a spanning tree drawn with the
points as vertices, straight line segments as edges, and such thatedgew intersect at an interior point.
The number of such trees depends on the configuration of points. In this sectionmgosha \ery
small modification of the method described in the last section can be used to list all Euclidean trees for a
given input point set.

The modification consists of simply adding thevremndition on non crossing edge$he revised
adjacengoracle is, for i <n,0< j<n, j#i:

Adi(T.1, j) = Or — ik +ij k =tree(i), i isnot an ancestor of j andij does not cross an edgein T
SUERR _B nil otherwise

In Figure 7.1, the tree in the centre is adjacent to the four outer trees.

0 @ qu

Se— 0

oe——O
Figure 7.1 Adjaceng for Euclidean trees

We dhoose the same target tree as before: the star efitx\0 as he centre. Finally the local search
function becomes: choose thertex with smallest inde i that is not adjacent to the root and for which
the segmenit0 does not cross gredge ofT, then setree(i) = 0. In other words:

f(T)=T -ik+i0 wherei istheleast index s.t. k =tree(i) # 0 and i0 does not cross any edge of T.

It is nov necessary to prx@ that such aertexi exists in eery Euclidean tree that is not thegatT *. A
proof of this can be found in [1]. As before, folyareeT # T * at mostn — 1 gpplications off leads to
the stafT *.

For the implementation we require a functiormossedge(tree v, int i, int j) which returngrue if the
segment fromi to j crosses anedge in the tre@.This is a standard function in computational geometry
which we do not discuss here.iti/this function a f& small changes to the code in the last section

-11-
suffice. Line 5 ofAdj is replaced by:

if ((p==i) || crossedge(v,i,j)) return FALSE;
Line 4 of functionf is replaced by:

while (k <=n && (v[k] == 0 || cossedge(v,0,k))) k++;
Line 5 of functionreverse becomes:

if(!Adj (w,i,j)) return FALSE;

The main program reads the set of points and performsseesearch frori *. A sample output
for n =3 is gven in Hgure 7.3. The points are listed with their euclidean coordinates, and a list of cross-
ing segments is computed. Each faling line lists a Euclidean tree, by listing the parent of node 1,2 and
3 in the tree, respeetly, and the depth of theertex in the reverse search tree. As noted abahe maxi-
mum depth isi—1 = 2.

points: 05,55,50,00
crossings (if any):

02 13

euclidean spanning trees:
000 dpth=0

200 cepth=1

010 cepth=1

310 cepth=2

011 cepth=2

030 cpth=1

230 cpth=2

330 cpth=2

031 cepth=2

002 cepth=1

202 cpth=2

012 cepth=2

number of trees=12

Figure 7.3 Euclidean trees on the point set of Figure 7.1

The complexity analysis is similar to that of the last section. The definitioldjofmplies that
maxdeg = n?. The functioncrossedge requiresO(n) time. Itis called once fromAdj, o tag = O(n).
However f may require up ta calls tocrossedge, so t = O(n®). Thereforefrom equation 3.2 we see
that the time complexity i©(n*) per tree generatedie an reduce this back ©(n°) per tree by pre-
computing all values ofrossedge for each tree, and storing them in a tabléis table can be built in
O(n®) time and accessed @(1) time, sat¢ = O(n).

Exercises
7.1. Prae that the functionf is well defined.

7.2. Generalize the method to find all Euclidean trees whose edges come from the edges of axgraph dra
on the gven point set.

References

1. D.Avis and K. Fukuda, “Rexse Search for EnumeratidrDiscrete Applied Math, 6, pp. 21-46
(1996).

