
Tutorial on Reverse Search with C Implemenatations

David AVIS

School of Computer Science
McGill University

3480 University, Montreal, Quebec, Canada H3A 2A7
avis@cs.mcgill.ca

13 July 2000

1. Introduction
This paper is a tutorial on reverse search, a technique developed by Komei Fukuda and the author

for the generation of large sets of discrete objects [1]. Although reverse search was originally used for
generating all vertices of a convex polyhedron, it has been applied to many other geometric and combina-
torial problems.The purpose of this tutorial is to illustrate the basic technique on some simple examples
and go through some basic implementations in C. Various refinements are studied, along with their effect
on the time complexity and running time of the implementation.This is an informal introduction, and the
reader is referred to [1] for a rigorous approach and other more complex examples.

2. Basic Components: Adjacency and Local Search
Reverse search is a technique for generating large, relatively unstructured, sets of discrete objects.

In its most basic form, it can be viewed as the traversal of a spanning tree, called there verse search tree,
of a graphG whose nodes are the objects to be generated. Edges in the graph are specified by anadja-
cency oracle, and the subset of edges of the reverse search tree are determined by an auxiliary function,
which can be thought of as alocal search function f for an optimization problem defined on the set of
objects to be generated. One vertex,v* , is designated as theoptimum vertex. For every other vertexv of
G, repeated application off must generate a path inG from v to v* . The set of these paths defines the
reverse search tree, which has rootv* . A reverse search is initiated atv* , and only edges of the reverse
search tree are traversed. Whena node is visited the corresponding object is output. Since there is no
possibility of visiting a node by different paths, the nodes are not stored. Backtracking can be performed
in the standard way using a stack, but this is not required as the local search function can be used for this
purpose. This means that it is not necessary to keep more than one node of the tree at any giv en time, and
this memoryless property is the main feature of reverse search.

For a giv en problem, there may be many choices of adjacency oracle and local search function.
However, in the basic setting described here, a few properties are required. Firstly, the underlying graphG
must be connected and an upper bound on the maximum vertex degree,maxdeg, must be known. Aswe
will see the performance of the method depends onG havingmaxdeg as low as possible. Theadjacency
oracle must be capable of generating the adjacent vertices of some given vertexv sequentially and without
repetition. This is done by specifying a functionAdj(v, i), where v is a vertex of G and
i = 1, 2, . . . ,maxdeg. Each value ofAdj(v, i) is either a vertex adjacent tov or null. Each vertex adjacent
to v appears precisely once asi ranges over its possible values. Finally, the local search functionf should
be easy to compute, so that it is easy to determine edges of the reverse search tree that will be traversed.
These ideas can be illustrated on a simple example: generating all permutations of a set of integers.

Example 1: Permutations
Given an integern we are asked to generate all permutations of the integers 1,2,. . . , n. For example, if
n = 3 the required output is:

123, 231, 312, 213, 132, 321.

From the discussion in the previous section we require:

(i) a graphG defined on the set of permutations given by an adjacency oracle;

(ii) a starting vertexv* ; and

(iii) a local search functionf which defines a spanning tree of the graphG with root v* .

For giv en n, we represent a permutation of 1,2,. . . , n by x1x2
. . . xn There are many choices for an adja-

cency oracle to defineG. One is as follows: for every i = 1, . . . ,n − 1,

-2-
Adj(x1x2

. . . xn, i) = x1
. . . xi−1xi+1xi

. . . xn.

In other words, we can swap any two adjacent integers in a given permutation to get one of its neighbours
in G. For example

Adj(213, 1)= 123, Adj(213, 2)= 231

and

Adj(3124, 1)= 1324, Adj(3124, 2)= 3214, Adj(3124, 3)= 3142.

From the definition, we see thatG is a regular graph of degreen − 1 and so we have maxdeg = n − 1. In
fact, whenn = 3, G is the cycle of length 6, see Figure 2.1(a).

2 1 3

2 3 1

1 3 2

3 1 2

3 2 1

2 1 3

2 3 1

3 2 1

3 1 2

1 3 2

1 2 3 = v*1 2 3

Figure 2.1(a)Graph of permutations withn = 3 (b) Spanning tree defined byf

Next we define a spanning tree onG by means of a local search functionf . For the starting vertex
we choose the identity permutation, so that

v* = 12 . . . n.

To define the spanning tree, we define a functionf on the vertices ofG whose repeated application yields
a path inG to v* . Here is one choice forf :

f (x1x2
. . . xn) = x1

. . . xi−1xi+1xi
. . . xn

wherei is the smallest integer such thatxi > xi+1. To complete the definition, setf (v*) = v* . For exam-
ple, withn = 5 we hav e:

f (31245)= 13245, f (13245)= 12345 f (12345)= 12345.

It is easy to seef has the required properties. Clearly for any vertex of G that is notv* it gives an adjacent
vertex in G. In fact it behaves like bubble sort, in that large integers move to the right and small integers
move to the left. It is an easy exercise to show that starting at any permutation, repeated application off
leads tov* , ie. the permutation is "sorted".f therefore defines a unique path from any vertex of G to v* ,
and the set of these paths is the desired spanning tree ofG. Figure 2.1(b) gives the spanning tree when
n = 3, where the edges are directed towards the root, as induced by the functionf .

Exercises.
2.1. Draw the graph of permutations forn = 4 and corresponding reverse search tree.

2.2. LetD be a directed graph onn nodes, so that for each edgeuv of D, u < v. A permutation of 1 2 ...n
is compatible with D if for each edgeuv, u occurs beforev in the permutation.For example if D has the
single edge 12, the compatible permutations are 1 2 3, 1 3 2, 3 1 2.Generalize the results of this section
to the problem of generating all permutations compatible withD (note that 1 2 ... n is always compatible).

3. Reverse Search Algorithm
The reverse search algorithm can be stated generally in terms of the basic components described in

the previous section.We use these components to describe four functions:root, reverse, backtrack and
reversesearch. In this section we give C-like pseudo code for the simplest generic implementation of
these functions. Depending on the application, specifically tailored implementations can greatly improve
overall performance.

-3-
The boolean functionroot(v) returnstrue if v is v* , the root of the reverse search tree, otherwise it

returns false. The boolean functionreverse(v, i) is used to determine if the neighbourw = Adj(v, i) of v
is a child ofv in the reverse search tree. It returnstrue in this case, otherwise it returnsfalse. Note that
Adj(v, i) may benull for some values ofi.

reverse(v, i)
w = Adj(v, i);
if (w! = null)

return (v = = f (w)) ;
else

return FALSE;

The integer functionbacktrack(v) is used to return from a nodev to its parentw = f (v) in the
reverse search tree. It also finds the valuei such thatv = Adj(w, i), and this is returned to the calling func-
tion.

backtrack(v)
i = 0;
child = v; /* keep a copy of v */
v = f (v);
do i++;

while (child ! = Adj(v, i));
return i;

With these three functions we can specify the functionreversesearch(v, maxdeg) which traverses
the reverse search tree rooted atv.

reversesearch(v, maxdeg)
i = 0; /* adjacency counter */
count = 1;
output(v);
while (! root(v) | | i < maxdeg) /* main loop */
{
do i++;

while (i ≤ maxdeg && ! reverse(v, i)) ;

if (i ≤ maxdeg) /* go deeper in reverse search tree */
{

v = Adj(v, i);
count++;

output(v);
i = 0;

}
else /* backtrack and restorev, i*/

i = backtrack(v);
}
return count;

In the code the variablev is the tree node currently being processed, and is initially the root of the
tree. Inthe main loop each neighbourAdj(v, i) of v is examined to see if it is a child ofv in the tree. This
is the function of thedo .. while loop, and uses the functionreverse. If this loop terminates with a value
i ≤ maxdeg a child has been found, andv is updated to be this node. Otherwise no further children exist,
and a backtrack step is performed, replacingv by its parent, and restoringi to the value it had previously.
This is performed by the functionbacktrack. The program terminates when the last potential child of the
root has been examined, that is whenv is the root andi = maxdeg, and returns the number of objects gen-
erated.

We now consider the time and space complexity ofreversesearch. Suppose the graphG has |V | ver-
tices and |E| edges. Letrespectively treverse, t Adj , t f , tbacktrack treversesearch be the time required to execute
reverse, Adj, f , backtrack andreversesearch. In each execution of the main loop, the current nodev is
either replaced by a child or by its parent in the tree. Therefore this loop is executed at most 2|V | times.
For each vertex the do statement is executed fori = 1, . . . ,maxdeg, hencereverse is executed a total of
maxdeg |V | times. Inreversesearch, the if statement and theelse statement are both executed once for
each vertexv, for a total of |V | times each. Adding up we see that

-4-
treversesearch = O(|V | (maxdeg treverse + t Adj + tbacktrack)) (3.1)

In the implementation ofreverse above the functionAdj is evaluated each time, but the functionf is only
evaluated whenAdj returns a neighbour. Therefore inreverse, Adj is executed a total ofmaxdeg |V |
times, whereasf is executed a total of |E| times. For backtrack we have

tbacktrack = O(t f + maxdeg t Adj).

If we substitute into (3.1) and simplify, using the fact that |E| ≥ |V | − 1, we get

treversesearch = O(maxdeg |V | t Adj + |E| t f). (3.2)

From this equation we see the importance of a small value ofmaxdeg and an efficient implementation of
both Adj and f .

For the space complexity, we observe that no data structures are used in the search apart from that
required to holdv and perhaps its parent and one of its children. The space complexity is therefore pro-
portional to the space required to hold a single node ofG.

Exercise
3.1 Trace the application ofreversesearch on the example of Figure 2.1.

4. A C Implementation for Permutations
In this section we examine a possible C implementation of reverse search for the problem of gener-

ating permutations. The first step is to decide the data typeperm to hold a permutation. For simplicity we
choose a static array and use the global variablen to keep the size of the permutations to be generated:

typedef int perm[100];
int n;

Next we define the functionsf (v) and Adj(v, i). Sinceperm is a static array, these functions cannot return
a permutation. Instead we update the permutation supplied as the argumentv. The implementations are
straightforward from the definitions in Section 2.

void swap (perm v, int i)
{
int t;
t = v[i];
v[i] = v[i + 1];
v[i + 1] = t;

}

void Adj (perm v, int i) /* adjacency oracle */
{
swap (v, i);

}

void f (perm v) /* local search function */
{
int i=1;
while (i < n && v[i] <= v[i + 1]) i++;
if (i < n) swap (v, i);

}

Now we can implement the three basic functions for reverse search:root(v), reverse(v, i) and back-
track(v). The first functions is simply:

int root (perm v)
{
int i;
for (i = 1; i <= n; i++)
if (v[i] ! = i) return FALSE;

return TRUE;
}

To implementreverse(v, i) we need to make a copy, w, of v before making the required test, which is
implemented by the functionequal. Note that bothAdj and f update the value ofw:

-5-
int equal (perm w, perm v)
{
int i;
for (i = 1; i <= n; i++)
if (w[i] ! = v[i]) return FALSE;

return TRUE;
}

int reverse (perm v, int i)
{
perm w;
copy (w, v);
Adj (w, i);
f (w);
return equal (v, w);

}

In this implementation ofbacktrack(v) we again need a copy child, of v. This is used in thedo..while
loop that restores the value ofi. Note that in this loop it is necessary to restorev at each iteration, as it
gets updated in the callAdj(v, i). Herewe use the fact that in this application, two consecutive calls
Adj(v, i) will result in v being unchanged.

int backtrack (perm v)
{
perm child;
int i = 0;
int found = FALSE;
copy (child, v);
f (v); /* v is parent of child */
do{

i++;
Adj (v, i); /* v replaced by jth child */
found = equal (child, v);
Adj (v, i); /* restore v */
} w hile (!found);

return i;
}

Having assembled all the pieces, we complete the program by implementingreversesearch(v, maxdeg)
which controls the search itself. This is virtually identical to the pseudocode given in the last section:

int reversesearch (perm v, int maxdeg)
{
int i=0, count=1;
output (v);
while (!root (v) | | i < maxdeg)
{
do i++;

while (i <= maxdeg && ! reverse (v, i));
if (i <= maxdeg)
{
Adj (v, i);
output (v); count++;
i = 0;

}
else i = backtrack (v);

}
return count;

}

The program can be tested by the simple driver:

-6-
int main ()
{
perm v;
int i, count;
scanf ("%d", &n); /* enter size of permutation */
for (i = 1; i <= n; i++) v[i] = i; /* set root */
count = reversesearch (v, n - 1);
printf ("\nnumber of permutations=%d\n", count);
return 0;

}

Let us analyze the time and space complexity of this implementation. It is easy to see that |V | = n!,
|E| = (n − 1) |V |, maxdeg = n − 1, t Adj = O(1) andtreverse = O(n). Therefore,using equation (3.2) we see
that

treversesearch = O(n(n − 1) n!),

or quadratic time per permutation.

Exercise
4.1 Implement the algorithm for listing compatible permutations described in Exercise 2.2.

5. An Improved Implementation
The implementation given in the previous sections is very basic. It can be improved in two obvious

places: restoring the index i in backtrack and performing the test inreverse. Analysis of equation (3.2)
show that these are the bottlenecks in the program. To improve the functionbacktrack we rewrite f (v) so
that it is an integer function that returns the value of the index i such thatv = Adj(f (v), i). Thenback-
track becomes a function call tof , with running timeO(n):

int f (perm v) /* local search function */
{
int i=1;
while (i < n && v[i] <= v[i + 1]) i++;
if (i < n) swap (v, i);
return i;

}

int backtrack (perm v)
{
return f(v);

}

Improving reverse(v, i) is more subtle. The basic idea is to determine ifv = f (Adj(v, i)) without
directly computingAdj(v, i) and f . Consider the permutationv = 12354786 and suppose we know that
the smallest indexs for which v[s] > v[s + 1] is s = 4.

Case 1. i < s = 4.
Sincev[i] < v[i + 1], these integers are out of order inAdj(v, i). Sinces > i, they will be restored byf ,
and soreverse(v, i) is true.

Case 2. i = s = 4.

Sincev[i] > v[i + 1] we can immediately conclude thatreverse(v, i) is false. This is becauseAdj(v, i) will
place these two entries in order, and this cannot be undone byf , which is a sorting function.

Case 3. i > s + 1 = 5

In this casef will swap v[s] and v[s + 1], soreverse(v, i) is false.

Case 4. i = s + 1 = 5, v[s] < v[s + 2].
In this case, the first out of order pair inAdj(v, i) are v[s + 1] andv[s + 2]. These get put in order byf , so
reverse(v, i) is true. Note that ifv[s] > v[s + 2] (eg. v = 12384756) thens is not changed byAdj(v, i) and
reverse(v, i) is false.

These cases are exhaustive, and can be summarized by the following proposition whose proof is left as an
exercise.

-7-
Proposition. Let v be a permutation of lengthn and lets be the smallest index for whichv[s] > v[s + 1].
Then reverse(v, i) is true if and only if
(a) i < s, or
(b) i = s + 1 < n − 1 and v[s] < v[s + 2].

We can use the proposition to implementreverse in O(1) time, providing we know the value ofs.
This can be calculated once each timev is updated by a functionfindindex(v) and stored in the unused
positionv[0] of the array storingv.

findindex(perm v) /* find first out of order position in v */
{
int i;
for(i=1; i < n && v[i] < v[i+1]; i++);
v[0]=i;

}

The statementfindindex(v) is inserted as the first statement in the main loop ofreversesearch, just before
thedo statement. Finally we can replacereverse by:

int reverse (perm v, int i)
{
perm w;
int s = v[0]; /*smallest index s.t.v[s]>v[s+1]*/
if (i <= s-1) return TRUE;
if (i == s+1 && s <= n-2 && v[s] < v[s+2]) return TRUE;
return FALSE;

}

We can measure the improvements analytically by using equation (3.1) of Section 2. As noted above
tbacktrack = t f and treverse = O(1). However for each execution of the main loop we must execute findin-
dex, at a cost ofO(n) time. Makingthe substitutions in (3.1) we obtain

treversesearch = O(n n!),

or linear time per permutation.We can test this empirically by running the two programs. For example,
on a Sun Solaris withn = 10 there are 3,628,800 permutations. The original version took 28 seconds and
the improved version took 5 seconds, 5.6 times faster.

Exercise
5.1 Generalize the proposition to the problem of listing compatible permutations described IN Exercise
2.2.

6. Example 2: Trees
In this section we show how to dev elop a reverse search algorithm for generating all labeled trees on

n + 1 points. We label the vertices 0,1, ...,n and consider the tree rooted at vertex 0. It is convenient to
direct the edges in a tree toward the root. Each vertex i is the endpoint of one directed edgeij, and we
definetree(i) = j. It is well known that there are (n + 1)n−1 such trees. Figure 6.1 shows the three labeled
trees on three points.

0

1 2

0

1 2

0

1 2

Figure 6.1 Labeled trees on 3 points

The first step in designing a reverse search algorithm for generating trees is to define the adjacency
relationship. Given a treeT , consider a vertexi ≥ 1. There is a unique directed edgeik in T . For any ver-
tex j ≠ k we constructT ′ from T by deleting edgeik and inserting edgeij. T ′ is a tree if and only if the
path from j to the root ofT does not include vertex i. For example, in Figure 6.2, edge 51 may replace
edge 52, but edge 15 may not replace 10, since 1 is on the path from 5 to 0.

Using this idea we can construct the adjacency oracle, for 1≤ i ≤ n, 0 ≤ j ≤ n, j ≠ i:

-8-

0

1

2

3 4

5

Figure 6.2 Adjacency for trees

Adj(T , i, j) =




T − ik + ij

nil

where k = tree(i) and i is not an ancestor of j

otherwise

In this definition we have used two parametersi and j for clarity. They could of course be replaced by a
single parameter to conform to the definition in Section 2. The essential point is that all neighbours of a
vertex (which is a tree in this case) can be found by trying all possible indicesi and j. Notice also that in
this example, some values ofi and j do not give a neighbour ofT .

For the starting treeT *, we choose the star with edgesi0, i = 1, . . . ,n. A local search function is
easy to define. For any treeT ≠ T * choose any nodei not adjacent to the root and settree(i) = 0. In other
words:

f (T) = T − ik + i0 where i is the smallest index such that k = tree(i) ≠ 0.

Clearly for any treeT ≠ T * at most n − 1 applications of f leads to the starT *. We are now ready to
describe the implementation. We define the data typetree as a static array:

typedef int tree[100];
int n;

The starT * i s represented by setting the array to zero, and the procedureroot(v) simply tests this condi-
tion. Theadjacency oracle can be implemented:

int Adj (tree v, int i, int j) /* adjacency oracle */
{
int p=v[j];
while (p != 0 && p != i) p=v[p];
if (p == i) return FALSE; /* i is ancestor of j */
v[i]=j; /* j becomes parent of i */
return TRUE;
}

For the local search functionf (v), we implement the improved version described in Section 5 that returns
the indicesi and j such thatv = f (Adj(v, i, j)). Since C allows only one value in a return statement, we
pass parametersi and j explicitly as pointers:

void f (tree v, int* i, int* j) /* local search function */
{ / * set i,j s.t v=Adj(f(v),i,j) then set v=f(v) */
int k=1;
while (k <= n && v[k] == 0) k++;
if (k <= n) /* v is not root of tree */
{ (*i)=k; (*j)=v[k];
v[k]=0;

}
}

Using these functions we have a very simple procedurereverse(v, i, j):

-9-
int reverse (tree v, int i, int j)
{
tree w;
copy (w, v);
Adj (w,i,j);
f (w,&i,&j); /* i, j get changed, but are not returned to reversesearch */
return equal (v, w);

}

As we saw in Section 5, the procedurebacktrack becomes redundant, and we can write procedurerevers-
esearch:

int reversesearch (tree v)
{
int i=1, j=1, count=1, depth=0;
output (v,depth);
while (i <= n)
{
do next(v,&i,&j);

while (i <= n && !reverse (v,i,j));
if (i <= n)
{
Adj (v,i,j);
count++; depth++;
output(v,depth);
i=1; j=1;

}
else if (!root(v))

{
f(v,&i,&j);
depth--;
}

}
return count;

}

In the code we use the functionnext(v, i, j) to cycle through the possible values ofi and j:

next(int* i, int* j)
{
(*j)++; if ((*i) == (*j)) (*j)++;
if ((*j) > n)

{ (*i)++; (*j)=1; }
}

This concludes the implementation. A sample output forn = 3 is giv en in Figure 6.3. Each line lists the
parent of node 1,2 and 3 of the tree, respectively, and the depth of the vertex in the reverse search tree. As
noted above, the maximum depth isn − 1 = 2.

For the complexity analysis, the definition ofAdj implies thatmaxdeg = n2. The implementations of
Adj and f both have time complexity O(n). Therefore from equation 3.2 we see that the time complexity
is O(n3) per tree generated.

Exercises
6.1. Show that the procedurenext can be improved by adding the statement

if(v[*i] != 0) (*i)=n+1;

just before the final parenthesis.
Hint: Show thatreverse will be false for all remaining values ofi and j.

6.2. Observe that if the arraytree is read in reverse order, the output in Figure 6.3 comes in lexicographi-
cally increasing order. Prove this fact and use it develop a simple iterative algorithm for listing lableled
trees.

6.3. Generalize the method to find all trees whose edges come from the edges of a given graph onn + 1
points.

-10-

0 0 0 depth=0
2 0 0 depth=1
3 0 0 depth=1
0 1 0 depth=1
3 1 0 depth=2
0 3 0 depth=1
2 3 0 depth=2
3 3 0 depth=2
0 0 1 depth=1
2 0 1 depth=2
0 1 1 depth=2
0 3 1 depth=2
0 0 2 depth=1
2 0 2 depth=2
3 0 2 depth=2
0 1 2 depth=2
Figure 6.3 All 16 labelled trees on 4 nodes

7. Euclidean Tr ees
In this section we describe a geometrical version of the spanning tree problem. The input is a set of

n points in the plane, no three of which are collinear. A Euclidean tree is a spanning tree drawn with the
points as vertices, straight line segments as edges, and such that no two edges intersect at an interior point.
The number of such trees depends on the configuration of points. In this section we show how a very
small modification of the method described in the last section can be used to list all Euclidean trees for a
given input point set.

The modification consists of simply adding the new condition on non crossing edges.The revised
adjacency oracle is, for 1≤ i ≤ n, 0 ≤ j ≤ n, j ≠ i:

Adj(T , i, j) =




T − ik + ij

nil

k = tree(i), i is not an ancestor of j andij does not cross an edge in T

otherwise

In Figure 7.1, the tree in the centre is adjacent to the four outer trees.

0 1

23

Figure 7.1 Adjacency for Euclidean trees

We choose the same target tree as before: the star with vertex 0 as the centre. Finally the local search
function becomes: choose the vertex with smallest index i that is not adjacent to the root and for which
the segmenti0 does not cross any edge ofT , then settree(i) = 0. In other words:

f (T) = T − ik + i0 where i is the least index s. t. k = tree(i) ≠ 0 and i0 does not cross any edge of T .

It is now necessary to prove that such a vertexi exists in every Euclidean tree that is not the targetT *. A
proof of this can be found in [1]. As before, for any treeT ≠ T * at most n − 1 applications of f leads to
the starT *.

For the implementation we require a functioncrossedge(tree v, int i, int j) which returnstrue if the
segment fromi to j crosses any edge in the treev.This is a standard function in computational geometry
which we do not discuss here. With this function a few small changes to the code in the last section

-11-
suffice. Line 5 ofAdj is replaced by:

if ((p==i) || crossedge(v,i,j)) return FALSE;

Line 4 of functionf is replaced by:

while (k <= n && (v[k] == 0 || crossedge(v,0,k))) k++;

Line 5 of functionreverse becomes:

if(!Adj (w,i,j)) return FALSE;

The main program reads the set of points and performs a reverse search fromT *. A sample output
for n = 3 is giv en in Figure 7.3. The points are listed with their euclidean coordinates, and a list of cross-
ing segments is computed. Each following line lists a Euclidean tree, by listing the parent of node 1,2 and
3 in the tree, respectively, and the depth of the vertex in the reverse search tree. As noted above, the maxi-
mum depth isn − 1 = 2.

points: 0 5, 5 5, 5 0, 0 0
crossings (if any):
0 2 1 3
euclidean spanning trees:
0 0 0 depth=0
2 0 0 depth=1
0 1 0 depth=1
3 1 0 depth=2
0 1 1 depth=2
0 3 0 depth=1
2 3 0 depth=2
3 3 0 depth=2
0 3 1 depth=2
0 0 2 depth=1
2 0 2 depth=2
0 1 2 depth=2
number of trees=12

Figure 7.3 Euclidean trees on the point set of Figure 7.1

The complexity analysis is similar to that of the last section. The definition ofAdj implies that
maxdeg = n2. The functioncrossedge requiresO(n) time. It is called once fromAdj, so t Adj = O(n).
However f may require up ton calls tocrossedge, so t f = O(n2). Thereforefrom equation 3.2 we see
that the time complexity isO(n4) per tree generated.We can reduce this back toO(n3) per tree by pre-
computing all values ofcrossedge for each tree, and storing them in a table.This table can be built in
O(n3) time and accessed inO(1) time, sot f = O(n).

Exercises
7.1. Prove that the functionf is well defined.

7.2. Generalize the method to find all Euclidean trees whose edges come from the edges of a graph drawn
on the given point set.

References
1. D. Avis and K. Fukuda, “Reverse Search for Enumeration,” Discrete Applied Math, 6, pp. 21-46

(1996).

