
Vdwm 9, number 5 INFORMATION PROCESSING LETT.ERS 16 December 1979

A LINEAR ALGORITHM FOR FINDING THE CONVEX HULL OF A SIhIPLE POLYGON *

Duncan McCALLUM and David AVIS
School of Computer Science, McGill University, Montreal, Quebec H3A 2K6, Canada

Received 12 June 1979; revised version received 26 September 1979

Convex hull, simple polygon, analysis of algorithms

1. Introduction

The problem of determining the convex hull of a
set of n points in the plane has recently received a
good deal of attention. Several algorithms for the
general problem with worst case complexity
D(n log n) have appeared (e.g., [3,4,6]). The special
case where the points form the vertices of a simple
polygon has long been considered easier. Indeed,
Sklansky [S] has proposed an O(n) algorithm, but a.
recently published counter example of Bykat [2]
shows that the algorithm can sometimes fail. A
slightly different counterexample can be constructed
for a similar algorithm of Shamos [4]. In this note
we present and prove the validity of a new linear time
algorithm for this problem.

2. Definitions, notation and preliminary results

In this note we will be concerned with poly;gons in
the euclidean plane. A point is represented by its x
and y coordinates and a polygon is represente1.j. by a
list of points in the order tnat are encounterecl as the
boundary is traversed. We shall refer to these points
as turn points. We will not always distinguish the
polygon from its boundary. A simple polygor b a
polygon whose boundary is a simple closed curve.

* This research was supported by the National Research
Council of Canada under research grant NRC A3013.

The convex hull of a set S of points is denoted
Hull(S). An extreme point of a polygon P is a point
of P that lies on the boundary of Hull(P). It folIows
from the Jordan Curve theorem that the extreme
points of a simple polygon are in sorted order: that
is, if pi,, pi29 -9 pik are the extreme points with.
ir < iz < l *q < ik, then pi1 pi2 l *a pik represents a con-
vex polygon. A simple polygon is cZock?rvise oriented
if its interior lies to the right as the polygon is tra-
versed. As one can easily determine, and if necessary
reverse, the orientation of a simple polygon in linear
time, we assume that every simple polygon is repre-
sented with a clockwise orientation. Further, in order
to simplify both the algorithm and its proof of cor-
rectness, we shall assume that no three turn points of
the polygon are collinear, and also that there be
unique turn points of the polygon with minimum
and maximum x-coordinates. Slight modifications to
the algorithm render these assumptions unnecessary.

Given three points pi = (xi, yi), pj = (xi, yj) and
pk = (xk, ykh let

s = xk(Yi - Yj)+ yk(xj - xi)+ yjxi - yixj s

We say that pk is left of (respectively on, right of.
the directed line pipj if s is positive (respectively

case s is zero a

mum and maximum x-coordinates respectively.

INFORMATION PROCESSING LETTERS 16 December 1979

~~~n~: stack, if there is one; otherwise ia = ja = n. 

H~Il(p*, pa, (pjl k Qj <n; 
Pj is left of p lpf*)) 9 1 Gk<n, 

(pr, pn, {pjJ k G j G m; 
pi is left of p,pl]) 9 nGk<m. 

y let Path(P, pi, pi) be the path in P from pi to 
ch follows the orientation of P. 
s easily seen that p1 and pn split Hull(P) into 

th(Wull(P), pl, pn) and Path(Hull(P), 
110~s from convexity and the above- 

sorted order property of simple polygons 

,,tack T(temporary) contains index I at the bot- 
tom and the indices of those points so far scanned, if 
any, which have been rejected as extreme points of 
LHr, but which are extreme points of I&. Except 
for the bottom index, elements of T will be in de- 
creasing order from the bottom to the top. Upon 

termination of the algorithm, T will contain just the 
index 1. The variable jt will point to the top element 
in T. 

Path(Huil(P), pl, p,,) c LHr , 

Path(Hull(P), pnq pr) c: LH, e 

Certainly, LHr 41 LH, C Hull(P). Thus we must 
have LH, La LIl” = Hull(P). It suffices, then, to con- 
sider just the problem of finding the !efr hull LHr 
of the polygonal path p1p2 . . . pn. in the next section 
me present an algorithm for solving this problem. 

3. The algorithm 

/q~t: n, the number of points, and an array 
P = pi, pz, l -.* pn representing a simple path such that 

I is the point with minimum x-coordinate, pn is the 
int with maximum x-coordinate and no three 

points are collinear. 
Ou@uf: A linked list, 

B --, link( 1) -+ link(iink( 1)) .+ 0.. n , 

stored in the array link containing t’ne indices of the 
extreme points of LHi in clockwise order. 

t/r02 The algorithm scans tht points in reverse 
to ~1, updating two stacks that are 

ir. the array link. After scanning pk, the stacks 

:i?ack A (accept) contains the indices in P of those 
ts so far scanned which have been tentatively 

e IGnts. The bo .tom index in A 
ents in A will always bc in decreasing 

. Upon te mination of the 

the cxtrer le points of L 
ts to the top element in the st 
s to the rext el:ment in the 

Before formally stating the algorithm, we give an 
informal description of its operation. For the remain- 
der of the section we will refer to the regions dia- 
grammed in Fig. 1. The points al, . . . . a5 are stored in 
stack A, and the points tr, t2, t3 are stored in stack T. 
The regions Rr, . . . . Rs are defined formally in Sec- 
tion 4. The key point is that at each major iteration 
of the algorithm, stacks A and T combined contain 
the vertices of the convex hull of the points pl, pn 
and the turn points of P that have already been 
examined. As stated above, the tumpoints of P are 
examined in reverse order from p,, to pl. Consider 
the examination of prr. If it lies in Ri, it may be im- 
mediately rejected as an extreme point of P. If pk 
lies in R2, then it must be added to stack A since it 
is tentatively an extreme point of P. Stack T must be 
backtracked at this point, since the inclusion of pk 
may have rendered some points in T interior to LHk. 
Any such points must lie on the top of stack T and 
are discarded. If pk lies in R3, the situation is similar, 
except that both stacks A and T must be backtracked 
in order to check for the top elements becoming 
interior points of LHk. Consider the case where pk 
lies in R+ Since P is simple, it car be shown that the 
top element pja stored in A can no longer be an ex- 
treme point of P. It is, however, an extreme point of 
LHk, and so it is removed from A and I?laced onto I, 
The stack A is backtracked since the inclusion of pk 
may render other points interior to LIIk. Again only 
the top elements need be considered. Note that any 
turnpoints of P stored on stack A except the previous 
top element pja are interior to both LI-Ik and P. They 
are not, therefore, transferred to stack T, but are dis- 
carded. The only remaining possibility is that pB( lies 
in Rg. This case may, however, be excluded by an 
application of the Jordan Curve Theorem. A proof of 
this fact forms an important part of the verification 

202 



Volume 9, number 5 INFORMATION PROCESSING LETTERS 16 December 1979 

al = P, 

Fig. 1. 

of the correctness of the algorithm that is given in 
Section 4. 

The fact that the algorithm has a linear ruuling 
time follows essentially from the fact that a point is 
either placed onto stack A, onto stack A and stack T, 
or is discarded. When a stack is backtracked, the 
points removed always he on the top and may never 
be replaced onto the same stack. T 
between our algorithm and the earlier al.gorithms is 
the maintenance of the stack T. Although the points 
on this stack can never lie on the convex hull of P 

(except point pr), titey are r:nti~31 for rejecting: 

points interior to RI. The relention of these interior 
points as tentative extreme pl&ts leads to the pitfalls 
discovered by Bykat [2]. e now give 2 for,nal state- 
ment of the algorithm. 

are defmed formally in Section 4. The backtracking 
steps are to maintain convexity of the paths repre- 
sented by the indices stored in the res;::tive stacks. 



* number 5 INFORMATION PROCESSING LETTERS 16 December 1979 

Qure halku!l(n.p,link) 

ght of plpndo 1:+-k--l; 

if k4 return; 
jac- k; 

return; 
end ; 

t 0’:’ piapja then 

comment pk in Rq, push ja onto T; 
if pk left Of pjapjt then 

begin 
!ink(ja)+ji; 
jt+-ja; 

end ; 
comment pk in Ra, b lcktracl: T; 
else while pk right of pjtprinkot) 

do jt+-link(jt); 
comment backtrack :I; 
while pk right Of piai’rink(ia) 

do ia+link(ia); 
comment push k ont 3 A; 
link(k)+; 
ja+-k; 
got0 WI?,; 

end; 
if pk left of pjapjt then I;O to HH2; 
comment if pk in Rr, reject; 

otherwise pk n R2, push k onto A; 
link(k)+-ja; 

ia+-ja; 
jac-k; 

e 

204 

4. Analysis of the algorithm 

Before analyzing the algorithm we irtroduce some 
further notation. Suppose that at a general step of 
the algorithm the stacks A and T contain respectively 
cy and 7 indices. Let the corresponding turn points of 
p be denoted al, . . . . a, and t:i, . . . . t, respectively, 
where a 1 = p,, and t l = p 1 are the bottom elements of 
the stacks. An important part of the proof will be 
to show that every time the algorithm begins execu- 
tion of step HH3, LH k+r is the convex polygon repre- 
sented by tr l ** t,a, l *- al. 

Define 

R= {(x,y)lx~~x~x,,y,i,gy~y,,} 3 

where ymin and y,, are the minimum and maximum 
y coordinates. In the sequel, sets will be considered 
open or closed relative to R. 

Prior to each execution of HH3, we will consider 
the following five open regions of R, which depend 
on the contents of stacks A and T at that moment 
(see Fig. 1): 

Rr = Interior( {p E RI p is right of prpn) 
u Hull(ar, . . . . a,, t,, . . . . tr)) 9 

Rz = {p E RI p is right of pjapjt and left of piapja) , 

Ra = {p E R’, p is right of pjapjt and right of piapja! , 

& = (p E RI p is left of pjapjt and right of piapja) , 

Rs = Interior(R - {Rr U Rz U Ra U &}) . 

These regions are illustrated in Fig. 1. Note that 
since A contains at least two indices immediately 
prior to execution of HH3, Rr , Rz and R4 will be 
non-empty regions. Ra will be empty if and only if 
pk has maximum y-coordinate. Rs will be empty if 
and only if T contains exactly one index and A con- 
tains exactly two indices. The main part of the proof 
is contained in the following lemma: 

Lemma. Every time HH3 is executed, the following 
conditions hold : 

(a) L&+1 is the convex polygon tr *** &a, .** al, 
(b) if 7 2 2, t2, ‘.., t are interior points of LHr, 
(c) a, is the most recently scanned extreme point 

of LHk+r. 

oof. By induction on the number of times that 
HH3 is executed. Initially 7 = 1 and CY = 2 and condi- 



Volume 9, number 5 INFORMATION PROCESSING LETTERS 16 December 1979 

tions (a)-(c) are easily veriiled. We assume induc- 
tively that the conditions are satisfied immediately 
prror to the scanning of point pk. Note that initially 
a, = pja, h-1 = pia, t7 = pit. By our assumption of 
non collinearity, pk must lie in R1 U Rz U R3 U 
& U Rg. We consider each case separately: 

(i) pk E RI : The algorithm leaves stacks un- 
changed and LHk = LHk+,. 

(ii) pk E Rz : The algorithm pushes pk onto stack 
A and backtracks stack T. Suppose t,’ is at the top of 
T after backtracking. Then it is easily verified that 

{V+19 . .., f7) C Hull&, pk, Q). Thus the polygon 

h *** b’Pk% *a* al contains LH k+l and pk, is convex 
by construction, and is the smallest such polygon; 
hence it is LHk. 

(iii) pk E Ra : The algorithm backtracks A and T, 
then pushes pk onto stack A. Suppose that after 
backtracking, aar’ is at the top of A and t+ is at the 
top of T. Then (aat+1 l . . h, t;+l, . . . . t7} C 
Hull(aolf, pk, t+) so that, as in (ii), LHk is the convex 
polygon tr ..a t# pka,’ **’ al. 

(iv) pk E R4 : The algorithm pushes a, onto stack 
T, backtracks A to h*, then pushes pk onto stack A. 
As in (ii) and (iii), LHk is the convex polygon 

t1 -** f+aPk&’ *** al. It remains to show that a, is an 
interior point of LH1. This will follow if we can 
show that R3 n Path(P, pl, pk) # (8. For if ic point p 
is contained in this intersection, then a, E Hull(p, 
pk, t7). On the other hand, Path@?, h, pn) C 
closure(R1) by induction hypothesis (a), and sepa- 
rates R - R3 into two components with pk and pr in 
opposite components. If Path(P, pr, pk) C R - Ra, 
then it must intersect Path(P, a,, pn) which is impos- 
sible. Thus we have shown that Ra n Path(P, pl, 
pk) # 0 and ak is i aterior to ml. 

(v) pk E Rs : This case is impossible. Suppose 
that {aa_l, t7) = {pi, pi} and that i Cj. Then 
Path(P, pi, pi) sep;u-ates closure (Rr U Rs) into two 
components with G and Rs in separate components. 
For this path canrot contain a, by inductive hypo- 
thesis (c) and does not intersect Rs by inductive 
hypothesis (a). Now Path(P, pk, h) C closure 
(Rl U Rs) because by inductive hypothesis (a) 
Path(P, pk+l, aa) C closure (RI) and the line 
pkpk+r lies in closure (Rr u s) since this region is 
convex. Therefore Path(P, pk, h) must cross 
Path(P, pi, pj) which is impossible. 

Cases (i) to (v) are exhaustive and so the lemma 
follows by induction. 

Theorem. Procedure halfhull finds the left hull of p 
in linear time. 

Roof. The validity of &ti algorithm follows from the 
lemma applied when k = 2, noting that LH2 = LH,. 
The main step, HH3, of the algorithm is executed at 
most n - 2 times. A given turn point may be placed 
into neither stack, into stack A once, or into both 
stacks A and T once each. Once discarded, a point is 
never reconsidered and so the algorithm runs in linear 
time. 

5. Conclusion 

We have exhibited an O(n) algorithm for finding 
the convex hull of a simple polygon. It is clear, how- 
ever, that the algorithm will work on a much larger 
class of polygons. We are unable to characterize this 
class, although it is easily shown that the extreme 
points of such polygons must appear in sorted order. 
Under the linear decision tree model, Avis [ 11 has 
found an a(n log n) lower bound for the general 
problem of finding the convex hull of a set of points 
in the plane. A similar result for the more powerful 
quadratic decision tree model has been recently 
announced by Yao [7]. Thus it would be of interest 
to characterize the class of polygons for which an 
O(n) algorithm exists. 

AcknowIedgment 

The authors gratefully acknowledge the help and 
encouragement of God.fried Toussaint during the 
course of this research. 

eferences 

[ 1] D. Avis, On the compliexity of finding the convex hull 
of a set of points, Technical Report No. SOCS 79.2, 
McGill University (1979). 

[2] A. Bykat, Convex hull of a finite set of points in two 



~~Iume 9, numbl:r 5 INFORMATION PROCESSING LETTERS 16 Cecember 1979 

dimensions, information Processing :Lett. 7 (1978) 
296-298. 

[ 3 1 R. Graham, An efficient algorithm I’W determining the 
convex hull of a planar set, Information Processing Lett. 
1 (19?2) 132-133. 

“t] M. Shamog, Problems in computational geometry, 
Carnegie Mellon University (1975) revised (1977). 

[ 51 J. Sklansky, Measuring concavity on a rectangular 
mosaic, IEEE Trans. Comput. 21 (1972) 1355-1364. 

[6] G. Toussaint, S. Akl and L. Devroye, Efficient convex 
hull algorithms for points in two and more dimensions, 
Technical Report No. 78.5, :McGilI University (1978). 

[7] A. Yao, private communication (1979). 


