Volume 9, number 5

INFORMATION PROCESSING LETTERS

16 December 1979

A LINEAR ALGORITHM FOR FINDING THE CONVEX HULL OF A SIMPLE POLYGON *

Duncan McCALLUM and David AVIS

School of Computer Science, McGill University, Montreal, Quebec H3A 2K6, Canada

Received 12 June 1979; revised version received 26 September 1979

Convex hull, simple polygon, analysis of algorithms

1. Introduction

The problem of determining the convex hull of a
set of n points in the plane has recently received a
good deal of attention. Several algorithms for the
general problem with worst case complexity
O(n log n) have appeared (e.g., [3,4,6]). The special
case where the points form the vertices of a simple
polygon has long been considered easier. Indeed,
Sklansky [S] has proposed an O(n) algorithm, but a,
recently published counter example of Bykat [2]
shows that the algorithm can sometimes fail. A
slightly different counterexample can be constructed
for a similar algorithm of Shamos [4]. In this note
we present and prove the validity of a new linear time
algorithm for this problem.

2. Definitions, notation and preliminary results

In this note we will be concerned with polygons in
the euclidean plane. A point is represented by its x
and y coordinates and a polygon is represented by a
list of points in the order that are encounterec as the
boundary is traversed. We shall refer to these points
as turn points. We will not always distinguish the
polygon from its boundary. A simple polygor i< a
polygon whose boundary is a simple closed curve.

* This research was supported by the National Research
Council of Canada under research grant NRC A3013.

The convex hull of a set S of points is denoted
Hull(S). An extreme point of a polygon P is a point
of P that lies on the boundary of Hull(P). It fciiows
from the Jordan Curve theorem that the extreme
points of a simple polygon are in sorted order: that
is, if pj;» Piys ---» Piy ar€ the extreme points with
iy <ip <+ <, then p;, pj, * pj, represents a con-
vex polygon. A simple polygon is clockwise oriented
if its interior lies to the right as the polygon is tra-
versed. As one can easily determine, and if necessary
reverse, the orientation of a simple polygon in linear
time, we assume that every simple polygon is repre-
sented with a clockwise orientation. Further, in order
to simplify both the algorithm and its proof cof cor-
rectness, we shall assume that no three turn points of
the polygon are collinear, and also that there be
unique turn points of the polygon with minimum
and maximum x-coordinates. Slight modifications to
the algorithm render these assumptions unnecessary.

Given three points p; = (X;, ¥i), pj = (%j, y;) and
Pk = (xk9 Yk)s let
s = xg(yi — ¥ + yi(X; — xi) + Y% — ViX; -
We say that py is left of (iespectively on, right of®
the directed line p;pj if s is positive (respectively
zero, negative). When the points are distinct this
agrees with intuition. We occasionally allow the pos-
sibility that p; = p; in which case s is zero and py is
‘on’ the line.

Let P=pyp; * Pn1PaPns1 = P b a simple
polygon such that p; and py, are the points with mini-
mum and maximum x-coordinates respectively.

201

Volume 9, number 5

Diefine:
Hull(py, pn, {pjl k <j<m;
p; is left of p1pn}) , 1<k<n,
LH, =
Huli(py, pn, {pjl k <j<m;
p;j is left of ppps}) , n<k<m.

Finally let Path(P, p;, p;) be the path in P from p; to
p; which follows the orientation of P.

It is easily seen ihat p, and p, split Hull(P) into
two paths, Path(Hull(P), p;, pa) and Path(Hull(P),
Pn. P1)- [t follows from convexity and the above-
mentioned sorted order property of simple polygons
that

Path(Hull(P), p1. pa) < LH; ,
Path(Hull(P), pa, p1) LH, .

Certainly, LH; U LH,, C Hull(P). Thus we must
have LH; U LH,, = Hull(P). It suffices, then, to con-
sider just the problem of finding the left Aull LH,
of the polygonal path pyp, - pp. In the next section
we present an algorithm for solving this problem.

3. The algorithm

Input: n, the number of points, and an array
P =py, p2, ---» Pn representing a simple path such that
py is the point with minimum x-coordinate, py, is the
point with maximum x-coordinate and no three
points are collinear.

QOutput: A linked list,

I = link(1) - link(iink(1)) > - n ,

stored in the array link containing the indices of the
extreme points of LH; in clockwise order.

Method: The algorithm scans the points in reverse
order from py, to py, updating two stacks that are
stored in the array link. After scanning py, the stacks
are as follows:

Stack A (accept) contains the indices in P of those
points so far scanned which have been tentatively
accepied as extreme points. The bo tom index in A
is always n. Elements in A will always be in decreasing
order from bottom to top. Upon te mination of the
agorithm, A will contain the extrer e points of LH;.
The variable ja points to the top element in the stack.
The variable ia points to the rext el2ment in the

2062

INFORMATION PROCESSING LETTERS

16 December 1979

stack, if there is one; otherwise ia = ja = n.

Stack T (temporary) contains index 1 at the bot-
tom and the indices of those points so far scanned, if
any, which have been rejected as extreme points of
LH,, but which are extreme points of LHy. Except
for the bottom index, elements of T will be in de-
creasing order from the bottom to the top. Upon
termination of the algorithm, T will contain just the
index 1. The variable jt will point to the top element
inT.

Before formally stating the algorithm, we give an
informal description of its operation. For the remain-
der of the section we will refer to the regions dia-
grammed in Fig. 1. The points 2, ..., a5 are stored in
stack A, and the points ty, t, t3 are stored in stack T.
The regions Ry, ..., Rg are defined formally in Sec-
tion 4. The key point is that at each major iteration
of the algorithm, stacks A and T combined contain
the vertices of the convex hull of the points py, pp
and the turn points of P that have already been
examined. As stated above, the turnpoints of P are
examined in reverse order from p, to p;. Consider
the examination of py. If it lies in R;, it may be im-
mediately rejected as an extreme point of P. If py
lies in R, then it must be added to stack A since it
is tentatively an extreme point of P. Stack T must be
backtracked at this point, since the inclusion of py
may have rendered some points in T interior to LHy.
Any such points must lie on the top of stack T and
are discarded. If py lies in R3, the situation is similar,
except that both stacks A and T must be backtracked
in order to check for the top elements becoming
interior points of LHy. Consider the case where py
lies in R4. Since P is simple, it car: be shown that the
top element p;, stored in A can no longer be an ex-
treme point of P. It is, however, an extreme point of
LHy, and so it is removed from A and j:laced onto §.
The stack A is backtracked since the inclusion of py
may render other points interior to LHy. Again only
the top elements need be considered. Note that any
turnpoints of P stored on stack A except the previous
top element pj, are interior to both LHy and P. They
are not, therefore, transferred to stack T, but are dis-
carded. The only remaining possibility is that py lies
in Rg. This case may, however, be excluded by an
application of the Jordan Curve Theorem. A proof of
this fact forms an important part of the verification

Volume 9, number §

INFORMATION PROCESSING LETTERS

16 December 1979

= pl
& ¥
RS R2
)
Ry
£37P ¢ ‘
Ry
a5=pja
34 Pia
a
3 R4
32 R5
4 = pn
Fig. 1.

of the correctness of the algorithm that is given in
Section 4.

The fact that the algorithm has a linear runaing
time follows essentially from the fact that a point is
either placed onto stack A, onto stack A and stack T,
or is discarded. When a stack is backtracked, the
points removed always lie on the top and may never
be replaced onto the same stack. The major difference
between our algorithm and the earlier algorithms is
the maintenance of the stack T. Although the points
on this stack can never lie on the convex hull of P

(except point py), they are z2ntial for rejecting
points interior to R;. The reiention of these interior
points as tentative extreme points leads to the pitfalls
discovered by Bykat [2]. We now give « for.nal state-
ment of the algorithm.

The comments in the statenient of the algorithm
refer to the regions shown in Fig. 1. Thiese regions
are established each time step I3 is executed; ihey
are defined formally in Section 4. The backtracking
steps are to maintain convexity of the paths repre-
sented by the indices stored in the respcotive stacks,

20:

Volume 9, number 5

Procedure halfhull(n.p,link)

HHI:

HH2
b3

begin

jtets
link(i)1;
link(n)en;
ken-—-1;
while py right of pyp, do k<k-1;
link(k)-n:
if k=1 return;
ja< K;
1a<n,
kek-1;
if k=1 then
begin
link(k)+ja;
return;
end;
if p r'eht of pjzpja then
begin
comment py in Rg4, push ja onto T;
if pi left of p;,pj¢ then
begin
link(ja)y<ji;
jteias
end;
comment py in R3, bicktrack T;
else while py right of p;;prink(t)
do jt<link(jt);
comment backtrack A\;
while py right of pjatinkga)
do ia<link(ia);
comment push k ont A;
link(k)«ia;
ja<k;
goto HH2:
end:
if py left of pj,pj; then o to HH2;
comment if py in R, reject;

otherwise px n R,, push k onto A;

link(k)+-ja;

ia<ja;

jask;

comment backtrack T;

while rx right of pjyPrir k(50
do jt<link(it);

goto HH2;

end halfhull;

INFORMATION PROCESSING LETTERS 16 December 1979

4. Analysis of the algorithm

Before analyzing the algorithm we ir:troduce some
further notation. Suppose that at a general step of
the algorithm the stacks A and T contain respectively
« and 7 indices. Let the corresponding turn points of
p be denoted a;, ..., 3, and ty, ..., t; respectively,
where a; = p, and t; = p, are the bottom elements of
the stacks. An important part of the proof will be
to show that every time the algorithm begins execu-
tion of step HH3, LHy,, is the convex polygon repre-
sented by t; - tra, = ay.

Define

R = {(x, Y)| X1 <X <Xp, Ymin <Y < Ymax} »

where Ymin and Ymax are the minimum and maximum
y coordinates. In the sequel, sets will be considered
open or closed relative to R.

Prior to each execution of HH3, we will consider
the following five open regions of R, which depend
on the contents of stacks A and T at that moment
(see Fig. 1):

R, = Interior({p € R| p is right of p;pn}
U Hull(ay, ..., 34, tr, ..., 11)) »

R, = {p € R| pis right of p;,pj; and left of p;pja} ,
R3 = {p € R! pis right of pj,p;; and right of pjapja} ,
R4 = {p €R| pis left of pj,p;¢ and right of pjzp;a} ,
Rs = Interior(R — {R; YR, UR3UR,}).

These regions are illustrated in Fig. 1. Note that
since A contains at least two indices immediately
prior to execution of HH3, Ry, R, and R4 will be
non-empty regions. Rz will be empty if and only if
px has maximum y-coordinate. Rg will be empty if
and only if T contains exactly oiie index and A con-
tains exactly two indices. The main part of the proof
is contained in the following lemma:

Lemma. Every time HH3 is executed, the following
conditions hold:
(a) LHy. is the convex polygon t; -+ t;a, = aj,
(b)if 7> 2, t,, ..., t are interior points of LH;,
(c) a, is the most recently scanned extreme point
of LHk+1.

Proof. By induction on the number of times that
HH3 is executed. Initially 7 = 1 and a = 2 and condi-

Volume 9, number 5

tions (a)—(c) are easily veritied. We aszume induc-
tively that the conditions are satisfied immediately
prior to the scanning of point py. Note that initially
3y = Pja> 3x—1 = Pia> tr = Pjt- By our assumption of
non collinearity, px must liein Ry UR, UR3 U

R4 U Rs. We consider each case separately:

() px € Ry : The algorithm leaves stacks un-
changed and LHy = LHy,,.

(i) pk € R : The algorithm pushes py onto stack
A and backtracks stack T. Suppose t, is at the top of
T after backtracking. Then it is easily verified that
{ty'+1, ..., tz} € Hull(ay, py, t;'). Thus the polygon
ty - typkaq - @ contains LHy,, and py, is convex
by construction, and is the smallest such polygon;
hence it is LHy.

(iii) px € R3: The algorithm backtracks A and T,
then pushes py onto stack A. Suppose that after
backtracking, a,’ is at the top of A and t, is at the
top of T. Then {ay'+q = 8y, tr'+y, oos ty} C
Hull(ay', px, t;*) so that, as in (ii), LHy is the convex
polygon ty - t,* prag’ = as.

(iv) px € R4: The algorithm pushes a, onto stack
T, backtracks A to a,, then pushes py onto stack A.
As in (ii) and (iii), LHy is the convex polygon
ty = tyagpkay’ *+* a;. It remains to show that a, is an
interior point of LH;. This will follow if we can
show that R3 N Path(P, p,, px) # 9. For if & point p
is contained in this intersection, then a, € Hull(p,
Pk t7). On the other hand, Path(P, a,, pp) C
closure(R,) by induction hypothesis (a), and sepa-
rates R — R; into two components with py and p, in
opposite components. If Path(P, p;, px) C R — R3,
then it must intersect Path(P, a,, p,) which is impos-
sible. Thus we have shown that R3 N Path(P, p,,
px) # @ and ay is iaterior to LH;.

(v) px € Rs:: This case is impossible. Suppose
that {a,_1, t;} = {pj, pj} and that i <j. Then
Path(P, p;, p;) separates closure (Ry U Rg) into two
components with 1, and Rg in separate components.
For this path canr.ot contain a, by inductive hypo-
thesis (c) and does not intersect Rg by inductive
hypothesis (a). Now Path(P, pg, a,) C closure
(R; U Rg) because by inductive hypothesis (a)
Path(P, px+1, 3o) C closure (Ry) and the line
PxPx+1 lies in closure (R U Rs) since this region is
convex. Therefore Path(P, py, a5) must cross
Path(P, p;, p;) which is impossible.

INFORMATION PROCESSING LETTERS

16 December 1979

Cases (i) to (v) are exhaustive and so the lemma
follows by induction.

Theorem. Procedure halfhull finds the left hull of p
in linear time.

Proof. The validity of il.c algorithm follows from the
lemma applied when k = 2, noting that LH, = LH,.
The main step, HH3, of the algorithm is executed at
most n — 2 times. A given turn point may be placed
into neither stack, into stack A once, or into both
stacks A and T once each. Once discarded, a point is
never reconsidered and so the algorithm runs in linear
time.

5. Conclusion

We have exhibited an O(n) algorithm for finding
the convex hull of a simple polygon. It is clear, how-
ever, that the algorithm will work on a much larger
class of polygons. We are unable to characterize this
class, although it is easily shown that the extreme
points of such polygons must appear in sorted order.
Under the linear decision tree model, Avis [1] has
found an Q(n log n) lower bound for the general
problem of finding the convex hull of a set of points
in the plane. A similar result fcr the more powerful
quadratic decision tree model has been recently
announced by Yao [7]. Thus it would be of interest
to characterize the class of polygons for which an
O(n) algorithm exists.

Acknowledgment

The authors gratefully acknowledge the help and
encouragement of Godfried Toussaint during the
course of this research.

References

[1] D. Avis, On the complexity of finding the convex hull
of a set of points, Technical Report No. SOCS 79.2,
McGill University (1979).

[2] A. Bykat, Convex hull of a finite set of points in two

205

Volume 9, number 5 INFORMATION PROCESSING LETTERS 16 December 1979

dimensions, Information Processing Lett. 7 (1978) [5] J. Sklansky, Measuring concavity on a rectangular

296-298. mosaic, IEEE Trans. Comput. 21 (1972) 1355—-1364.
{31 R. Graham, An efficient algorithni for determining the [6] G. Toussaint, S. Akl and L. Devroye, Efficient convex

convex hull of a planar set, Inform:tion Processing Lett. hull algorithms for points in two and more dimensions,

1(1972) 132-133. Technical Report No. 78.5, McGill University (1978).
{4] M. Shamos, Problems in computatinal geometry, {7] A. Yao, private communication (1979).

Carnegie Mellon University (1975) revised (1977).

206

