
Computational Experience with the Reverse Search Vertex
Enumeration Algorithm

David Avis

School of Computer Science
McGill University

3480 University, Montreal, Quebec, Canada H3A 2A7
avis@cs.mcgill.ca
January 26, 1999

Dedicated to Professor Masao Iri on the occasion of his 65th birthday

ABSTRACT

This paper describes computational experience obtained in the development
of the lrs code, which uses the reverse search technique to solve the vertex enu-
meration/convex hull problem for d-dimensional convex polyhedra. We giv e
empirical results showing improvements obtained by the use of lexicographic
perturbation, lifting, and integer pivoting. We also give some indication of the
cost of using extended precision arithmetic and illustrate the use of the estimation
function of lrs. The empirical results are obtained by running various versions of
the program on a set of well-known non-trivial polyhedra: cut, configuration,
cyclic, Kuhn_Quandt, and metric polytopes.

Ke ywords: vertex enumeration, convex hulls, reverse search, computational expe-
rience

1. Intr oduction
A classic result is that a convex polyhedron P can be represented in two ways. An H-

representationis given by an m × d matrix A = (ai , j) and m-vectorb = (bi):

P = {y∈Rd | b + Ay ≥ 0} (1.1)

If A is minimal, that is no row can be deleted without changingP, then P hasm facets, each
defined by one of the inequalities in (1.1).A vertex y∈Rd is a point ofP that satisfies an affinely
independent set ofd inequalities as equations. We assume throughout thatP has at least one ver-
tex, which implies thatm ≥ d. An extreme rayz∈Rd is a direction such that for some vertex y
and any positive scalar t, y + tz is in P and satisfies some set ofd − 1 affinely independent
inequalities as equations.Note that an extreme ray is unique only up to a positive scalar, since if
z is an extreme ray then so istz for any positive scalart. An equivalent V-representationof P is
given by a minimal set ofs vertices y1, . . . , ys andu extreme raysz1, . . . , zu:

P = {y∈Rd | y =
s

i=1
Σ λ i yi +

u

j=1
Σ µ j z j , λ i ≥ 0, µ j ≥ 0,

s

i=1
Σ λ i = 1}. (1.2)

Thevertex enumerationproblemis to produce aV-representation from anH-representation, and
the facet enumerationproblem is to provide the reverse transformation. It is well known that
these problems are essentially equivalent.

- 2 -

This paper describes computational experience obtained in the development of thelrs code
[1], to solve the vertex/facet enumeration problem. A complete technical description of the meth-
ods described here is contained in the companion paper [8]. The code is based on the reverse
search algorithm proposed by Fukuda and the author [4].Briefly and informally, the reverse
search algorithm works as follows. Supposewe have a system ofm linear inequalities defining a
d-dimensional polyhedron inRd and a vertex of that polyhedron given by the indices ofd
inequalities whose bounding hyperplanes intersect at the vertex. These indices define acobasis
for the vertex. Thecomplementary set ofm − d indices are called abasis. For any giv en linear
objective function, the simplex method generates a path betweenadjacentbases (or equivalently
cobases) which are those differing in one index. The path is terminated when a basis of a vertex
maximizing this objective function is found.The path is found by pivoting, which involves inter-
changing one of the hyperplanes defining the current cobasis with one in the basis.The path cho-
sen from the initial given basis depends on the pivot rule used, which must be finite to avoid
cycling. If we look at the set of all such paths from all bases of the polyhedron, we get a span-
ning forest of the graph of adjacent bases of the polyhedron.The root of each subtree of the for-
est is a basis of an optimum vertex. Thereverse search algorithm starts at each root and traces out
its subtree in depth first order byreversingthe pivot rule.

The algorithm is particularly easy if each vertex lies on exactly d hyperplanes, and so has a
unique basis.In this case the polyhedron is calledsimpleor non-degenerate. The spanning forest
has one component, which is a spanning tree of the skeleton of the polyhedron, and each vertex is
produced once. An example of such a polyhedron is the cube, and Figure 1 shows a possible
reverse search tree for it.

Figure 1: Rev erse Search Tree for Vertex Enumeration of the Cube

In this paper we discuss various implementations of this algorithm:ve01, ve06, qrs, and lrs.
The first implementation,ve01 was released by the author in 1992, and revised in 1994[6]. It
solved the vertex enumeration problem forpolytopes(bounded polyhedra), and did not report
extreme rays.A technical description of the latest implementation,lrs, is giv en in[8]. All of the
implementations use extended precision exact arithmetic.A summary of differences between the
various codes is given in Table 1.

In [6] some preliminary computational experience was given on a set of seven test prob-
lems. Table 2 shows the improvement in running time obtained between the original program
ve01 and version 2.3 oflrs on these test problems (for information on the machines used for the
experiments in this paper, see the appendix). All of the problemsin1,...,in7 are vertex enumera-
tion problems, with #F input inequalities ind dimensions. Inthe table, #V and #R refer respec-
tively to the number of vertices, and rays computed. Evidentlyve01 computes many more bases

- 3 -

Code polytope/polyhedron perturbation lifting arithmetic
rational/integer extended precison

ve01 polytope - - R yes
ve06 polytope randomnumber - R yes
qrs polytope randomnumber - I yes
lrs polyhedron lex-positive yes I yes

Table 1: Features of the Codes Described

thanlrs in some cases, and this will be discussed in Section 3.1.

Problem facets dim. vertices rays ve01 lrs ve01/lrs
#F d #V #R bases secs bases secs time

in1 34 4 31 31 2.81 31 .06 46
in2 16 5 18 1247 7.48 76 .05 148
in3 19 6 8 10845 86.43 188 .12 720
in4 12 7 54 54 .43 54 .05 9
in5 14 9 89 33 97 1.14 94 .09 13
in6 23 10 332 302 3656 83.65 824 1.69 50
in7 20 10 1188 1188 208.98 1188 2.78 75

Table 2: Computational Results on Original Problem Set (ve01 vs lrs)

The purpose of this paper is to quantify empirically various improvements made, in order to
draw some conclusions that may be useful to other geometric computational problems.In partic-
ular, we study the use of perturbation, lifting, and integer pivoting. We giv e some indication of the
cost of using extended precision arithmetic by comparing running times with a fixed 64-bit inte-
ger version of the code. Finally we illustrate the estimation functions oflrs. In the next section
we give a new set of test problems that are considerably more difficult than the set discussed
above.

2. Test Problems
We study the behaviour of various versions of the reverse search code on a set of five classes

of polyhedra. Although lrs handles unbounded polyhedra and does facet enumeration, earlier
versions of the code did not report extreme rays, and performed vertex enumeration only. To
facilitate comparisons between versions, we choose examples that are polytopes.Since a facet
enumeration problem can be solved directly as a vertex enumeration problem for polytopes con-
taining the origin as an interior point, we restrict our facet enumeration test problems to these
polytopes. The problems were chosen to include both simple and highly degenerate polytopes,
and to require a wide range of digits of precision in the calculations. Eachexample comes from a
class of polytopes with a large literature. We describe them briefly here. Each problem is given a
namename m_n, wherem and n denote the size of the input array for the problem. For vertex
enumeration,m is the number of input inequalities, and for facet enumeration it is the number of
vertices.n is the dimension of the polytope plus one. Data for the seven problems chosen is given
in Table 3, and the input files are available on-line as described in the appendix. The first three
problems and the last one are facet enumeration problems, and the others are vertex enumeration
problems. For each problem the output to be computed is highlighted in bold face. Thevolume is
given for the facet enumeration problems. Although the volume is computed exactly, a floating
point approximation is given here due to the large size of the integers.

2.1. CutPolytope
For n ≥ 4, let x = (xi , j) 1 ≤ i < j ≤ n be a vector of lengthn(n − 1)/2. For convenience, we

identify xi , j andx j ,i . The cut polytope is given by the convex hull of the following 2n−1 vertices.
For every subsetS of {1, 2, . . . ,n − 1} define

- 4 -

Problem input dim. facets vertices volume lrs
rep. d #F #V bases secs

cut16_11 V 10 56 16 2.3116... 124 0.13
cut32_16 V 15 368 32 1.3457... 46751 169.67
cyclic25_13 V 12 35700 25 4.84e+75 18564 909.23
kq20_11 H 10 20 1188 - 1188 3.84
metric40_11 H 10 40 32 - 9184 17.78
metric80_16 H 15 80 544 - 6450702 37532.68
mit31_20 V 19 18553 31 1.712e+3 36354 326.37

Table 3: New Test Problems

xi , j =

1

−1

if precisely one ofi and j ∈S

otherwise

In the standard definition of a cut polytope, the -1 is replaced by zero. We use the above formula-
tion so that the polytope contains the origin. These polytopes are described in detail in the book
of Deza and Laurent[14].The description above is aV-description, so we consider facet enumer-
ation for the cut polytopes withn = 5, 6namedcut16_11 andcut32_16 respectively.

2.2. Metric Polytope
Let n andx be defined as above. The metric polytope is given by the system of inequalities

xi , j − x j ,k − xi ,k ≤ 0

xi , j + x j ,k + xi ,k ≤ 2

for every set of distinct indicesi , j , k in the range 1,. . . ,n. Note that for each triple there are
three inequalities of the first type and one of the second.The metric polytope is closely related to
the metric cone, which can be used to determine infeasibility of fractional multicommodity flows,
see Iri[19]. Early work on the extreme rays of the metric cone is contained in Avis[3] and
Lomonosov[22]. Up to translation and scaling, the vertices of the cut polytope are vertices of the
metric polytope. They describe the same polytope whenn = 4, otherwise the cut polytope is a
strict sub-polytope. The description above is an H-description, so we consider facet enumeration
for the metric polytopes withn = 5, 6namedmetric40_11 andmetric80_16 respectively.

2.3. CyclicPolytope
Cyclic polytopes achieve the bound of requiring the most facets of any polytope with the

same dimension and number of vertices, see for example Ziegler[23]. They can be defined in any
dimensiond ≥ 2 by choosingn > d vertices of the form (t, t2, . . . , td), for n distinct values oft.
Cyclic polytopes are notoriously unstable numerically and require very long integers when
manipulated by programs using exact arithmetic.We consider the facet enumeration problem for
the examplecyclic25_13 with 25 vertices in 12 dimensions defined by the integers−12 ≤ t ≤ 12.
The polytope was translated and scaled to contain the origin and maintain integer coordinates.

2.4. ConfigurationPolytope
Configuration polytopes arise in the modelling of alloys. They were brought to our attention

by Ceder and Garbulsky[12] and provided the first large problem solved by an early implementa-
tion of lrs: a polytope with 729 inequalities in 8 dimensions and 4,862 facets which in 1992 took
over a month to solve. Even after perturbation the polytope contained 477,421 bases. Here we
consider a smaller example, mit31_20 which is a facet enumeration problem with aV-
representation with 31 vertices in 19 dimensions. The input matrix is quite sparse, and contains
integers between -12 and 12.

- 5 -

2.5. Kuhn-Quandt Polytopes
Kuhn-Quandt polytopes are defined by random matrices, and historically were one of the

first test problems for evaluating variants of the simplex method[21]. Theproblems have the form
Ax ≤ b, x ≥ 0, with matrix entries randomly chosen in the range 0..1000 andb vector entries all
10000. Inour example,kq20_11 (identical toin7 in Table 2), we choose a 10 by 10 matrix with
these properties, and add 10 non-negativity constraints.

3. Speedups
In this section we discuss methods used to speed up the original implementation of reverse

search. Unless otherwise stated, we will refer to the vertex enumeration problem, where the input
is anH-description and the required output is aV-description.

3.1. Perturbation
Pivoting methods for vertex enumeration enumerate bases for the vertices in theV-

description, as described in the introduction. Among the test problems,cyclic25_13 andkq20_11
are simple polyhedra, but the other problems are highly degenerate, making a computation of all
bases extremely expensive. Using various implementations of reverse search, we can study the
effect of perturbation to reduce the number of bases. In this section, we treat all problems asH-
representations to facilitate the use of earlier codes. For the four facet enumeration problems in
Table 3, this corresponds to doing a vertex enumeration of the dual polytope. The number of
bases in each unperturbed polytope is given in column 4 of Table 4.

Problem input vertices bases
rep. #V unperturbed perturbed lex-positive

cut16_11* H 56 1936 496 496
cut32_16* H 368 44450496 264612 186138
cyclic25_13* H 35700 35700 35700 35700
kq20_11 H 1188 1188 1188 1188
metric40_11 H 32 115972624 9254 9184
metric80_16 H 544 ? 7762890 6450702
mit31_20* H 18553 16184439 168300 169272

Table 4: Perturbation (* = d ual polytope)

The standard approach to reducing the number of bases is perturbation: make small changes
to the input data so that the resulting polyhedron is simple. The resulting perturbed polyhedron
will typically have more vertices, but far fewer bases, than the original polyhedron. Numerical
perturbation was implemented forve06 andqrs by adding a small random number to theb vector.
For the degenerate test problems we added a rationalt/10000 wheret was a randomly chosen
integer in the range 1..100, and used the seed 1234 for the random number generator. Column 5
of Table 4 shows the result of the perturbation, giving the number of bases of the perturbed poly-
tope that are computed if eitherve06 orqrs is used.

Numerical perturbations creates several difficulties: (i) perturbed vertices have to be trans-
formed back to give true vertices; (ii) the answer may no longer be correct as vertices may be lost;
(iii) perturbation increases the cost of the extended precision arithmetic; (iv) a vertex is output
more than once.For this reason it was abandoned.lrs resolves degeneracy by use of the well-
known lexicographic pivot selection rule for the simplex method (see for example, Ignizio and
Cavalier [18].) This rule is defined for a subset of the bases, known as lex-positive. The sub-
graph of lex-positive bases forms a connected subgraph of the basis graph which covers all ver-
tices of the polyhedron. It is known that the set of lex-positive bases of a polytopeP in fact is
combinatorially equivalent to the set of bases of a certain numeric perturbation ofP. The last col-
umn of Table 4 shows the number of lex-positive bases for each problem.We remark that this
number in general depends on the order of the input data.For the original set of test problems in

- 6 -

Table 2, column 6 gives the number of bases of the input polyhedron, which are computed by
ve01. Column 8 gives the number of lex-positive bases computed bylrs. Since the running time
of reverse search methods is proportional to the number of bases computed, the speedup for the
highly degenerate problems is very large.

Lexicographic perturbation has several other advantages. Anobjective function can be cho-
sen so that the simplex method initiated at any lex-positive basis terminates at a unique lex-
positive optimum basis. This considerably simplified the implementation, as the earlier versions
required a preliminary phase of reversing the dual simplex method in order to generate all optimal
dictionaries. With suitable labelling, the lex-min basis for each vertex is lex-positive and this
property can be tested quickly. By reporting only lex-positive bases we avoid output duplication
for degenerate inputs.Finally, for the facet enumeration problem, lexicographic perturbation
induces a triangulation ofP, which can be used to enable the volume to be computed readily. A
detailed description of the underlying theory is given in[8].

3.2. Lifting
The programsve01, ve06 andqrs perform only the transformation of anH-representation

to aV-representation. In order to allow the reverse transformation, the facet enumeration prob-
lem, a standard lifting technique (see for example[23], Chapter 1) was implemented inlrs. The
input V-representation is lifted (or homogenized) to a pointed cone in one higher dimension, for
which the two problems are equivalent. Specifically, each vertex (a1, . . . ,ad) of P is transformed
to the inequality

x1 + a1x2 + . . . + ad xd+1 ≥ 0

and each ray (a1, . . . ,ad) of P is transformed to the inequality

a1x2 + . . . + ad xd+1 ≥ 0.

The resulting system of inequalities describes a pointed coneP in d + 1-dimensions. A ray
(z1, . . . ,zd+1) of P corresponds to the facet

z1 + z2x1 + . . . + zd+1xd ≥ 0

of P. It is also possible to homogenize anH-representation. Each inequality

bi + ai ,1y1 + . . . + ai ,d yd ≥ 0

is replaced by an inequality

bi y0 + ai ,1y1 + . . . + ai ,d yd ≥ 0

and the additional inequalityy0 ≥ 0 is added. Again we obtain a pointed cone in one higher
dimension.

The lifted polyhedron has one completely degenerate vertex, the origin. Since pivoting
methods perform badly on degenerate polyhedra, it was expected that lifting would result in
slower running times.It came as a surprise that in fact the reverse seems to be the case. As men-
tioned in the introduction to Section 2, the facet enumeration problem for polytopes containing
the origin can be solved as a vertex enumeration problem. In order to testlrs, we compared the
output obtained in this way with the results obtained by lifting, see Table 5. We ran each problem
with the input as anH-description, getting the unlifted results, and as aV-description getting the
lifted results. In all cases the lifted polytope contains fewer bases, and speedups of the order of
2-4 times were obtained.

These results can be explained by the fact a given dictionary can represent only one vertex,
but may represent many rays (up to the number of columnsd). Raysare easily detected by
checking the signs of the current dictionary, and can be output immediately. For each vertex, how-
ev er, a piv ot is required to compute its dictionary. In the case where this dictionary is a leaf of the
reverse search tree, this pivot is "wasted", as is the time required to determine this fact.

- 7 -

Problem basescomputed seconds unlifted/lifted
unlifted lifted unlifted lifted bases time

cut16_11 496 124 0.53 0.13 4.00 4.08
cut32_16 186138 46751 639.61 169.67 3.98 3.76
cyclic25_13 35700 18564 1799.18 909.23 1.92 1.98
kq20_11 1188 588 3.84 2.03 2.02 1.89
metric40_11 9184 2304 67.02 4.96 3.99 3.59
metric80_16 6450702 1588778 37532.68 12114.824.06 3.08
mit31_20 169272 36354 1477.82 326.37 4.66 4.53

Table 5: Lifting (lrs)

3.3. Rationalvs Integer Arithmetic
All implementations described in this paper use exact integer arithmetic.The extended inte-

gers are stored in arrays of long integers. For 32-bit (respectively, 64-bit) machines, each array
element stores 4 (respectively, 9) decimal digits. The basic arithmetic and normalization func-
tions were taken from Gonnet and Baeza-Yates[16], except for the long division routine which
was implemented by Quinn based on Knuth[20], p. 320.

The programsve01 andve06 were implemented in rational arithmetic. The dictionary was
saved in two extended integer matrices, one for the numerators and one for the denominators.
After each arithmetic operation involving two rational numbers, the resulting rational is reduced
by dividing by the greatest common divisor (gcd) obtained by Euclid’s algorithm. For integer
arithmetic, division is the most expensive operation. For rational arithmetic, division and multipli-
cation are equivalent requiring two multiplications and a divide. They are faster than addi-
tion/subtraction which requires 3 multiplications, one addition/subtraction and one divide.

The most time consuming operation in all implementations is pivoting the dictionary. To
pivot a rational dictionary on rowr and columns the following operations are performed:

ai , j = ai , j −
ai ,sar , j

ar ,s
(3.1)

ar ,s =
1

ar ,s
, ai ,s =

ai ,s

ar ,s
, ar , j = −

ar , j

ar ,s

where in the above formulaei ≠ r , j ≠ s, and the barred coefficients are the new dictionary entries
computed. Usingrational arithmetic, about 75-85% of the total running time was spent in the gcd
computation.

An alternative to piv oting using rationals is the integer pivoting method of Edmonds[15]
which is connected to Cramer’s rule, see the appendix of Chv´atal[13]. In integer pivoting, only
the numerators of coefficients of the dictionary are stored, with respect to a common denominator,
which is the determinant of the current basis, denoteddet(B). To piv ot an integer dictionary on
row r and columns the following operations are performed:

ai , j =
ai , j ar ,s − ai ,sar , j

det(B)
(3.2)

ar , j = −ar , j , ai ,s = ai ,s, ar ,s = det(B), det(B) = ar ,s

where in the above formulae,i ≠ r and j ≠ s. It can be shown that the integer division (3.2) has
no remainder. Both qrs and lrs implement integer pivoting. The only gcd computations required
are those to produce output coefficients in reduced form. To compare integer and rational arith-
metic, we comparedve06 andqrs, see Table 6. The only essential difference between the codes is
the use of integer arithmetic, so almost all of the speedup can be attributed to this.In the table,
the reverse search trees forcyclic25_13andmetric80_16were truncated at depth 5 to reduce the
computation time.Speedups were obtained on all problems, but varied widely from 1.3 to 18.5.
Columns 4 and 5 give the approximate maximum number of decimal digits used in the

- 8 -

Problem seconds maximum digits rational/integer
rational integer rational integer time digits

cut16_11 3.8 1.4 16 20 2.7 0.8
cut32_16 5749.0 2558.4 16 28 2.5 0.6
cyclic25_13 4683.4 253.5 164 168 18.5 1.0
kq20_11 173.0 11.5 68 52 15.0 1.3
metric40_11 177.6 50.3 20 16 3.5 1.3
metric80_16 554.6 155.8 16 16 3.6 1.0
mit31_20 4590.2 3650.3 24 44 1.3 0.5

Table 6: Rational vs Integer Arithmetic (ve06 vs qrs)

computations. Theexperiments were performed using a 32-bit machine, so the number of digits
reported is 4 times the number of array elements required to hold the largest number. Therefore
the maximum integer may actually be up to 3 decimal digits shorter than that specified. Note that
integer arithmetic appears to produce the greatest speedups for the problems involving the largest
numbers.

3.4. Extendedvs Fixed Precision
The reverse search algorithm is by nature very sensitive to numerical error. A single misin-

terpreted sign may mean that an entire subtree of the reverse search tree is not discovered. For this
reason all implementations were performed in extended precision exact arithmetic. It is of interest
to see how much overhead is involved with this arithmetic. To test this we used a version oflrs
prepared by Marzetta calledlrs1 which uses fixed 64 bit integers. This program contains no over-
flow checking, and can handle problems for which the integers in the calculations do not exceed
about 19 decimal digits. Table 7 gives a comparison oflrs1 and lrs. It can be seen that the pro-
gram runs about six times faster on the average when using fixed integer arithmetic. Since the
overhead grows as the size of the integers grows, this can be viewed as a lower bound on the over-
head of extended precision arithmetic, as implemented inlrs. The table indicates the importance
of extending the range of problems solvable in fixed precision. The most time consuming opera-
tion is the pivot update in equation (3.2). As mentioned the division is exact. Therefore it would
be of interest to derive a special purpose code to compute the valueai , j without overflow, when-
ev er it and all the terms on the right hand side of (3.2) are small enough to fit in a single computer
word.

Problem lrs lrs1 lrs/lrs1
seconds seconds

cut16_11 0.27 0.06 4.2
cut32_16 214.29 33.88 6.3
metric40_11 28.11 4.73 5.9
metric80_16* 15283.01 2526.01 6.0

Table 7: Extended vs Fixed Precision (lrs vs lrs1, * = dual polytope)

3.5. Estimates
The output size of a vertex or facet enumeration problem varies enormously depending on

the problem. For example, a non-redundantV-description containingn vertices ind dimensions
can define a polytope with as few as O(log n) or as many as Ω(nd/2) facets. Tight bounds are
known as the Lower and Upper Bound Theorems (see, e.g. [23]). Clearly these problems become
infeasible for certain polytopes, even for rather small values ofn and d. A useful feature of
reverse search is that it allows a randomization that produces unbiased estimates of the output size
and the size of the reverse search tree. For polytopes given by a V-description, it is also possible
to get an unbiased estimate of the volume.

- 9 -

The estimate is based on a technique of Hall and Knuth[17] and is described in Avis and
Devroye[5]. Thekey fact is that it is possible at any node in a reverse search tree to find its
degree and generate one of its children uniformly at random. This allows the generation of a ran-
dom path from the root to a leaf. An estimate of the tree size is calculated from the degree
sequence obtained. The estimate is unbiased, meaning that its expected value is the correct num-
ber of nodes in the tree. It is also possible to get an estimate of the expected value of any function
defined at each node of the tree. For a vertex enumeration problem, one such function is the indi-
cator function, with value one if the corresponding basis is lexmin for its vertex, and zero other-
wise. The expected value of this function is the number of vertices of the polyhedron.Similary
we can determine the number of extreme rays by letting the function be the number of lexmin
rays defined by the dictionary with the current basis. For facet enumeration problems, we can
compute the expected value of the volume by letting the function represent the determinant of the
current basis, and scaling appropriately at the end of the computation.

Although the estimates obtained are unbiased, they hav ehigh variance. Methodsfor reduc-
ing the variance are described in[5].The method implemented inlrs is to search the tree com-
pletely to a fixed depthh, and then to make random probes to estimate the size of each remaining
subtree. Table 8 gives the results for a set of estimates for our test problems. The parameterh is
shown in the final column. For the first problem, 3 random probes were made from the root and
av eraged. The other estimates were obtained by a single random probe in each subtree remaining
at the depthh. Column 2 gives the upper bound on the number of vertices or facets given by the
Upper Bound Theorem applied to problems of each given size. Thisalso gives an upper bound
on the number of bases that will be generated bylrs, since these bases correspond to the bases of
a perturbed polyhedron with the same input parameters as the original problem. In most cases this
is a huge overestimate. For cyclic25_13 however it is exact, since the class of cyclic polytopes
realize the bound given by the Upper Bound Theorem. The next three columns give estimates for
the number of vertices (or facets), lex positive bases(#B) and the volume. These can be compared
with the actual values given in Table 3. Since the running time oflrs is directly proportional to
#B, the estimate of this parameter provides an easy way to estimate the running time required to
solve the problem competely. The ratio of the estimate to the actual value is given in the next
three columns. The second last column shows the percentage of the entire reverse search tree that
was examined in making the estimate.

Problem Upper Estimate Estimate/Actual Eval h
Bound #V(#F) #B Volume #V(#F) #B Vol. %

cut16_11 672 51 58 1.04 0.91 0.47 0.45 5.6 0
cut32_16 692208 648 29766 0.86 1.76 0.63 0.64 4.2 5
cyclic25_13 35700 24454 11082 3.16e+74 0.68 0.60 0.07 6.5 4
kq20_11 4004 761 761 - 0.64 0.64 - 2.8 1
metric40_11 371008 20 6929 - 0.63 0.75 - 8.4 4
metric80_16 2946219408 229 3800960 - 0.42 0.58 - 1.0 6
mit31_20 587860 6096 18549 8.216e+2 0.32 0.51 0.48 4.5 3

Table 8: Estimates(lrs)

For problems where the determinants of the bases have roughly the same absolute value, the error
in estimating the volume will be comparable to that in estimating the number of bases.For the
cyclic polytope the determinants of the bases have enormous variance, explaining the relatively
poor estimate obtained in this case.

4. Conclusion
In this paper we gav eempirical evidence that symbolic perturbation, lifting and integer piv-

oting all give substantial speedups when used in a reverse search vertex enumeration program.
These methods are all quite general and suitable for other geometric and polyhedral computation
problems. We also gav esome indication of the overhead cost of extended precision arithmetic and

- 10 -

demonstratedlrs’s estimation feature.

Although lrs is a large improvement on earlier implementations, it is far from an efficient
general solution to the vertex enumeration problem.Such a solution should reasonably be
required to generate all vertices in time polynomial in the input and output size. Currently no such
algorithm is known to exist. Examples contained in Avis, Bremner and Seidel [7] show that all
pivot algorithms using numeric or symbolic perturbation may behave extremely badly: the num-
ber of bases computed can be super-polynomial in the number of vertices. This is born out in
practice for combinatorial polytopes such as the cut and metric polytopes described in the paper.
For these polytopes a double description algorithm, such as Fukuda’s cdd [2] is superior. lrs is
efficient for vertex enumeration of simple (or near-simple) polyhedra, or dually for facet enumer-
ation of simplicial (or near-simplicial) polyhedra. It is also useful when the output size is too large
to be stored in memory. Recently Bremner, Fukuda and Marzetta [9] developed an ingenious pri-
mal-dual method for vertex enumeration of highly degenerate simplicial polytopes that satisfy a
hereditary property. It works by simulating the reverse search tree generated bylrs for the (easy)
dual facet enumeration problem for simplicial polytopes.Dually, this method can be used for
facet enumeration of simple polytopes. For polytopes with zero-one vertices, a polynomial time
vertex enumeration algorithm was recently announced by Bussieck and Luebbecke [11].

lrs can be efficiently parallelized, as has been done by Br"ungger, Marzetta, Fukuda and
Nievergelt [10]. This parallel version has been used to solve some extremely large problems
which do not seem solvable by other methods.

5. Acknowledgements
The author would like to thank Masao Iri for his interest in and encouragement of this pro-

ject from the outset, and for teaching him the importance of empirical work. Thispaper was writ-
ten while the author was on leave visiting the group of Tom Liebling at EPFL in Lausanne, whose
support is gratefully acknowledged. Ananonymous referee suggested the inclusion of Table 1.
Various people helped with aspects of the development oflrs, including David Bremner, Komei
Fukuda, Ambros Marzetta, and Jerry Quinn.Finally, I would like to thank the users oflrs for
suggestions, encouragement and reporting bugs!

6. Appendix
The programlrs, and the input files for the polyhedra described in this paper can be

obtained by accessing thelrs home page[1].Version 3.2 was used for the tests described in this
paper, except for Table 8 which was produced by Version 3.2b, the first version which produces
volume estimates. The implementationsve01, ve06 andqrs, Version 2.2a are available from the
author on request. The computational results in Tables 3, 4 and 5 were obtained onmasg40, an
SGI Origin 200 running Irix 6.4, and those in Table 6 onmasg20, an SGI O2 running Irix 6.3,
both at EPFL. The results in Tables 2, 7 and 8 were obtained bymutt, a DEC AlphaServer 1000
4/23 at McGill.

References

1. lrs Home Page, November 1997. ftp://mutt.cs.mcgill.ca /pub/C/lrs.html

2. cdd+ Homepage, December, 1997.
http://www.ifor.math.ethz.ch/staff/fukuda/cdd_home/cddman.html

3. D. Avis, ‘‘On the Extreme Rays of the Metric Cone,’’ Canadian J. of Maths., vol. 32, pp.
126-144, 1980.

4. D. Avis and K. Fukuda, ‘‘A Piv oting Algorithm for Convex Hulls and Vertex Enumeration
of Arrangements and Polyhedra,’’ Discrete and Computational Geometry, vol. 8, pp.
295-313, 1992.

5. D. Avis and L. Devroye, ‘‘Estimating the Number of Vertices of a Polyhedron,’’ i n Snap-
shots of Computational and Discrete Geometry, ed. D. Avis and P. Bose, vol. 3, pp.

- 11 -

179-190, School of Computer Science, McGill University, 1994.
ftp://mutt.cs.mcgill.ca/pub/doc/avis/AD94a.ps.gz

6. D. Avis, ‘‘A C Implementation of the Reverse Search Vertex Enumeration Algorithm,’’ i n
RIMS Kokyuroku 872, ed. H. Imai, Kyoto University, May 1994. ftp://mutt.cs.mcgill.ca
/pub/doc/avis/Av94a.ps.gz

7. D. Avis, D. Bremner, and R. Seidel, ‘‘How Good are Convex Hull Algorithms?,’’ Computa-
tional Geometry: Theory and Applications, vol. 7, pp. 265-301, 1997.

8. D. Avis, lrs: A Revised Implementation of the Reverse Search Vertex Enumeration Algo-
rithm, May 1998. ftp://mutt.cs.mcgill.ca /pub/doc/avis/Av98a.ps.gz

9. D. Bremner, K. Fukuda, and A. Marzetta, ‘‘Primal-Dual Methods of Vertex and Facet Enu-
meration,’’ Discrete and Computational Geometry, vol. 20, pp. 333-358, June 1997.

10. A. Br"ungger, A. Marzetta, K. Fukuda, and J. Nievergelt, The Parallel Search Bench ZRAM
and its Applications, 1997.
ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/zram_poc970924.ps.gz

11. M. Bussieck and M. Luebbecke, ‘‘The Vertex Set of a 0/1-Polytope is Strongly P-
Enumerable,’’ ISMP ’97, Lausanne, August 1997.

12. G.Ceder, G.D. Garbulsky, D. Avis, and K. Fukuda, ‘‘Ground States of a Ternary Lattice
Model with Nearest and Next-Nearest Neighbor Interactions,’’ Physical Review B, vol. 49,
pp. 1-7, 1994.

13. V. Chvátal,Linear Programming,W.H. Freeman, 1983.

14. M.Deza and M. Laurent,Geometry of Cuts and Metrics,Springer, 1997.

15. J.Edmonds and J.-F. Maurras, ‘‘Note sur les Q-matrices d’Edmonds,’’ Recherche Opéra-
tionelle (RAIRO), vol. 31, pp. 203-209, 1997.

16. G.H.Gonnet and R. Baeza-Yates,Handbook of Algorithms and Data Structures-2nd Edi-
tion, Addison-Wesley, 1991.

17. M. Hall and D.E. Knuth, ‘‘Combinatorial Analysis and Computers,’’ Am. Math. Monthly,
vol. 72, pp. 21-28, 1965.

18. J.Ignizio and T. Cavalier,Linear Programming,Prentice Hall, 1994.

19. M. Iri, ‘‘On an Extension of the Maximum-flow Minimum-cut Theorem to Multicommodity
Flows,’’ J. Oper. Soc. Japan, vol. 13, pp. 129-135, 1970/71.

20. D.E. Knuth,The Art of Computer Programming, Vol 2: Seminumerical Algorithms,Addi-
son-Wesley, Reading, MA, 1981.

21. H.W. Kuhn and R.E. Quandt, ‘‘A n Experimental Study of the Simplex Method,’’ Proc. of
Symposia in Applied Mathematics, vol. 15, pp. 107-124, 1963.

22. M. Lomonosov, ‘‘Combinatorial Approaches to Multiflow Problems,’’ Discrete Applied
Math., vol. 11, pp. 1-93, 1985.

23. G.Ziegler,Lectures on Polytopes,Springer, 1994, revised 1998. Graduate Texts in Mathe-
matics.

