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ABSTRACT

This paper describes computational experience obtained inwdepaent
of thelrs code, which uses theuwase search technique to selihe \ertex enu-
meration/comex hull problem for d-dimensional covex polyhedra. Vé gve
empirical results showing imprements obtained by the use okiegraphic
perturbation, lifting, and integervmting. We dso gve sme indication of the
cost of using extended precision arithmetic and illustrate the use of the estimation
function oflrs. The empirical results are obtained by runniagaus versions of
the program on a set of well-known non-trivial polyhedra: cut, configuration,
cyclic, Kuhn_Quandt, and metric polytopes.

Keywords: vertex enumeration, covex hulls, reverse search, computationadpes-
rience

1. Introduction

A classic result is that a ceex polyhedronP can be represented in dvwways. An H-
representations given by an m x d matrix A = (g ;) and m-vectorb = (by):

P={yOR" | b+ Ay = 0} (1.1)

If Ais minimal, that is no m can be deleted without changify then P hasm facets each
defined by one of the inequalities in (1.1).vertex YIRY is a point ofP that satisfies an fifiely
independent set af inequalities as equations.e/gssume throughout th& has at least onesy-
tex, which implies tham = d. An extreme rayzORY is a direction such that for somertexy
and ay positive salart, y+tz is in P and satisfies some set df-1 dfinely independent
inequalities as equation®ote that an extreme ray is unique only up to a pesialar since if
Zis an extreme ray then sotisfor ary positive salart. An equivalent V-representatiorof P is
given by a ninimal set ofs \ertices y, - - -, Y5 andu extreme raysy, - - -, Z,:

S u S
P={yOR|y= 'ZlAiyi + _zlyjzj,ai >0,y 2 o,_zl/\i =1}. (1.2)
1= J: i=
Thevertex enumeratiomproblemis to produce & -representation from aH-representation, and

the facet enumeratiomproblemis to provide the neerse transformation. It is well known that
these problems are essentially eglaint.
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This paper describes computational experience obtained in\Hemlaent of thdrs code
[1], to sole the \ertex/Bicet enumeration problem. A complete technical description of the meth-
ods described here is contained in the companion paper [8]. The code is based wverdbe re
search algorithm proposed by Fukuda and the authorBdgfly and informally the reverse
search algorithm works as folls. Supposeve hae a gstem ofm linear inequalities defining a
d-dimensional polyhedron iR? and a wertex of that polyhedron gien by the indices ofd
inequalities whose bounding hyperplanes intersect atdhexvThese indices define @basis
for the \ertex. Thecomplementary set ah - d indices are called basis For ary given linear
objectie function, the simpbemethod generates a path betweeljacentbases (or equaently
cobases) which are thosefdiing in one index. The path is terminated when a basis eftaxv
maximizing this objectie function is found.The path is found by poting, which irvolves inter
changing one of the hyperplanes defining the current cobasis with one in theTbasgath cho-
sen from the initial gien basis depends on thevpt rule used, which must be finite tocid
cycling. If we look at the set of all such paths from all bases of the polyhedron, we get a span-
ning forest of the graph of adjacent bases of the polyhedrbe.root of each subtree of the-for
est is a basis of an optimurartex. Thereverse search algorithm starts at each root and traces out
its subtree in depth first order bgversingthe pivot rule.

The algorithm is particularly easy if eaclriex lies on @&actly d hyperplanes, and so has a
unique basisIn this case the polyhedron is callgichpleor non-dgenerate The spanning forest
has one component, which is a spanning tree of the skeleton of the polyhedron, amteaich v
produced once. Anxample of such a polyhedron is the cube, and Figure 1 shows a possible
reverse search tree for it.
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Figure 1: Revase Search Tee for Vertex Enumeration of the Cube

In this paper we discuss various implementations of this algoritedd;, ve06, grs, and Irs.
The first implementationye01 was released by the author in 1992, anised in 1994[6]. It
solved the ertex enumeration problem fopolytopes(bounded polyhedra), and did not report
extreme rays.A technical description of the latest implementatios, is gven in[8]. All of the
implementations use extended precision exact arithmAateummary of diferences between the
various codes is gen in Table 1.

In [6] some preliminary computationakgerience was gen on a &t of seen test prob-
lems. Table 2 shows the impament in running time obtained between the original program
ve0l and version 2.3 dfs on these test problems (for information on the machines used for the
experiments in this papesee the appendix). All of the problen¥gl,...jn7 are vertex enumera-
tion problems, with E input inequalities ird dimensions. Irthe table, #V and #R refer respec-
tively to the number of vertices, and rays computed. Evidergl computes manmore bases



Code | polytope/polyhedron perturbation lifting arithmetic
rational/intger | etended precison
veOl polytope - - R yes
ve06 polytope randonmumber - R yes
ars polytope randonmumber - I yes
Irs polyhedron l®-positive yes [ yes

Table 1: Features of the Codes Described
thanlrs in some cases, and this will be discussed in Section 3.1.

Problem | facets| dim) vertices rays veOl IIs ve01/Irs

#F d #V #R bases secs| bases| secg time
inl 34 4 31 31 281 31 .06 46
in2 16 5 18 1247 7.48 76 .05 148
in3 19 6 8 10845 86.43| 188 A2 720
in4 12 7 54 54 43 54 .05 9
in5 14 9 89 33 97 114 94 | .09 13
in6 23 10 332 | 302 3656 83.65 824 1.69 50
in7 20 10 1188 1188 | 208.98| 1188 | 2.78 75

Table 2: Computational Results on Original Problem SetyeO01 vs Iry

The purpose of this paper is to quantify empiricallyious impreements made, in order to
drav some conclusions that may be useful to other geometric computational prolhepastic-
ular, we gudy the use of perturbation, lifting, and integesoting. We gve some indication of the
cost of using extended precision arithmetic by comparing running times with a fixed 64-bit inte-
ger version of the code. Finally we illustrate the estimation functiofrs.ofn the next section

we give a rew st of test problems that are considerably morécdit than the set discussed
above.

2. Test Problems

We dudy the behaviour of various versions of theerse search code on a set oéfdasses
of polyhedra. Although Irs handles unbounded polyhedra and daestff enumeration, earlier
versions of the code did not reportteme rays, and performeenex enumeration only To
facilitate comparisons between versions, we choose examples that are polgompesa &cet
enumeration problem can be solved directly asréevenumeration problem for polytopes con-
taining the origin as an interior point, we restrict cacet enumeration test problems to these
polytopes. The problems were chosen to include both simple and higjépetdate polytopes,
and to require a wide range of digits of precision in the calculations. &achple comes from a
class of polytopes with a large literaturee \@#scribe them briefly here. Each problem izegia
namename mn, wherem and n denote the size of the input array for the problem. Eotex
enumerationm is the number of input inequalities, and facét enumeration it is the number of
vertices.n is the dimension of the polytope plus one. Data for thensgroblems chosen is\gn
in Table 3, and the input files areadable on-line as described in the appendix. The first three
problems and the last one aseét enumeration problems, and the others erexvenumeration
problems. Br each problem the output to be computed is highlighted in Aot fThevolume is
given for the ficet enumeration problems. Although the volume is computactlg a floating
point approximation is gen here due to the large size of the integers.

2.1. CutPdytope

Fornx4,letx=(x ;) 1<i<j<nbe a vector of length(n-1)/2. For comenience, we
identify x; ; andx;;. The cut polytope is gen by the cowex hull of the following 21 vertices.
For every subsetSof {1, 2, ... n- 1} define



Problem input| dim. | facets| wertices wlume Irs
rep. d #F #V bases secs
cutle 11 V 10 56 16 2.3116... 124 0.13
cut32_16 \% 15 368 32 1.3457... 46751 169.67
cyclic25 13 \ 12 35700 25 4.84e+75 18564 909.23
kg20_11 H 10 20 1188 - 1188 3.84
metric40_11 H 10 40 32 - 9184 17.78
metric80_16 H 15 80 544 - 6450702 | 37532.68
mit31_20 \% 19 18553 31 1.712e+3 36354 326.37

Table 3: New Test Problems

_ U1 if precisely one of and j OS
S—l otherwise

In the standard definition of a cut polytope, the -1 is replaced by zerosé\the abee formula-

tion so that the polytope contains the origin. These polytopes are described in detail in the book
of Deza and Laurent[14]The description abe is aV-description, so we consider facet enumer
ation for the cut polytopes with=5, 6namedcutl6 11 anctut32_16 respectély.

2.2. Metric Palytope
Let n andx be defined as ake. The metric polytope is gén by the system of inequalities

Xi,j = Xjk = Xik <0
Xi,j + Xj k + Xk < 2

for every set of distinct indices, j, k in the range 1,..,n. Note that for each triple there are
three inequalities of the first type and one of the secdhé. metric polytope is closely related to
the metric cone, which can be used to determine infeasibility of fractional multicommowisy flo
see Iri[19]. Early wark on the extreme rays of the metric cone is contained in Avis[3] and
Lomonos®[22]. Upto translation and scaling, thertices of the cut polytope are vertices of the
metric polytope. The describe the same polytope whers 4, otherwise the cut polytope is a
strict sub-polytope. The description akds an H-description, so we consider facet enumeration
for the metric polytopes with =5, 6namedmetric40_11 andnetric80_16 respeoctely.

2.3. CyclicPdytope

Cyclic polytopes achiee the bound of requiring the mosidets of ay polytope with the
same dimension and number @frtices, see for example gier[23]. The can be defined in gn
dimensiond = 2 by choosingn > d vertices of the formt(t2, - - -,t%), for n distinct values of.
Cyclic polytopes are notoriously unstable numerically and requerg long integers when
manipulated by programs using exact arithmeide wmnsider the facet enumeration problem for
the ekamplecyclic25 13 with 25 ertices in 12 dimensions defined by thegets-12<t < 12.

The polytope was translated and scaled to contain the origin and maintain integer coordinates.

2.4. Configuration Polytope

Configuration polytopes arise in the modelling of alloys.ylMuere brought to our attention
by Ceder and Gautsky[12] and provided the first large problem solved by an early implementa-
tion of Irs: a polytope with 729 inequalities in 8 dimensions and 4,862 facets which in 1992 took
over a month to sole. Ewen after perturbation the polytope contained 477,421 bases. Here we
consider a smaller xample, mit31_20 which is a facet enumeration problem withva
representation with 31 vertices in 19 dimensions. The input matrix is quite sparse, and contains
integers between -12 and 12.



2.5. Kuhn-Quandt Polytopes

Kuhn-Quandt polytopes are defined by random matrices, and historically were one of the
first test problems forveluating variants of the simptenethod[21]. Theproblems hee the form
Ax < b, x =2 0, with matrix entries randomly chosen in the range 0..100Masdtor entries all
10000. Inour example,kg20_11 (identical tan7 in Table 2), we choose a 10 by 10 matrix with
these properties, and add 10 nogagity constraints.

3. Speedups

In this section we discuss methods used to speed up the original implementatiensef re
search. Unless otherwise stated, we will refer to #reevenumeration problem, where the input
is anH-description and the required output i€-@escription.

3.1. Rerturbation

Pivoting methods for ertex enumeration enumerate bases for the vertices in\the
description, as described in the introduction. Among the test probtgoig?25 13 anckg20_11
are simple polyhedra, but the other problems are highly degenerate, making a computation of all
bases extremelyxpensve. Using various implementations ofveese search, we can study the
effect of perturbation to reduce the number of bases. In this section, we treat all probléms as
representations to facilitate the use of earlier codassttfe four facet enumeration problems in
Table 3, this corresponds to doing artex enumeration of the dual polytope. The number of
bases in each unperturbed polytope v&@gin column 4 of Table 4.

Problem input | vertices bases

rep. #V unperturbed| perturbed Xeositive
cutle_11* H 56 1936 496 496
cut32_16* H 368 44450496| 264612 186138
cyclic25_13* H 35700 35700 35700 35700
kq20_11 H 1188 1188 1188 1188
metric40_11 H 32 115972624 9254 9184
metric80_16 H 544 ? 7762890 6450702
mit31_20* H 18553 16184439| 168300 169272

Table 4: Perturbation (* = d ual polytopé

The standard approach to reducing the number of bases is perturbatieramakichanges
to the input data so that the resulting polyhedron is simple. The resulting perturbed polyhedron
will typically have nore vertices, bt far fewer bases, than the original polyhedron. Numerical
perturbation was implemented feg06 andqrs by adding a small random number to bheector.
For the degenerate test problems we added a rattdl@000 where was a andomly chosen
integer in the range 1..100, and used the seed 1234 for the random number geGehaton 5
of Table 4 shows the result of the perturbatiowingi the number of bases of the perturbed poly-
tope that are computed if eithe206 orqrsis used.

Numerical perturbations creates/aal difficulties: (i) perturbed vertices & be tans-
formed back to gie true \ertices; (ii) the answer may no longer be correct as vertices may be lost;
(i) perturbation increases the cost of the extended precision arithmetic; (arjea i¢ output
more than onceFor this reason it was abandonelds resoles dgenerag by use of the well-
known lexicographic piot selection rule for the simpkemethod (see for example, Ignizio and
Cavalier [18]. ) This rule is defined for a subset of the bases, knownxgsokdtive. The sub-
graph of l&-positve bases forms a connected subgraph of the basis graph wivels ed \er-
tices of the polyhedron. It is kam that the set of lepositive bases of a polytop® in fact is
combinatorially equidlent to the set of bases of a certain numeric perturbatién die last col-
umn of Table 4 shows the number okipositive bases for each problemiMe remark that this
number in general depends on the order of the input &atathe original set of test problems in
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Table 2, column 6 gies the number of bases of the input polyhedron, which are computed by
ve0l. Column 8 gies the number of be-positve bases computed Hys. Since the running time

of reverse search methods is proportional to the number of bases computed, the speedup for the
highly degenerate problems is very large.

Lexicographic perturbation hasveeal other adantages. Ambjective function can be cho-
sen so that the simplemethod initiated at gnlex-positive basis terminates at a uniquexde
positve gotimum basis. This considerably simplified the implementation, as the eangons
required a preliminary phase oWeesing the dual simplemethod in order to generate all optimal
dictionaries. Vith suitable labelling, the ¥emin basis for eachertex is lex-positve ad this
property can be tested quickBy reporting only l&-positive ases we id output duplication
for degenerate inputsFinally, for the ficet enumeration problem, lexicographic perturbation
induces a triangulation d?, which can be used to enable the volume to be computed reAdily
detailed description of the underlying theory igegiin[8].

3.2. Lifting

The programse01, ve06 andgrs perform only the transformation of ath-representation
to aV-representation. In order to alldhe reverse transformation, the facet enumeration prob-
lem, a standard lifting technique ( see feample[23], Chapter 1 ) was implementedrgr The
input V-representation is lifted (or homogenized) to a pointed cone in one higher dimension, for
which the tvo problems are equélent. Specificallyeach \ertex (aq, .. .,aq) of P is transformed
to the inequality

X+t ayXo+---+agXg+1 20
and each raya(, . . . ,a4) of P is transformed to the inequality
a Xo + -+ agXqe 2 0.

The resulting system of inequalities describes a pointed Eoire d + 1-dimensions. A ray
(z4, . -.,24+1) Of P corresponds to the facet

21+ ZpX i+ ZgqXg 20
of P. Itis aso possible to homogenize dhrepresentation. Each inequality
bi+a1y;+---+aqya20
is replaced by an inequality
biyo+aj1yp+---+aqysg 20

and the additional inequalityy = 0 is added. Again we obtain a pointed cone in one higher
dimension.

The lifted polyhedron has one completely degeneratésy the origin. Since pbting
methods perform badly on degenerate polyhedra, it wpeceed that lifting would result in
slower running times.It came as a surprise that in fact theerse seems to be the case. As men-
tioned in the introduction to Section 2, tteeét enumeration problem for polytopes containing
the origin can be sobd as a ertex enumeration problem. In order to tdst, we compared the
output obtained in this ay with the results obtained by lifting, see Table ®.r# each problem
with the input as am-description, getting the unlifted results, and as@escription getting the
lifted results. In all cases the lifted polytope contains fewer bases, and speedups of the order of
2-4 times were obtained.

These results can be explained by the factengiictionary can represent only onertex,
but may represent manrays (up to the number of columi§. Raysare easily detected by
checking the signs of the current dictionaryd can be output immediatekor each ertex, how-
eve, a pvot is required to compute its dictionaiy the case where this dictionary is a leaf of the
reverse search tree, thisvpt is "wasted", as is the time required to determine this fact.



Problem basesomputed seconds unlifted/lifted
unlifted lifted unlifted lifted bases| time
cutl6_11 496 124 0.53 0.13| 4.00 | 4.08
cut32_16 186138 46751 639.61 169.671 3.98 | 3.76
cyclic25_13 35700 18564 1799.18] 909.23| 1.92| 1.98
kq20_11 1188 588 3.84 2.03| 2.02 | 1.89
metric40_11 9184 2304 67.0R 496 | 3.99 | 3.59
metric80_16| 6450702 1588778 37532.68 12114,82.06 | 3.08
mit31_20 169272 36354 1477.82] 326.37| 4.66| 4.53

Table 5: Lifting (Irs)
3.3. Rationalvs Integer Arithmetic

All implementations described in this paper use exact integer arithniétextended inte-
gers are stored in arrays of long integers. For 32-bit (respgctB4-bit) machines, each array
element stores 4 (respedly, 9) decimal digits. The basic arithmetic and normalization func-
tions were taken from Gonnet and Baezd€¥[16], except for the long division routine which
was implemented by Quinn based on Knuth[20], p. 320.

The programse01 andve06 were implemented in rational arithmetic. The dictionaag w
saved in two extended integer matrices, one for the numerators and one for the denominators.
After each arithmetic operationvolving two rational numbers, the resulting rational is reduced
by dividing by the greatest commorvidior (gcd) obtained by Euclisl’dgorithm. For intger
arithmetic, division is the moskpensve geration. For rational arithmetic, division and multipli-
cation are equalent requiring tvo multiplications and a divide. Tlyeare faster than addi-
tion/subtraction which requires 3 multiplications, one addition/subtraction and one divide.

The most time consuming operation in all implementationsvstipg the dictionary To
pivot a rational dictionary on row and columrs the following operations are performed:

g sar |
al‘,S

ai'j =aj~ (31)
= 1 Qs
a = , .' = = , ’. =
s r,S " r,S ) ar,s
where in the abee formulaei #r, j # s, and the barred coefficients are thevrgictionary entries
computed. Usingational arithmetic, about 75-85% of the total running tinas wpent in the gcd
computation.

An alternatve o pivoting using rationals is the integernvpiing method of Edmonds[15]
which is connected to Cramenule, see the appendix of Gktal[13]. Ininteger pivoting, only
the numerators of coefficients of the dictionary are stored, with respect to a common denpminator
which is the determinant of the current basis, dende#B). To pivot an integer dictionary on
row r and columrs the following operations are performed:
_ a-i,jar,s - ai,sar,j

%0 T T derB) (3:2)

ar,j =-q 8 s=as, arlszdet(B), det(B) =arg

where in the abee formulae,i Zr and j #s. It can be shown that the integer division (3.2) has
no remainderBoth grs andlrs implement integer pting. The only gcd computations required
are those to produce output coefficients in reduced foontompare intger and rational arith-
metic, we comparede06 andgrs, see Bble 6. The only essential difference between the codes is
the use of integer arithmetic, so almost all of the speedup can be attributed ta this.table,

the reverse search trees foyclic25_13andmetric80_16were truncated at depth 5 to reduce the
computation time.Speedups were obtained on all problems, but varied widely from 1.3 to 18.5.
Columns 4 and 5 gé te approximate maximum number of decimal digits used in the

ar,j




Problem seconds maximum digits rational/integer
rational | integer| rational inger || time | digits
cutle 11 3.8 1.4 16 20 2.7 0.8
cut32_16 5749.0| 2558.4 16 28 2.5 0.6
cyclic25_13 4683.4| 2535 164 168 18.5 1.0
kg20 11 173.0 11.5 68 52 15.0 1.3
metric40_11 177.6 50.3 20 16 3.5 1.3
metric80_16 554.6| 155.8 16 16 3.6 1.0
mit31_20 4590.2| 3650.3 24 44 1.3 0.5

Table 6: Rational vs Integer Arithmetic (ve06 vs qr$

computations. Thexperiments were performed using a 32-bit machine, so the number of digits
reported is 4 times the number of array elements required to hold the largest. nirabefore

the maximum intger may actually be up to 3 decimal digits shorter than that specified. Note that
integer arithmetic appears to produce the greatest speedups for the prokt#wsgithe lagest
numbers.

3.4. Extendedvs Fixed Precision

The reverse search algorithm is by nature very sevesith numerical errarA single misin-
terpreted sign may mean that an entire subtree of ¥heseesearch tree is not diseoed. For this
reason all implementations were performedxteeded precision exact arithmetic. It is of interest
to see hov much overhead is imolved with this arithmetic. @ test this we used a version loé
prepared by Marzetta calléd1 which uses fixed 64 bit ingers. This program contains neep
flow checking, and can handle problems for which the integers in the calculations doeed e
about 19 decimal digits. Table Avgs a @mparison ofrs1 and Irs. It can be seen that the pro-
gram runs about six timeadter on theaerage when using fixed integer arithmetic. Since the
overhead grass as the size of the integers grows, this can be viewed as a lower boundwan-the o
head of gtended precision arithmetic, as implementetfsn The table indicates the importance
of extending the range of problems solvable iediprecision. The most time consuming opera-
tion is the prot update in equation (3.2). As mentioned the division is exact. Thereforuit w
be of interest to deré a pecial purpose code to compute tladue g ; without overflow, when-
eve it and all the terms on the right hand side of (3.2) are small enough to fit in a single computer
word.

Problem Irs Irs1 Irs/lrs1
seconds seconds
cutle 11 0.27 0.06 4.2
cut32_16 214.29 33.88 6.3
metric40_11 28.11 4.73 5.9
metric80_16* | 15283.01 2526.00 6.0

Table 7: Extended vs Fixed Precisionlfs vs ts1, * = dual polytope

3.5. Estimates

The output size of aertex or facet enumeration problem varies enormously depending on
the problem. Br example, a non-redundavitdescription containing vertices ind dimensions

can define a polytope with asafes O(logn) or as mary as Q(n"?Y facets. Tight bounds are
known as the Laver and Upper Bound Theorems (see, e.g. [23] ). Clearly these problems become
infeasible for certain polytopesyen for rather small values ai andd. A useful feature of
reverse search is that it alls a randomization that produces unbiased estimates of the output size
and the size of the verse search tree. For polytopeseni by aV-description, it is also possible

to get an unbiased estimate of the volume.
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The estimate is based on a technique of Hall and Knuth[17] and is described @nd
Devroye[5]. Thekey fact is that it is possible at yamode in a reerse search tree to find its
degree and generate one of its children uniformly at random. This allows the generation of a ran-
dom path from the root to a leaf. An estimate of the tree size is calculated fromgtee de
sequence obtained. The estimate is unbiased, meaning that its expected value is the correct num-
ber of nodes in the tree. It is also possible to get an estimate ofpthetedd value of anfunction
defined at each node of the treer B \ertex enumeration problem, one such function is the indi-
cator function, with value one if the corresponding basis is lexmin foeitsxy and zero other
wise. The expected value of this function is the numbeledifces of the polyhedronSimilary
we can determine the number of extreme rays by letting the function be the numbeniof le
rays defined by the dictionary with the current basis. For facet enumeration problems, we can
compute the expected value of th@ume by letting the function represent the determinant of the
current basis, and scaling appropriately at the end of the computation.

Although the estimates obtained are unbiased, hheehigh variance. Methodfor reduc-
ing the variance are described in[9The method implemented irs is to search the tree com-
pletely to a fixed depth, and then to mai& random probes to estimate the size of each remaining
subtree. Table 8 ggs the results for a set of estimates for our test problems. The pardnigter
shown in the final column. &t the first problem, 3 random probes were made from the root and
aveaged. The other estimates were obtained by a single random probe in each subtree remaining
at the deptth. Column 2 gves the upper bound on the number eftices or facets gen by the
Upper Bound Theorem applied to problems of eagbngsize. Thisalso gves an ypper bound
on the number of bases that will be generatetidysnce these bases correspond to the bases of
a perturbed polyhedron with the same input parameters as the original problem. In most cases this
is a huge werestimate. Br cyclic25_13 havever it is exact, since the class of cyclic polytopes
realize the bound gén by the Upper Bound Theorem. The next three columws gitimates for
the number of ertices (or facets), epositive bases(#B) and the volume. These can be compared
with the actual &lues gien in Table 3. Since the running time lo§ is directly proportional to
#B, the estimate of this parameter provides an eagytovestimate the running time required to
solve the problem competelyThe ratio of the estimate to the actual value ¥®mgin the next
three columns. The second last column shows the percentage of the eeats® search tree that
was examined in making the estimate.

Problem Upper Estimate Estimate/Actual Eval | h
Bound #V(#F) #B \Volume #V(#F) | #B \ol. %

cutlé 11 672 51 58 | 1.04 0.91 | 0.47 | 0.45| 5.6 0
cut32_16 692208 648 29766| 0.86 1.76 | 0.63 | 0.64| 4.2 5
cyclic25 13 35700| 24454 11082| 3.16e+74 0.68 0.6Q 0.07 6.5 4
kg20 11 4004 761 761 - 0.64 0.64 - 2.8 1
metric40_11 371008 20 6929 - 0.63 0.75 - 8.4 4
metric80_16| 2946219404 229 3800960 - 0.42 0.58 - 1.0 6
mit31_20 587860 6096 18549| 8.216e+2 0.32 0.51 0.48 4,5 3

Table 8: Estimateslrs)

For problems where the determinants of the bases lwaighly the same absolute value, the error
in estimating the volume will be comparable to that in estimating the number of lFasebe
cyclic polytope the determinants of the basegehaormous variance, explaining the relely
poor estimate obtained in this case.

4. Conclusion

In this paper we &veempirical evidence that symbolic perturbation, lifting and integer pi
oting all gve aubstantial speedups when used in\gense search ertex enumeration program.
These methods are all quite general and suitable for other geometric and polyhedral computation
problems. V& dso cavesome indication of theverhead cost of extended precision arithmetic and
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demonstratetts’s estimation feature.

Althoughlrs is a lage impravement on earlier implementations, it is far from aficafnt
general solution to theevtex enumeration problem.Such a solution should reasonably be
required to generate all vertices in time polynomial in the input and output size. Currently no such
algorithm is known to exist. Examples contained insABremner and Seidel [7] shahat all
pivot algorithms using numeric or symbolic perturbation may kelatremely badly: the num-
ber of bases computed can be syp®Eynomial in the number of vertices. This is born out in
practice for combinatorial polytopes such as the cut and metric polytopes described in the paper
For these polytopes a double description algorithm, such as Fgledth[2] is superior Irs is
efficient for vertex enumeration of simple (or neaimple) polyhedra, or dually for facet enumer
ation of simplicial (or neasimplicial) polyhedra. It is also useful when the output size is tge lar
to be stored in memaryRecently BremnerFukuda and Marzetta [9] deloped an ingenious pri-
mal-dual method for ertex enumeration of highly dgenerate simplicial polytopes that satisfy a
hereditary propertyit works by simulating the verse search tree generatedlisyfor the (easy)
dual facet enumeration problem for simplicial polytop&aially, this method can be used for
facet enumeration of simple polytopes. For polytopes with zero-one vertices, a polynomial time
vertex enumeration algorithm was recently announced by Bussieck and Luelhégk

Irs can be diciently parallelized, as has been done byri§jer Marzetta, Fukuda and
Nievergelt [10]. This parallel version has been used to esghme extremely large problems
which do not seem solvable by other methods.
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6. Appendix

The programlrs, and the input files for the polyhedra described in this paper can be
obtained by accessing tlrs home page[1].Version 3.2 was used for the tests described in this
paper except for Table 8 which was produced bgrsion 3.2b, the first version which produces
volume estimates. The implementatiore®1, ve06 andqrs, Version 2.2a arevailable from the
author on request. The computational results in Tables 3, 4 and 5 were obtamad@d, an
SGlI Origin 200 running Irix 6.4, and those in Table 6noas@0, an SGI O2 running Irix 6.3,
both at EPFL. The results in Tables 2, 7 and 8 were obtainetlliya DEC AlphaServer 1000
4/23 at McGill.
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