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Generating Rooted Triangulations Without Repetitions 1 

D. Avis 2 

Abstract .  We use the reverse search technique to give algorithms for generating all graphs on n points that 
are 2- and 3-connected planar triangulations with r points on the outer face. The triangulations are rooted, 
which means the outer face has a fixed labelling. The triangulations are produced without duplications in 
O(n 2) time per triangulation. The algorithms use O(n) space. A program for generating all 3-connected 
rooted triangulations based on this algorithm is available by ftp. 
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1. In t roduc t ion .  Let G ----- (VI E)  be a planar graph with vertex set V = {vl . . . . .  vn }, 
and let 3 < r < n be an integer. G is an r-rooted triangulation if  it can be embedded in the 

plane such that the outer face has labels {Vl . . . . .  Vr} in clockwise order, and all interior 
faces are triangles. A vertex (or edge) on the external face is called external, otherwise it 
is internal. All r=rooted triangulations are 2-connected. It is well known that an r - rooted 
triangulation is 3-connected if  and only if there does not exist an edge between two 
nonconsecutive vertices on the outer face. It follows that all 3-rooted triangulations are 
3-connected. Let m be the number of  edges in G. If  follows from Euler 's  formula that 
m = 3n - 3 - r .  We denote the degree of a vertex v by d(v). 

The purpose of  this paper is to describe how to generate all 2- or 3-cbnnected rooted 
triangulations without repetitions. The procedure was programmed and has been used 
to settle two questions involving triangulations. Using a list of  3-rooted triangulations 
on nine points, Binhai Zhu verified that each triangulation has a set of  two dominating 
edges. This means that each triangle of  the triangulation contains at least one vertex 
which is an endpoint of  one of  the edges. This results in an improvement of  the lower 
bound on the number of edge guards required to guard a polyhedral  terrain given in [3]. 
Hurtado [8] asked the author if there exist Eulerian 3-rooted triangulations for n > 11, 
for n odd, and n not divisible by 3. It was known that none exist for n = 4, 5, and 7 
[8]. These results were verified, and it was found that for n = 6, 8, 9, 10, 11, 12, and 13 
there are respectively 1, 3, 7, 15, 63, 168, and 561 Eulerian 3-rooted triangulations. 

Two r- rooted triangulations are isomorphic if  there is an edge preserving isomor- 
phism between the vertex sets of  the two triangulations that preserves the labelling of  the 
outer face. For given n, r ,  let f(n,  r) be the number of  nonisomorphic 2-connected tri- 
angulations, and let g (n, r)  be the number of  nonisomorphic 3-connected triangulations. 
Observe that f (n,  3) = g(n, 3), n > 3. Tutte [12] found a closed formula for g(n, r). 
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F o r n  > 5, 

2 
g(n, 3) - - -  

(n  - 2 ) !  

F o r r  > 4 ,  n > r + 2 ,  

g(n, r) = 

(3n - 6)(3n - 5 ) . . .  (4n - 1i).  

3(r  - 1)! (r - 4)!  

(3n - 6)! 

rain( . . . .  ~1 '  r -3)  (4n - r - 8 - j ) !  (r - 1 + j ) (r  - 3 - 3 j )  
• 

j ! ( j  + 1 ) ! ( r -  3 -  j ) ! ( r -  1 - j ) [ ( n - r  - j - 1 ) ! "  

Brown [5] found a closed formula for f (n ,  r). For n > r > 3, 

2(2r - 3)! (4n - 2r " 5 ) !  
f ( n ,  r) = 

(r - 1)! ( r -  3)! (n - r)!  (3n - r - 3)!" 

The efficient generation of unrooted triangulations has received some attention in the 
literature. This appears to be harder than generating all rooted triangulations, and iso- 
morphism testing is required by current algorithms. This means that all nonisomorphic 
triangulations generated must be stored. Bowen and Fisk [4] describe a method of  gener- 
ating all triangulations of  the sphere. Dillencourt [7] gives an algorithm for generating all 
simplicial polyhedra in three dimensions. This paper also gives methods for generating 
other classes of  polyhedra. Using an approach dual to that given here, Deza et al. [6] 
give a method for generating all simple 3-polytopes by applying a variation of  reverse 
search to Wagner 's  theorem (see Section 2.3). Their use of  reverse search is somewhat 
different than that given here and isomorphis m testing is required to remove duplicates. 
It is an open problem whether reverse search can be used to generate simple polytopes 
(or unrooted triangulations) without isomorphism testing. 

In this paper we show how to generate all 3-connected r-rooted triangulations in 
O(n2g(n, r)) time and all 2-connected r-rooted triangulations in O(n2f(n,  r)) time. 
We use the reverse search method developed by Fukuda and the author [1], [2]. A 
feature of  the reverse search method is that no isomorphism test is required, and the 
triangulations need not be stored. The algorithm uses only O (n) space. We begin by 
reviewing informally the reverse search method in the context of  our application. It is 
assumed for the rest of  this section that we wish to generate all 3-connected r-rooted 
triangulations on n points, for given fixed n and r. In the next section we give the details 
of  the required procedures for the 3-connected case. Section 3 contains a description 
of  the reverse search procedure, the data structure required, and an analysis of  time 
and space complexity. Section 4 describes the modifications necessary to generate 2- 
connected triangulations. Finally in Section 5 we discuss some computational experience, 
open problems, possible improvements,  and explain how a copy of the program may be 
obtained. 

The reverse search method is a technique for generating all vertices of  a graph whose 
edges are given implicitly by an oracle, Let H = (T, U) be such a graph. In our 
application, each vertex in T coiTesponds to an r-rooted triangulation with given fixed 
n and r. U is the edge set of  adjacent vertices in T. In our application, two r-rooted 
triangulations are adjacent if they differ by exactly one edge. The reverse search method 
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works by finding a spanning tree in the graph H. To do this we first fix some given 
triangulation with the required parameters n and r. Call the vertex in H corresponding 
to this triangulation the target t*. We now define a local search procedure, L, that given 
any vertex t of  H defines a unique adjacent vertex in H,  with the propertY that repeated 
application of  L defines a path in H to the target. In other words, (t, L (t)) is an edge in U 
and L k (t) = t* for some finite integer k. The path generated consists of  a sequence of  r- 
rooted triangulations that differ in exactly one edge and ends with the target triangulation. 
The set of  all such paths clearly forms a spanning tree in H.  

The reverse search procedure is initiated at the target t* and constructs a spanning tree 
of  H by reversing the local search procedure. To do this we first generate all neighbours 
in H of  any given vertex t 6 T, in some given order. This is done by an adjacency oracle. 
Using the adjacency oracle at t* we consider neighbours of t* until we find a neighbour 
t such that L(t)  = t*. We now replace t* by t and use the adjacency oracle to find (if 
possible) a neighbour s of  t such that L(s)  = t. If  such a vertex s exists we move to s 
and continue. If  we react] a node t for which no such neighbour s exists, we backtrack 
by computing the parent u = L(t )  of t. We now continue from u using the adjacency 
oracle to give the next neighbour of u in order after t. 

In order to give a formal description of  a reverse search procedure it is necessary to 
specify: 

(a) The target triangulation. 
(b) The adjacency oracle. 
(c) The local search procedure. 

These are specified for the 3- and 2-connected cases in Sections 2 and 4, respectively. 

2. 3-Connected Triangulations.  In this section we describe formally how to generate 
all 3-connected r-rooted triangulations with n points. To avoid trivial cases we assume 

n > r > 3 .  

2.1. Target Triangulations. For each n > r >__ 3 we define a target triangulation E~*r. 
Figure 2. l(a) shows the target triangulation E~, 3 for n ---= 5 and r = 3. This graph is an 
example of a prism with apex 1)1. The target triangulation E~, 4 for n = 7 and r = 4 is 
shown in Figure 2. l(b). In general, we first build a wheel on the external face 1)1 . . . . .  1)r 
with centre Vr+l. Then we build a prism with apex 1)r+l in the triangle vr+lvr Vr-1. The 
edge list of  E~*~ for n > r >_ 3 is 

I )11)2 ,  1)21)3,  �9 �9 �9 , U r - 1 1 ) r ,  1 ) l V r ,  

1 ) 1 1 ) r + 1 ,  V 2 1 ) r + l  ~ . �9 ' ~ 1 ) r 1 ) r + l  ~ 

for the wheel, and 

1 ) r -  1 V r + 2 ,  1 ) r -  1 1 ) r + 3 ,  - - �9 , U r -  1 Un 

1)r1)r+2~ O r P r + 3 ,  �9 . .  , 1 ) r U n ,  

/ J r +  1 U r + 2 ,  U r + 2  V r + 3 ,  �9 �9 . , 1 ) n -  1 1)n, 

for the prism. 
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2.2. Adjacency Oracle. Let  G = (V, E) be an r-rooted 3-connected triangulation and 
let e = va Vb C E be an internal edge, that is, an edge that is not on the external face. 
Since e is internal it bounds two triangles, say VaVbVc and VaVbVd. If  e' = VcVd is not an 
edge in E we say that e is transformable and define the notation 

EAe = E - e + e t. 

Note that once a transformable edge e is chosen, the edge e' is well defined, and need 
not be specified explicitly. It is easy to see that G' = (V, EAe) is also an r-rooted 
triangulation. We say that G and G '  are adjacent triangulations. The transformation of  
E to EAe is well known, and is called a diagonal transformation. When edge e is 
transformable, we say that we can flip edge e. G '  is 3-connected if the edge e' does 
not join two vertices of  the outer face. An edge transformation of  edge Vl v5 of  E* 7,4 
(Figure 2.1 (b)) produces a 2-connected triangulation, for example. 

We now define an adjacency oracle that gives all adjacent triangulations to a given 
triangulation G. We assume that the edge list of  G is stored in some given order and let 
E = (el, e2 . . . . .  era)  be the ordered edge list. For j = 1 . . . . .  m we define the adjacency 
oracle Adj(E ,  j )  by 

A d j ( E , j ) = {  EAej  if ej is transformable, 
otherwise. 

In the ordered edge list EAej,  the edge replacing ej is stored in the j th  position of 
the edge list, the other edges remain in their original order. The adjacency oracle Adj 
defines a graph H - (T, U) on the set of  3-connected r-rooted triangulations for given 
n. The vertices T of  H correspond to the edge sets of the triangulations. There is an edge 
in U between the edge sets E and E '  if and only if 

E ' = A d j ( E , j )  for some j ,  1 < j  < m .  

In the next section we show that H is connected and give a local search procedure for H. 
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Fig. 2.2. Diagonal transformations for Lemma 2. i. 

2.3. Local Search and Wagner's Theorem. For r = 3, the target triangulation in Sec- 
tion 2.1 and an implicit description of the configuration graph H of Section 2.2 was 
given by Wagner [13] and also appears in the book by Ore [9]. Wagner proved that H 
is connected when r = 3. A somewhat simpler proof is contained in [9] and this proof 
is suitable for defining an efficient local search procedure. We give a proof based on a 
similar idea for the general case r > 3. We begin with a basic lemma which is illustrated 
in Figures 2.2(a) and (b). We say that a vertex v has consecutive neighbours t 1 , t2 . . . .  , tk 
if these neighbours occur in consecutive counterclockwise order in the unique planar 
embedding of the r-rooted triangulation. 

LEMMA 2. I, Let s be a vertex in an r-rooted triangulation G with four  consecutive 
neighbours tl, t2, t3, t4, where tl is on the external face  and t2 is not. Then either st3 is 
transformable or tzt4 is an edge o f  G which, is transformable. The edge transformation 
preserves 3-connectivity. 

PROOE Since tl, t2, t3, t4 are consecutive neighbours of s, the edge st3 bounds the 
triangles stzt3 and st3t4. If t2t4 is not an edge, then st3 is transformable. Otherwise t2t4 is 
an internal edge and t3 lies inside the triangle st2t4. The edge t2t4 bounds two triangles 
xt2t4 and yt2t4 of the triangulation. One of these triangles, say xt2t4, lies inside st2t4 
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and the other outside (x may or may not be the same as t3). Therefore x and y are not 
adjacent so t2t4 is transformable. 

Suppose G is 3-connected. It suffices to show that the new edge contains an internal 
vertex. The edge transformation produces either the new edge t2t4 or the new edge t3x. 
In the first case t2 is internal by hypothesis and in the second case t3 is internal since it 
lies inside triangle st2t4. In both cases 3-connectivity is preserved. [] 

Before formally defining the local search algorithm, we illustrate it on the example G 1 
in Figure 2.3. The idea is to compare vertices Vl, v2, 1)3 . . . .  in G 1  with the corresponding 
vertices in the target, E~, 4, shown in Figure' 2. l(b). When the first vertex is found that 
differs from the target, the lemma is applied. This is repeated until the target is reached. 
Comparing the two triangulations G1 and E~. 4 we see that d(vl) = 3 in G1, matching 
its counterpart in the target, but d ( v 2 )  = 4 does not. We apply the lemma with s = v2, 
tl : Vl, t2 = a ,  t 3 = b ,  and t4 = v3. Since av3 is an edge, v2b is not transformable 
so we flip av3 getting G2. In G2, Vl again has the correct degree and v2 has degree 4. 
Applying the lemma again it is now possible to flip v2b reducing the degree of v2 to 3 

G G 
1 2 

v v 2 V 1 V 
1 2 

v 4  v 3 v 3 

G4 G3 v 
2 

Fig. 2.3. Illustrating LocalSearch (selected edge shown dashed). 

v 
3 
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procedure  LocalSearch( E , n, r);  

/* return a transformable edge or null if E = E,*r */ 
/* create a wheel with centre 1)r+l */ 

i : = 1 ;  
while  d(vi) = 3 and i _< r - 2 

i : = i + 1 ;  
endwhi le  
i f /  < r - 2 t h e n  [*d(vi) > 3/* 

let tl :=  vi- l ,  t2, t3, t4 be consecutive neighbours of  vi in counterclockwise order; 
if  t2t4 is not an edge then return (st3) 

else return (tzt4); 
endif  

/* Transform the triangle Vr+lVr-11)r to a prism */ 
let s :=  the vertex adjacent to 1)1 . . . .  vr; 
lasts :=  1)1; 
while  s is adjacent to exactly one internal vertex a that is not lasts 

lasts := s; s : = a ;  
endwhile  
i f d ( s )  = 3 return (Z);  /* E = E~, r */ 

/* We have found the first vertex where E is different from the target*/ 
let t~ :=  1)r, t2, t3, t4 be consecutive neighbours of  s in counterclockwise order; 
if t2t4 is not an edge then return(st3) 

else return (t2t4); 

Fig. 2.4. Local search procedure for 3-connected triangulations. 

and obtaining G3. In G3 the degrees of  both vl and v2 are both 3 so we have a wheel 
with centre a, external face vl . . . . .  v4, and all remaining vertices in the triangle av3v4. 
We now transform this triangle into the target prism shown in Figure 2.1(a). For this 
purpose imagine vertices v~ and v2 along with incident edges have been deleted. 

Inside triangle a v3 v4 vertex a has degree 4 so we apply the lemma with tl = v4, t2 = c, 
t3 = b, and t4 = v3, getting the transformable edge cv3. The resulting triangulation 
G4 has similar structure and the lemma is applied again to the same vertex set giving 
the transformable edge ab. This diagonal transformation leads to the target E~,4, with 
v5 = a, 1)6 : C ,  and 1) 7 m. b. 

The above method is stated formally as procedure LocalSearch in Figure 2.4. Let 
E be the edge list of a 3-connected r-rooted triangulation on n points that is not the 
target triangulation. LocalSearch(E, n, r) returns a transformable edge e 6 E. The next 
theorem, which generalizes a theorem of Wagner [13], shows that repeated application 
of  this procedure leads to the target triangulation. 

THEOREM 2.1 (Generalized Wagner's Theorem). 

(a) I f  E is a 3-connected triangulation, LocaISearch(E, n, r) returns a transformable 
edge e ~ E which preserves 3-connectivity. 

(b) By repeated application of  LocalSearch to the transformed edge set E Ae  the target 

triangulation E*,r is reached. 
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PROOF. For part (a) of  the theorem, we apply Lemma 2.1. If  e is chosen in the first part 

of  the procedure, s and tl are on the external face and d(s) >_ 4. By 3-connectivity, t2 
is an internal vertex. I f  e is chosen in the second part of  the procedure, t2 is inside the 

triangle SVr-l vr and so it is internal. In both cases the lemma applies, the edge chosen 
is transformable and 3-connectivity is preserved. 

For part (b), we first show that E is transformed to a triangulation with d(vi) = 3 for 
i = 1 . . . . .  r - 2. Indeed, suppose i is the smallest index in this range such that d (vi) > 3. 

Vertex vi is selected in this part of  the procedure. Since vi is on the external face and the 
triangulation is 3-connected, the second consecutive neighbour of  vi must be internal 
and so Lemma 2.1 can be applied. Suppose e is the transformable edge provided by the 
lemma and consider the triangulation E '  = EAe .  Either d(vi) has been decreased by 
one, or LocalSearch(E', n, r) returns an edge e'  such that the triangulation E'Ae '  has 
this property. 

We must show that the diagonal transformation does not increase the degrees of  
Vl . . . . .  vi-1. There are two cases depending on the choice of edge in the lemma. First, 
if st3 is transformable, the new edge is t2t4. Since s = v i and tl = vi-1 are external, 3- 
connectivity implies that t4 is either internal or t4 = vi+l. In either case the transformation 
does not increase the degrees of  Vl . . . . .  Vi-l. In the second case, t2t4 is an edge, and the 
new edge is xt3. Suppose x --  Vk for some 1 < k < i - 1. Now t4 must also be external, for 
otherwise Vk is adjacent to Vk-1, Vk+l, t2, and t4 before the transformation, violating the 
condition that d(vk) = 3. However, if t4 is external, we have t4 = vi+l by 3-connectivity. 
Since t4 is also adjacent to x = Vk, we must have t4 = vr so i = r - 1, contradicting the 
choice of  i by LocaISearch. Therefore x is either internal or external with index greater 
than i and the degrees of  Vl . . . . .  vi-1 are preserved. It follows that repeated application 
of LocalSearch produces a triangulation with d(vi) = 3 for i = 1 . . . . .  r - 2. 

We now have a triangulation that is a wheel with external face v l . . . . .  Vr, with centre, 
say, s and with the remaining vertices in the triangle SVr-1 Yr. We label s as V~+l. The 
triangulation inside this triangle is to be transformed into a prism. Firstly, if s is adjacent 
to more than one internal vertex, we apply Lemma 2.1 to the four consecutive neighbours 
of  s in counterclockwise order starting from yr. Note that since Vr-lVr is an edge of  the 
external face, the second and third consecutive neighbours of  s are internal. If  we do a 
diagonal transformation on the edge returned, either the degree of  s is reduced by one, 
or this happens on the following application of  LocalSearch and subsequent diagonal 
transformation. We continue in this way, until s is adjacent to one internal vertex, say, 
a. We label a as Vr+2. It follows that a is adjacent to both Vr-1 and Yr. Setting lasts = s 

and s = a we now repeat essentially the  same steps until the new vertex s has exactly 
one internal vertex (say a = Vr+3) that is different from lasts. We move down the chain 
Vr+l, Vr+2 . . . .  until a vertex is found that differs from the corresponding vertex in the 
target, and apply the above procedure. 

It can be verified that once the vertices Vr+l, V~+2 . . . .  have degrees corresponding to 
the target they are never involved in further edge transformations. Therefore the procedure 
is finite and the theorem is proved. [] 

3. Implementation of Reverse Search Procedure. In this section we give the details 
on how the reverse search technique is used to generate triangulations. We begin by 
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procedure  ReverseSearch(n, r); 

E :=  E*r ; /* start at target triangulation */ 
j :=  0; /* adjacency counter */ 
repeat  

while j < 3n - 3 - r /* maximum number of  edges */ 
j : = j + l ;  
E '  :-- Adj(E,  j ) ;  
if E 5~ O then 

ek := LocalSearch(E', n, r);  
if e~ = ej then /*go down reverse search tree*/ 

E :=  EAe~:, j :=  0; 
endif 

endif  
endwhile 
i f E  :~ E*,r then /*backtrack*/ 

ek :=  LocalSearch(E, n, r); 
j :=  k; /* restore adjacency counter */ 
E :=  EAek; 

endif 
until E = E* ~ and j = 3n - 3 - r /* all edges explored from target */ 

Fig. 3.1. Pseudocode for ReverseSearch. 

giving the procedure ReverseSearch which is the standard reverse search procedure, 
essentially as given in [2]. The reader unfamiliar with reverse search is referred to this 
paper for further description, formal proofs of  correctness, and complexity analysis. 
However, reference to the informal description in Section 1 and the code ReverseSearch 
shown in Figure 3.1 should give the essential idea. 

We now give a simple data structure that allows LocalSearch and Adj to be imple- 
mented in O (n) time. After a diagonal transformation, the data structure can be updated 
in O(n) time. This leads to an implementation of  ReverseSearch in O(n2g(n, r)) time 
and O(n) space. The data structure used is the doubly connected edge list, or DCEL, of 
Muller and Preparata [10], a description of which can be found in [11]. Each edge ab 
of the triangulation is represented by a corresponding edge node in the DCEL. The edge 
node for ab contains the vertex labels a and b and two pointers: 

- -  A pointer to the edge node corresponding to the edge ac which is next in counter- 
clockwise order about a after ab. 

- -  A pointer to the edge node corresponding to the edge bd which is next in counter- 
clockwise order about b after ab. 

The edge nodes are stored in an array. Each entry of the array contains two data fields 
for the vertex labels and two pointer fields containing the array indices for the two edge 
nodes described above. The data structure for E~, 3 is shown in Table 3.1. This data 
structure has the following properties: 
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Table 3.1. DCEL data structure for E~, 3. 

Next Next 
Index Vertex 1 Vertex 2 vertex 1 vertex 2 

1 vl v2 2 5 
2 vT v3 3 4 
3 Vl 1) 4 1 7 
4 v2 1)3 1 8 
5 1)2 114 6 3 
6 v2 v5 4 9 
7 v3 v4 2 9 
8 v3 v5 7 6 
9 1J4 115 5 8 

(P1) F r o m  an edge  node ab, the edge nodes o f  all of  the edges  o f  the tr iangles abc and 

abd can be obtained in constant  t ime, 

(P2) F r o m  an edge  node ab, the edges  adjacent  to a (or b) may  be obtained in counter-  

c lockwise  order, starting f rom ab, at a cost  of  constant  t ime per  edge. 

Cons ider  first the implementa t ion  o f  the adjacency oracle  Adj (E, j). T h e  edge  

counter  j is used as an index into the array storing the edge  nodes.  For  g iven j ,  an 

edge  ab is located in constant  t ime. By  (P1), the two tr iangles abc and abd bounded  by 

ab can also be determined in constant  t ime. A sequential  search o f  the edge  nodes is used 

to see i f  cd is an edge.  I f  so, the empty  set is returned. I f  not, a diagonal  t ransformation 

is pe r fo rmed  on edge  ab. This can be done  in constant  t ime. The  updates to D C E L  are 

shown in Table 3.2. It is assumed that d is the next  ne ighbour  o f  a in counte rc lockwise  or- 

Table 3.2. DCEL before and after diagonal transformation on ab. 

Next Next 
Index Vertex 1 Vertex 2 vertex 1 vertex 2 

(a) Before 

rl a b r3 r4 
r2 a c rl 
r3 a d r5 
r4 b c r2 
r5 b d rl 

(b) After 

rl c d r2 r5 
r2 a c r3 
r3 a d rl 
r4 b c rl 
r5 b d r4 
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der after b, and fields not shown are unchanged. Observe that if edge ab is transformable 
and its location in DCEL is known, then the transformation takes O(1) time. Testing 
transformability takes O(n) time since the edges are not stored in order in DCEL. 

Next consider the implementation ofLocalSearch. This procedure finds the first vertex 
with degree greater than that of the target, where the vertices are checked in order around 
the outer face and then from the centre of the prism to the external face. By property 
(P2), this can be done in time proportional to the number of edges, and the traversal of 
the vertices in the given order can easily be achieved with the DCEL structure. Once the 
first vertex of the triangulation differing from the target is found, this becomes vertex s 
of Lemma 2.1. A scan around s produces the vertices tl, t2, t3, t4. A linear scan of the 
edge nodes determines which of the cases of the lemma apply. The total time required 
by LocalSearch is therefore O (n). 

We can now analyse ReverseSearch. The while loop of the repeat block dominates the 
computation. For each triangulation and each edge in the triangulation it is necessary to 
call Adj and possibly LocaISearch. The total time for this step is therefore O (n2g(n, r)). 

4. 2-Connected Triangulations. In this section we describe the modifications needed 
to produce all 2-connected triangulations. To avoid cases covered already we may assume 
n >__ r > 4. The modifications required are new target triangulations and a slightly 
different local search procedure. The adjacency oracle described in Section 2.2 is valid 
without change. 

Figure 4.1 shows the target triangulation E* In general the target F* is specified 6,5" n,r 
by: 

(a) Creating a star-shaped triangulation of the outer face from vertex Yr. 
(b) Creating a prism with apex vr-2 in the triangle v,.=eVr-1Vr with the remaining n - r 

points, if any. 

The edge list of Fn, r* for n > r > 4 is 

UIU2, U2U3,..., Vr-2Vr-1, 

UlVr, V2Vr , . . . ,  Vr-l~r, 

for the outer face, and, when n > r, 

Ur-2Or+l,Ur+lUr+2, Vr+2Ur+3,...,Pn-lOn 

Ur-lUr+l, Vr-lVr+2~...~ Ur-lUn, 

UrUr+l~ UrUr+2~..., UrVn, 

for the prism. 
The local search procedure for generating 2-connected triangulations is based on the 

same idea as described in Section 2.3 for 3-connected triangulations. Let E be the edge 
list of a triangulation that is not the target F~*r. We check the vertices sequentially about 
the external face vl, v2,. �9 �9 vr-3 reducing the degree of vertex v~ to 2, and the other 
degrees to 3. When this has been accomplished, the outer face has been triangulated as 
a star from vertex vr and all internal vertices lie inside the triangle Vr-2Vr-I Yr. We now 
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Fig. 4.1. Illustrating target and LocalSearch2 (selected edge shown dashed). 

transform this triangle into a prism as described in Section 2.3. The transformation of  
the outer face to the target is based on the following lemma. 

LEMMA 4.1. For i = 1, 2 , . . . ,  r -- 3, i f  vi is adjacent  to consecutive vertices Vr, q ,  t2, 
then either Vitl, vit2, or Vrt2 is a transformable edge. 

PROOF. If vitl is not transformable, vrt2 must be an edge, and tl lies inside the triangle 
vi Vrt2. First suppose t2 r vi+l (Figure 4.2(a)). Then vi has at least one more consecutive 
neighbour after t2. Therefore vit~ is an internal edge bounding triangles vi tl t2 and vit2a 

for some vertex a. Since a cannot be adjacent to q ,  edge vit2 is transformable. Otherwise 
t2 = Vi+l and since i < r - 3, v;+l vr is an internal edge bounding triangles xl3i+ 1 o r and 
yvi+l Vr, for some vertices x and y (Figure 4.2(b)). One of  these triangles, say xvi+l vr, 

must lie inside vi vrvi+l and the other outside. Note that x may or may not be identical 
to vertex t]. Vertices x and y cannot be adjacent, so Vrt2 is transformable. [] 

Based on Lemmas 2.1 and 4.1 we present in Figure 4.3 the procedure LocalSearch2 

which transforms and 2-connected rooted triangulation to the target. An application of  
the procedure is shown in Figure 4.1. Analagous to Theorem 2.1 we have the following 
result. 
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v i  

v i ~  a 

la) 

/ ~  v s 

v Z, 

(b) 
Fig, 4,2, Illustrating Lemma 4. t, 

=t 2 

THEOREM 4.1. 

(a) I f  E is a 2-connected triangulation, LocalSearch2( E,  n, r ) returns a transformable 
edge e. 

(t3) By repeated application o f  LocalSearch2 to the transformed edge set E Ae the target 
triangulation F~, r is" reached. 

To prove the theorem, L e m m a  4.1 is applied when the edge is selected in the first step 

p rocedure  LocalSearch2( E,  n, r);  

/* Assume n > r > 4 */ 
l* Create a star triangulation from v~ *f 

f f the  degree of  vl > 2 or the degree of vi > 4 for some i = 2, 3 . . . . .  r - 3 then 
choose the smallest such i and suppose vi is adjacent to consecutive vertices Vr, h ,  t2; 

i f  vrtz is not an edge then  return(vi t t );  
if t2 5A vi+~ then  return(vit2); 

else return(v~t2); endif 
/* Transform the triangle vr-2vr- lvr  to a prism */ 

if s is adjacent to exactly one internal vertex a then 
lasts m s; s - - -a ;  
while s is adjacent to exactly two internal vertices lasts and a 

lasts = s; s -- a; 
endwhile  

endi f  
/* We have found the first vertex where E is different from the target *l 

Suppose t~ = vr, t2, t3, t4 are consecutive vertices adjacent to s in counterclockwise order; 
if t2t4 is not an edge then  return(st3) 

else r e tu rn  (t2t4); 

Fig. 4,3. Local search for 2-connected triangulations. 
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of LocalSearch2. When the edge is selected in the second part, Lemma 2.1 is applied. 
The proof is similar to Theorem 2.1 and the details are omitted. 

Using LocaISearch2 and E*n,r in place of LocalSearch and E~, r, respectively, in 
ReverseSearch we obtain an algorithm for generating all 2-connected triangulations. 
This algorithm can be implemented using the DCEL data structure described in 
Section 3. Using an analysis similar to that given in Section 3, we can show that 
LocalSearch2 can also be implemented in O(n) time. We conclude that the modified 
ReverseSearch procedure produces all 2-connected triangulations in O (n2f (n, r)) time 
and O(n) space. 

5. Concluding Remarks. We have presented efficient algorithms to generate all 2- 
and 3-connected rooted triangulations. The algorithm for generating 3-connected trian- 
gulations was programmed using essentially the method described here with a slightly 
different data structure. The program is available by FTP to mutt.cs.mcgill.ca. Please 
use the login name ftp, give your full email address as password and change to directory 
pub/tri. The program is written in C and called 3tri.c. It was tested for all n and r in the 
range 3 < r < n < 12, and the number of triangulations matched the Tutte formula for 
g(n, r). The largest problem solved, with n = 13, r --- 3, and g(13, 3) = 6,369,883, 
took 270 minutes on a Silicon Graphics workstation. 

The reverse search method used to generate all r-rooted triangulations is the so-called 
naive'method. The dominant step in the algorithm is going down the reverse search tree, 
which is essentially testing whether 

(5.1) ej = LocalSearch( E Aej , n, r) 

for each edge ej in triangulation E. In the naive method, if ej is transformable, the 
transformation is made and then LocalSearch is applied, in time O(n), to determine if 
ej is the chosen edge. In many applications of reverse search, this test can be done more 
efficiently [2]. In our case, many candidate edges ej can be rejected without computing 
EAej and calling LocalSearch. It is an open problem whether the test (5. l) can be done 
in O(1) time. The constants implied by the big-O notation are important, since this 
problem is feasible only for small values of n. 

Finally we mention how the results in this paper can be used to compute all noniso- 
morphic triangulations of the sphere. A list of these triangulations can be obtained from 
a list of all 3-rooted triangulations by removing isomorphisms. For each triangulation 
of the sphere on n _> 4 points there are 2n - 4 triangles. Each can become the outer 
face of a planar triangulation and can be labelled in six ways. Some of these 12n - 24 
rooted triangulations may be isomorphic, but if the original triangulation of the sphere 
has no symmetries (which is possible), all will be distinct. Therefore each triangulation 
of the sphere may appear up to 12n - 24 times as a rooted triangulation, and duplicates 
would have to be removed by isomorphism testing. The time to do this can be greatly 
reduced by various filtering techniques. For example, a rooted triangulation can be re- 
jected if the degree sequence of the outer triangle is not lexicographically maximal over 
the degree sequences of all interior triangles. The remaining triangulations are tested for 
isomorphism. 
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An important open question is whether the reverse search method can be applied to 
generate triangulations of  the sphere directly without the need for isomorphism testing. 
More generally it would be of interest to generate all 3-connected planar graphs, or dually, 
all distinct combinatorial  types of  three-dimensional polyhedra without repetitions. 
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Note  Added in Proof. Gunnar Brinkman and Brendan McKay (private communication) 
have recently found an efficient method for generating planar unrooted triangulations 
without isomorphism testing, solving the above open problem. 
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