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ABSTRACT 

We consider the problem of partitioning sets of n points in d dimensions by means of k 
intersecting hyperplanes. We collect known results on this problem and give some new results. 
In particular, for d =k =3 it is known that a set in general position can be split into equal 
parts given any initial bisecting plane and two other carefully chosen planes. We show that 
this result does not extend to the case d =k =4. We also give bounds on the smallest integer 
h (k ) such that sets in h (k )-space can be partitioned by E: hyperplanes into ZL subsets of equal 
cardinality, partially answering a question raised by Paul Erdbs, 

1. Introduction 

A fundamental problem in the area of database 
systems is the retrieval of data satisfying certain cri- 
teria. The simplest such problem is the retrieval of 
data based on a single key, and a comprehensive 
treatment of this problem is contained in I<nuth[l]. 
A more difficult problem is the retrieval of data 
based on criteria for several keys, the so-called mul- 
tidimensional search problem. Suppose that each of 
n records of a fife contains a fixed number, d, of 
kcyu. A query asks for all records for which the d 
keys satisfy certain criteria. For example, upper and 
lower bounds may be specified for some or all keys, 
yielding the so-called orthogonal range query problem. 
This query problem can interpreted as finding all 
points in a given d-dimensional hyperrectangle. 
Suppose we are given upper bounds, Ui , and lower 
bounds Ii for each of the i =1,2, * * * ,d keys. Then 
we are asked to find every record whose key 
(z,* * * * ,zd ) satlsfles: 

li 5 ;ti < tli i=l,...,d. 
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A more general query could consist of a linear 
function:a ,z,+a,z,+ * * s fad Z~ +ad+,. The half- 
apace query problem is to flnd all records whose keys 
satisfy: 

olzl+a2z2+ * * * +a4 zd+ad+,- CO. 

Even more generally, we may be given a set of k 
such linear functions, which we represent in matrix 
form: 

A = 

a,, . . . 

Ok1 . . 

a l.d+l 

ak.d+t 

Letting z = ( zl, z2, . . . . 24 ) be the d-vector of 
keys for a record, we search for all such vectors satis- 
fying 

A3: + b 5 o. 

Such a query is called a polyhedral range query. For 
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these types of queries, a new space partltlonlng 
approach has been introduced by Willard [2) for 2- 
dimensions. and generalized by Yao [3] for 3- 
dimensions. These results have been lmproved by 
Dobkln and Edelsbrunner[l]. For the half-space 
query problem, these results lead to subllnear algo 
rlthms, that is, algorithms that run in time 
0 (k +n’ ) with t Cl. where k is the number of 
points in the output. Avis [5] has shown that the 
necessary geometric results do not hold in dimension 
5 and higher. In this paper we collect all of the 
relevant geometric results on the partltlonablllty of 
sets of points in space. The proofs of theorems 6, 7 
and 8 appear here for the first time. 

2, Geometrical Results 

In this section we discuss the geometrical 
results which are the basls for fast search algorithms 
that use polyhedron trees. We begin wlth some ter- 
minology. 

Let S be a set of n points In R’ and let 
0 < a < 2". We say that S is cr-partitionable If 
there exist a set of d intersecting hyperplanes that 
partition S so that no open region contalns more 
than on points or S. We say that S is non- 
partitionable if for every partltlon of S by d Inter 
sectlng hyperplanes, some set of 2d - 1 open regions 
together contain all the points of S. A point z in 
space is called a centrc of S If every hyperplaue H 

through s contains at least - 
(d :1, 

points in each 

half-space bounded by H. Two classical results are 
the Centre Theorem and the Ham Sandwich 
Theorem. 

Theorem 1. Centre Theorem[B] 

Every set S in R ’ has a centre. 

Theorem 2. Ham-Sandwich Theorem[?] 

Given d disjoint sets of points in R d, there 1s 
a hyperplane which slmultaneously divides each 
point set evenly. 

From theorem 2, we get the immediate corollary: 

Coroilluy 2*1[ 2] 

1 
Every set S in the plane can be - - partl- 

4 
tloned. Furthermore one of the partitioning lines 
may be chosen to be an arbitrary bisector of S . 

Prooh Choose a line 1 that bisects S. This can 
easily be found by choosing the median point tn one 

of the coordinate directions and taking a line parallel 
to the approprlate coordinate axls. This divides the 
set S into two dlslolnt sets, to which theorem 2 
may be applied. 

Corollary 2.1 thus shows that a perfectly bal- 
anced polygon tree can always be constructed. This 
justlfles the sublinear half-plane algorithm described 
in the previous section. Before we move to three 
dlmenslons, another 2-dlmenslonal result is required. 

Lemma 1[3] 

Let R and B be two n point sets In the 
plane wlth a common centre. Then R and B can be 

slmultaneously * - partitioned by two lines. 

It can now be shown that all sets In RS can be pan 
tltloned. 

Theorem 3[3] 

hrery set S in 3-dimensions can be -& - partl- 

tioned. Furthermore, one of the partlt1onlng planes 
may be chosen to be any bisector of S . 

Proof: Let H be any blsectlng plane through S, 
splitting S into sets S, and S,. Let 21 be a centre 
for S, and z, be a centre for S,. Map every point of 
S onto H by projecting parallel to the line through 
x, and a!,. This gives rise to sets R and B of size 

t that satisfy the conditions of lemma 1. Therefore 

R and B can be 
1 

- - partitioned by two lines I1 
12 

and I,. Let Hi be the plane containing 
ii, 2, and x1, i = 1, 2. Then H, H,, H, form a 

1 
- - partition of S . 
24 

This result is sufflclent to get an 
0 ( n *” + k ) algorithm for half-space queries in 
three dimensions. To get the faster algorithm 
described in section 2, we require the following 
stronger and more dlfncult result. 

Theorem 4[8] [4] 
1 

hrery set S in 3-dimensions can be - - parti- 
8 

tloned. 

The proof of theorem 4 is rather technical and 
1s not included here. Apparently theorem 4 can be 
strengthened to allow one hyperplane to be chosen ss 
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an arbitrary bisector of s [8]. 

It is natural to ask whether the above results 
generalize to higher dimensions. The following result 
shows that in dimension S and higher the answer is 
negative. Let 6, = d mod 2. 

Theorem 6[6] 

For any integer n , and d 2 5, there exist 
non-partitionable sets of cardinallty n . Funher- 
more, sets exist for which every partition by d 
hyperplanes leaves at least 2’ - d” - 61 open regions 
with no points of S . 

Proof. We outline the proof here as the point 
set constructed will be used in the proof of later 
results. For any integer t , let al = ( t , t *, . . ., t ’ ). 
For any integer n we set 

s = {q :llC $I}. (1) 

These sets play a fundamental role in the theory of 
convex polyhedra, as they form the vertices of the 
cyclic polytopcs. An accessible introduction to these 
fascinating polytopes is the paper by Gale[Q]. Let 

/ ( 2,. . . . . 2J ) = i a< 2; + al+,, 
i-i 

We denote by f the hyperplane 
f ( zl, z,, . . . . zJ ) = 0 in d-space. The set S is 
partitioned by f according to the sign of the func- 
tion 

J 

Integers t for which g (t ) is positive correspond to 
points 8: in S that lie in one of the open half-spaces 
bounded by f , and integers t for which g (t ) is 
negative correspond to points in the other open half- 
space. Let N and L , respectively denote these point 
sets. Integers for which g (t ) = 0 c&respond to 
points of S on f . Such points are denoted by &f . 
Since g is a polynomial of degree d , it has some 
number k , which is at most d , of real roots. There- 
fore f can contain at most d points of S. If k is 
sero, then all points of S lie on the same side of f . 
If E is positive. let t , 5 t2 < * * * 5 tb denote 
the real roots of g . Then 

A4 = { t,, em., C& }, 

and H and L contain E + 1 5 d + 1 strings of 
consecutive points of S . If we consider the d partl- 
tlonlng hyperplanes together, it can be shown using 

this fact(S] that at most d” + 1 of the 2’ open 
regions contain polnts of S. In fact, if d is even, 
only d” regions can contain points. This outlines the 
proof of theorem 6. 

In four dimensions, it is not known whether an 
analogue of corollary 2.1 and theorem 4 holds. III 
the strengthened form they definitely do not hold. 

Theorem 6 

For any Q > 0 and any n , there exists a set S 
in R’, of cardlnallty n , that cannot be Q - partl- 
tloned by a prescribed bisecting hyperplane and any 
three other hyperplanes. 

Proof. We observe that d = 4 implies d’ = 2’ , 
‘and so theorem S does not yield snythlng of interest. 
However the situation is very “tight” in the following 
sense. If we follow the argument of theorem S we see 
that the set S defined by (1) with d = 4 can be 
partitioned if and only if there exists a binary matrix 
of dimension 4 X 16 with the following properties: 

Pl: Every column of A is distinct. 

P2: Each row of A consists of at most 6 
strings of eeroes and ones. 

PB: Two consecutive columns of A differ in 
exactly one row. 

Properties P, and P, define a Gray code. Gil- 
bert[lO] has published a list of all Gray codes of 
length 16. Of the 9 such codes, one satlatlts P,. It 
IS: 

[ 

0110001111110000 

A 0011111100011000 = 
0000111111000011 - 
0000011001111110 1 

This matrix determines how the four intersect 
lng hyperplanes must partition S . Suppose S con- 
tains 16 points. Row 1 of A can be interpreted ss 
=wiwt that points 
81, 64, $6, 609 8lar 814, 6x6, and 810 must lie above 

hyperplane H, . Row 2 can be similarly interpreted 
for H,, etc. Following this prescription, a separating 
set of four hyperplanes can be contructed. But sup 
pose we begin with a bisecting hyperplane H such 
that 8,, da, db, . . . . dlb lie above H and 

$2, 494. *‘** 610 lie. below H, Such a pattern does not 
appear in A (or any cyclic permutation of the 
columns of A ). Since A is essentially unique, this 
shows that H cannot be used in any partition of S 
by 4 hyperplanes. A similar argument can be shown 
for arbitrary n , demonstrating theorem 6. 
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As a final result of this type, we show that 
lemma 1 cannot be generalized to 3-dimensions. 

Theorem 7 

There exist two n point sets R and B in 3 
dimensions, with a common centre, such that R and 
B are not simultaneously partitionable. 

Proof: (Outline) 

Conslder the set S and hyperplane H 
described In the proof of theorem 6. Let S, and 
SI be the sets separated by H . Let z , and 88 be 

points in the centres of S, and S, . Project S, 
and S, onto H parallel to the line through z1 and 
z. giving R and B respectively. Now suppose that 
R and B could be simultaneously partitioned by 
three planes. Then as in lemma 1, this partition 
could be extended to a partition of S in 4-dimensions 
by 4 hyperplanes, one of which w&s H. But by the 
replarks preceding the theorem, this is Impossible. 
Hence R and B may not be simultaneously partl- 
tloned. 

The preceding results are negatlve and tell us 
that the algorithms for 2 and 3 dimensions may not 
be extended easily to high dimensions. Theorem 6 
tells us that sets in 5-dimensional space may not be 
separable by 5 hyperplanes. Paul Erdbs Il;sked the 
rollowing questlon[11]. Let A be any positive integer, 
and let h (A ) be the smallest dimension such that 
every general position point set of cardlnallty n in 
h (k ) - dlmenslonal space can be partitioned by k 
hyperplanes into 2’ regions each containing at least 

LLJ points of S. Is I, (k) flnlte, and if M), what is 
2k 

A (A )? The following theorem gives a partial answer 
to this question. 

Theorem 8 

2) -1 
k 

5 h(k) 5 2’-l . 

Proof: 

For the lower bound, we argue as in the proor 
of theorem 5. Let d ,S, j ,g be 8s defined there, and 
suppose we can partition S by k hyperplanes into t 
non-empty regions. Then since each polynomial g 
has at most d real roots, we have 

dk +I 2 t (2) 

setting t = 2k gives the lower bound. 

For the upper bound we appeal to theorem 2 
(Ham Sandwich Theorem). The bound 18 true for 
k =2 by Corollary 2.1. We as8umc inductively that 
it it true for all integers up to some k . Set d = 2’. 
By induction, every set in d-dimensions can be pare 

tltloned into d regions each containing at least [+j 

points, by k intersecting hyperplanes. By theorem 2, 
these d regions can be slmuItaneously bisected by a 
k +1-st hyperplane. Hence the bound holds for k +l. 

3. Final Remark 

Many open problems remain. Firstly, can 
every set of points in general position in 4 dlmen- 
slons be partitioned by 4 intersecting hyperplanes. 
Secondly, the non-partitionable data set constructed 
in dimensions 5 and above is highly pathological. 
One wonders if in practice. most data sets in dlmen- 
slons 5, or 6 may be partitionable. There also 
remains the problem of llndlng last partitioning alge 
rlthms, and the problem of updating the data struc- 
ture. Perhaps there LS a role for heuristics here. 
Finally, there is the theoretical question of obtaining 
better bounds on the function A (k ) described at the 
end of the last section. 

The author ha8 recently learned that Yao and 
Yao[l2] have proved that point sets in d-space can 
be partitioned into 2’ equal cardinallty regions by 
0 (2’ ) hyperplanes, such that no query hyperplane 
intersects all of the regions. For fixed d , this gives a 
subllnear algorithm for the half-space query problem. 
An application of inequality (2) shows that at least 
21-l 
- hyperplanes are necessary to perform such a 

d 
partition. The author has also learned that Michael 
Patterson has another argument to show that point 
sets in &space cannot be partitioned by 5 hyper 
planes Into equal cardlnallty regions. 
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