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LOWER BOUNDS FOR GEOMETRIC PROBLEMS

DAVID AVIS
School of Computer Science, McGill University, Montreal, Quebec H3A 2K6

ABSTRACT

Many lower bounds have been given for l-dimensional geometric problems
under the linear decision tree model. This model is too weak in general to

give useful results in higher dimensicns. It is shown how to extend such

bounds to a decision tree model that includes the primitives usually found
in geometric algorithms. A second result is a short proof of a theorem of

Yao and Rivest giving a lower bound for the polyhedral decision problem.

1. DECISION TREES

Cne of the most powerful models for obtaining lower bounds for

computational problems is the decision tree model. In this model,

algorithms are ternary trees, with each internal node representing a test of
the form "f(zl,...,zm) : ¢". The function f is from a specified class, c is
a constant, and TyreeesZo are the input numbers. The output of the
algorithm takes place at the leaf nodes, and is either a "yes" or "no"
answet in_ the case of a decision problem, or an evaluation of  functions

from the specified class.

When £ is restricted to the class of linear functions, this model is
known as the Ilinear decision tree model. If the input numbers are real
numbers, it is easily seen that the leaf nodes are convex regions of input
points. This fact has yielded many lower bounds under the linear decision
tree model. The cost of a decision tree algorithm is the height of the

tree, which is the number of tests required in the worst case.

This paper deals with lower bounds for geometric problems, where the
input numbers are usually real numbers of unlimited precision. For
example, they may be the co-ordinates of a set of points Xpaeees¥y in
k-dimensional euclidean space, Rk. Primitives used in geometric

algorithms are uvsually one of the following three types:

(a} "Is dp(xi,xj) = dp(xr,xs)?“ where 1,j,r,s are integers in the range
1 to n and dp is the pth order Minkowski metric.

(b} "On which side of the hyperplane generated by {xi §=1,2,...,Kk,
1= :Lj £ n} does the point %, lie? ™ 3

(c) ”f(xl,...,xn) : ¢", where f is a linear function and ¢ is constant.
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Tests (a) - (b) can be implemented by linear tests only in 1-dimension-
" al space {ie. k=1). TIn fact, as was shown in [1], the linear decision tree
‘iimodel is not strong enough even to decide whether three points in the plane

are collinear. Since the proof is short, it is included here for complete—

ness.
Consider any linear decision tree algorithm for deciding whether the

points (xl,yl), (xz,yz), and (x3,y3) are collinear. Such a tree must decide

whether
X3(yl-Y2)+y3(xz—x1)+y2x1—ylx2=0 . 1
Since this is a quadratic function, it is always possible to pick collinear
points so that z=(x1,yl,x2,y2,x3,y3) does not lie on any of the hyperplanes
defined by internal nodes of the decision tree. Therefore z lies in the
interior of some 6-dimensional convex set defined by a leaf node of the
By perturbing z slightly, we can destroy the collinearity whilst

Thus the algorithm fails.

tree.
remalning at the same leaf node.

When k=1, the linear decision tree model is powerful enough to yield
Several authors have found sharp linear decision
At this stage it is

efficient algorithms.
tree bounds, examples of which are given in Section 2.

common to make the following statement:

since the lower bound holds for l-dimensional problems, it must

surely hold for all higher dimensional problems.

Whilst this statement is true, it omits the important fact that the bound
is only true wnder the linear decision tree model, and is thus useless in
general for k2, as shown above. In Section 3 we attempt to overcome this
difficulty by showing that linear decision tree bounds for l-dimensional

problems can be used to give bounds for higher dimensional problems, under
a decision tree model that includes the primitives (a)~(c) above. Finally,
in Section 4, we give a short proof of a theorem of Yao and Rivest [9] on

the complexity of deciding whether a point is contained in a polyhedron.

2. SOME EXAMPLES

We begin by presenting three lower bound results for sets of numbers.

ELEMENT UNIQUENESS: (Dobkin, Liptom [4]) Any linear decision tree

algorithm for determining whether a set of n real numbers are

distinet requires (n log n) tests, in the worst case.

INTERSECTION: (Reingold [7]) Any linear decision tree algorithm
for determining whether two sets of n numbers has an empty
36

intersection requires Q(n log n) tests, in the worst case.

€ ~CLOSENESS: (Fredman, Weide [5]) Any linear decision tree algorithm
for determining whether any two of n numbers are within ¢ apart requ-
ires 2(n log n) tests, in the worst case.

Consider now, the following set of geometric problems. In each case,

it has been shown that one of the preceding bounds is applicable for the
l-dimensional case.

CLOSEST PAIR: (Shamos [8]) Given a set of n points in k-space, determine

the pair whose distance is smallest. (Use ELEMENT UNIQUENESS).

FIXED RADIUS NEAREST NEIGHEOUR: (Bentley [2]) Given a set of n points in

k~space, and some constant d, list all pairs of points whose distance is no

‘more than d. (Use € - CLOSENESS)

Given a set of n line segments in
(Use ELEMENT

. SEGMENT INTERSECTION: {Shamos [8])
k-space, determine if any palr of segments intersect.

UNIQUENESS).

SET DISTANCE: {Bhattacharya [3]) Given two sets of n points in k-space,

determine the pair of points (one from each set) whose distance is smallest.
{Use INTERSECTIOR).

Algorithms known to the author for solving the four geometric problems

above, use primitives of the form {a)-{c) of Section 1. In the next section

we show how to extend the lower bounds above to this class of primitives,

3. LIFTING LOWER BOUNDS TO HIGHER DIMENSIONS

Consider problems where the input is an n-tuple Xk=(xl,...,xn) of n
Let f: RkX...ka-—+ R be a real valued function of nk

‘points in k-space.
: k k-1 . . nk
Let E- = R x 0 » be the set of points in R

variables,on the input data.
fthat have zeros in every co-ordinate, except possibly the first. Then we
;say that f is I-Inear, if the function £: E%x, . ES%R 15 e linear
: It is easily shown that tests of type (a)-{c) in Section 1 are

function.
A I-Tinear deeision tree is a decision

implementable by I-linear functions.

tree where all tests are by l-linear functions.

Consider a sequence of geometric problems 1 = ﬁl,ﬁz,ﬂs «+.» on inputs

X ,X X3,... S is a problem on k-dimensional inputs; its output on Xk

P R

is denoted ﬂk(xk). T is said to be (I-dimensionally) consistent if
n

nl(xl,...,xn) = ﬁk(yl,...,yn) V(xl,...,xn)eRJ k=2,3,4,...,
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- where
) .
yi = (xi’og---,o) e E .

It can be verified that the four geametric problems in section 2 are
1-dimensionally consistent. We can now state and prove the following

Tesult.
Theorem 1. If w is a consistent sequence and ™ has a linear decision tree

bound of £(g(n}), then 7. has a l-linear decision tree bound of Q(g(n)).

Proof: Let Tk be a l-linear decision tree algorithm for LI Let fj be the

I-linear function at some node j of Tk It follows from the definitions

that there exists some function h: R® — R such that f(yl,...,y ) =

T R A

1-linear, it follows that h is linear. Construct a linear decision tree 'I‘1

follows that ‘I'1 is a linear decision tree algorithm for ﬂl, and hence has
height at least R(g(n)). Thus Tk has height at least 2{g(n)} and the
theorem follows. ]

Corollary The problems CLOSEST PAIR, FIXED RADIUS NEAREST NEIGHBOUR,

bounds.

Thus any improvement in O(n log n) algorithms for these problems must use

primitives other than those listed (a)-(c) in Section 1.

4. THE POLYHEDRAL DECISION PROBLEM

xn
Let A e RV he an @%n matrix, and let b ¢ R be an m element vector.

of m half-spaces defined by the m rows of A. Let C(P) denote the minimum
height of any linear search tree algorithm T(P) for resolving the decision

problem Q(x): "“Is x ¢ P?", We call any leaf-node teT(P) that gives the

Pt = closure {x ¢ R® : T(P) resolves Q{x) at t}

It is easy to construct Pt given T(P). Simply trace the path in T(P)} from
t to the root, converting any "<" to "$" and any "»" to "=". Any equality

encountered can be replaced by two inequalities.

We require a few definitions from the field of comvex sets, the reader

is referred to the book by McMullen and Shephard for Further information [6]
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Theorem 2.

h{x XppeeeaX ), V(xl,...,x 3eR", where Yys++-»¥, 18 defined above. Since f is

by substituting hj for Ej at each node j of Tk' Since T is consistent, it

SEGMENT INTERSECTION and SET DISTANCE have Q(n log n) 1-Iinear decision tree

The set P = {x ¢ R" : Ax < b} is called a polyhedron. P is the intersection

output "yes", a yes-leaf. For each yes-leaf,t,define the polyhedron, P, by

A supporting hyperplane H of ® is a hyperplane such that (i) Hn P # # and
(ii) P is contained in one of the closed halfspaces determined by H. The
set Pn P is then called a face F of P. If F has dimension g, then it is
called an s-face. It is well known that an s—face F can be written as the
intersection of n-s of the halfspaces that define P. Thus if the path from
a yes—leaf t to the root involves d inequalities, Pt can have at most ( S)
s—-faces. The Upper Bound Theorem [6] gives a much sharper bound on thls
number. We may now state and prove the following result of Yao and Rivest
{9].

4C(P) <f§53) > £ (2).
Proof: Let T(P) be a linear decision tree algorithm for Q{x), and let F be
an s-face of P. Since the number of yes-leaves is finite, there must be
some yes—leaf t such that Ft = Pt 4 F is an s-dimensional convex set. Wea
will show that F is an s—-face of P First observe that P c P, since each
point y P is the limit of a sequence {y } of points resolved at the yes-—
leaf t, and hence in the closed set P, Further F=Pnpn H, for some
supporting hyperplane H. Thus Ft = Pt NH and # 15 a supporting hyperplane

for Pt' Hence Ft is an s-face of Pt'

C(P))

The theorem now follows from the fact that P can have at most (

s—faces, and the fact that there are at most 2C(P yes—leaves. 0
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An Analysis of Two Heuristics for the Euclidean Traveling Salesman
Problem?

Jon Louis Bentley

James B. Saxe

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract -- In this paper we study the performance of the Nearest Neighbor and Greedy
heuristics for constructing traveling salesman tours of N cities (points) in the plane. OQur first
result is negative: we give a particular configuration of cities such that the ratio of heuristic tour
length to optimal is ©[(lg N)/{lg Ig N)], for both heuristics. We then show that if the cities are
constrained to lie within the unit square, then both tour lengths are O(V'N), which implies that
the tours are almost surely within a constant factor of optimal if the point sets are randomly
drawn from a uniform distribution. Simulation results show that Nearest Neighbor tours are
usually very close to optimal. Finally, we discuss several efficient implementations of the Nearest
Neighbor heuristic.

1. Introduction

The traveling salesman problem of N cities (points) in the plane calls for constructing a polygon
through the cities of minimum perimeter; Papadimitriou [1977] has shown that this problem is NP-
complete. Karp [1977] has given an asymptotically efficient atgorithm for producing near-optimal
fours, but his algorithm is difficult to code and has a high constant factor. In this paper we will
investigate the following two heuristics for constructing traveling salesman tours:

* The Nearest Neighbor Heuristic: Start at an arbitrary city, and always proceed to
the closest unvisited city; when all cities have been visited, return to the starting city.

« The Greedy Heuristic: Consider the (g) edges of the graph in increasing order of
length, and add each edge to the tour if it will not prohibit the current tour from being
extended fo a complete tour.

The performance of the Nearest Neighbor heuristic when applied to graphs satisfying the triangle
inequality has been studied by Rosenkrantz, Stearns and Lewis {1977); they showed that its tour
is never more than a logarithmic factor from optimal, and gave a family of graphs that exhibit this
behavior, They did not, however, consider the perfarmance of the heuristic on graphs induced
by paint sets, which are a proper subclass of the graphs they studied. In this paper we will study
the performance of the above heuristics on cities in the plane,

In Section 2 we discuss the efficacy of the tours produced by the two heuristics. We then turn
in Section 3 to efficient implementations of the Nearest Neighbor heuristic. Finally, conclusions
are offered in Section 4.
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