On Minimal 5-Chromatic Triangle-Free Graphs

David Avis

McGILL UNIVERSITY

ABSTRACT

It is shown that the minimum number of vertices in a triangle-free 5 -chromatic graph is at least 19.

Mycielski [5] has constructed a sequence of graphs that are triangle-free and k-chromatic ($k=1,2,3, \ldots$). If we denote by $f(k)$ the minimum number of vertices in a triangle-free k-chromatic graph, then this construction yields the bounds.

$$
f(k) \leqslant 2^{k}-2^{k-2}-1, \quad k=2,3,4 \ldots
$$

A nonconstructive theorem of Erdös [3] shows that in fact

$$
f(k)<c(k \log k)^{2} .
$$

For lower bounds, Chvátal [2] observes that Brook's theorem and the fact that $f(4)=11$ implies

$$
f(k) \geqslant\binom{ k+2}{2}-4
$$

He also shows that Mycielski's construction gives the unique 11 vertex graph with the required properties. For $f(5)$ these bounds give $17 \leqslant f(5) \leqslant$ 23. In this note we show that $f(5) \geqslant 19$.

Journal of Graph Theory, Vol. 3 (1979) 397-400
(C) 1979 by John Wiley \& Sons, Inc.

0364-9024/79/0003-0397\$01.00

Let \mathscr{G} denote the set of edge-maximal triangle-free graphs with 18 vertices. We show that all graphs in \mathscr{G} are 4 -colorable. For a graph G, let $\alpha(G)$ denote the size of the largest stable set and let $\Delta(G)$ denote the maximum degree in G. The proof relies on the following result from Ramsey theory [4, p. 16]: every triangle-free graph with 18 vertices has a stable set of size at least 6. In addition, Brook's theorem [4, p. 128] implies that a necessary condition for a graph G in \mathscr{G} to be 5 -chromatic is that $\Delta(G) \geqslant 5$.

We begin by eliminating the cases $\alpha(G) \geqslant 7$ and $\Delta(G) \geqslant 6$. We will often make use of the above mentioned fact that the Mycielski graph, M, is the unique 4 -chromatic triangle-free graph with 11 vertices. We will make use of the labeling and coloring of M given in Figure 1.

Lemma 1. If $G \in \mathscr{G}$ and $\alpha(G) \geqslant 7$, then G is 4 -colorable.
Proof. Let A be a stable set of maximum cardinality in G. We may assume that $|A|=7$ or else $G-A$ is 3 -colorable and we are done. Thus $|G-A|=11$ and again is either 3 -colorable or M. In the latter case we use the coloring of Figure 1 and color A as follows: if $x \in A$ and x is not adjacent to v_{1}, then x gets color 1 ; otherwise, x is adjacent to at most two of $\left\{v_{7}, v_{8}, \ldots, v_{11}\right\}$ and none of $\left\{v_{2}, v_{3}, \ldots, v_{6}\right\}$ and it gets the unused color.

FIGURE 1. Mycielski graph with a 4 -coloring.

Lemma 2. If $G \in \mathscr{G}$ and $\alpha(G)=\Delta(G)=6$, then G is 4-colorable.
Proof. Let x be a vertex of degree 6 and let A denote the set of vertices given by x and its neighbors. As in Lemma 1, we need only consider the case when $G-A$ is M. Since $\alpha(G)=6, v_{1}$ must be adjacent to a neighbor y of x. Now y can be adjacent to at most two of $\left\{v_{7}, v_{8}, \ldots, v_{11}\right\}$ and none of $\left\{v_{2}, \ldots, v_{6}\right\}$. Since $\Delta(G)=6, v_{1}$ is adjacent to no other vertices in A. Thus y receives an unused color, the other neighbors of x all receive color 1 , and x can be suitably colored. I

Theorem 1. If $G \in \mathscr{G}$, then G is 4 -colorable.
Proof. By the preceding remarks and lemmas, we need only consider the case where $\alpha(G)=6$ and $\Delta(G)=5$. Let A be a stable set of cardinality 6 and let x be a vertex that is adjacent to the maximum number of vertices in A. It is easy to see that x must be adjacent to at least three vertices in A. Otherwise, since the edge-maximality of G implies that each pair of vertices in A has a common neighbor, G would have at least 21 vertices, a contradiction. Further, $G-A-\{x\}$ must be M. If it were not, it would be 3 -colorable, we could assign the fourth color to A, and x could always be legally colored since degree considerations ensure that it is adjacent to at most two vertices of M. Let k be the number of vertices in A adjacent to x, and let T be the set of vertices in A not adjacent to x. Now x must have a common neighbor with each of the $6-k$ vertices in T, but x can be adjacent to at most $5-k$ additional vertices. Therefore there exists some neighbor y of x that is adjacent to at least two vertices of T. But y is also in M and so y has degree at least 6 , a contradiction.

We have shown that the smallest triangle-free 4-chromatic graph has at least 19 vertices. We note that Christofides [1, p. 60] gives an erroneous example of a 5 -chromatic triangle-free graph with 16 vertices.

ACKNOWLEDGMENTS

This work was supported in part by NRC Grant No. A-3013 and in part by C.O.R.E., Université de Louvain, Belgium.

References

[1] N. Christofides, Graph Theory: An Algorithmic Approach. Academic, New York (1975).
[2] V. Chvátal, The minimality of the Mycielski graph. Graphs and Combinatorics. Springer-Verlag, Berlin (Lecture Notes in Mathematics 406) (1973) 243-246.
[3] P. Erdös, Graph theory and probability. Canad. J. Math. 11 (1959) 34-38.
[4] F. Harary, Graph Theory. Addison-Wesley, Reading, Mass. (1969).
[5] J. Mycielski, Sur le coloriage des graphes. Coll. Math. 3 (1955) 161-162.

