
Economic Theory manuscript No.
(will be inserted by the editor)

Enumeration of Nash Equilibria for Two-Player Games

David Avis · Gabriel D. Rosenberg ·
Rahul Savani · Bernhard von Stengel

Received: date / Accepted: date

Abstract This paper describes algorithms for finding all Nash equilibria of a two-
player game in strategic form. We present two algorithms that extend earlier work.
Our presentation is self-contained, and explains the two methods in a unified frame-
work using faces of best-response polyhedra. The first method is based on the known
vertex enumeration programlrs, for “lexicographic reverse search”. It enumerates the
vertices of only one best-response polytope, which determine a complementary face
in the other polytope. The second method is a modification of the knownEEEalgo-
rithm, for “enumeration of extreme equilibria”. We also describe a second, as yet not
implemented, variant that is space efficient. We discuss details of implementations of
the lrs-based and theEEE algorithm, and report on computational experiments that
compare the two algorithms, which show that both have their strengths and weak-
nesses.

Keywords Bimatrix game· Nash equilibrium· Linear programming· Complemen-
tarity

JEL Classification C72

David Avis
McGill University, School of Computer Science and GERAD, Montreal, Quebec H3A 2A7, Canada
E-mail: avis@cs.mcgill.ca

Gabriel D. Rosenberg
Yale Law School, New Haven, CT 06511, USA
E-mail: grosenberg@gmail.com

Rahul Savani (supported in part by EPSRC project EP/D067170/1)
University of Warwick, Dept. of Computer Science and DIMAP, Coventry CV4 7AL, United Kingdom
E-mail: R.S.J.Savani@warwick.ac.uk

Bernhard von Stengel
London School of Economics, Department of Mathematics, London WC2A 2AE, United Kingdom
E-mail: stengel@nash.lse.ac.uk

2

1 Introduction

This paper describes algorithms for finding all Nash equilibria of a two-player game.
These methods apply to games in strategic form, and have the potential to be extended
to other game descriptions, for example games in extensive form (discussed briefly
in Sect.9). We present two main algorithms, and some variants, that extend earlier
work. For both of the algorithms we give a variant that is space efficient, requiring
memory polynomial in the input size only, in order to produce a duplicate free output
list. As far as we know, these are the only known algorithms with this property. Our
presentation is self-contained, and explains the two methods in a unified framework
based on polyhedra.

The first method is based on the vertex enumeration programlrs (for “lexico-
graphic reverse search”) described in Avis and Fukuda (1992) and Avis (2000). The
extensions oflrs to finding Nash equilibria are here described for the first time in a
journal article. The second method is theEEE algorithm (for “enumeration of ex-
treme equilibria”) by Audet, Hansen, Jaumard, and Savard (2001), implemented in
exact arithmetic by Rosenberg (2005), and presented here in modified form. We also
give for the first time a geometric description of theEEEalgorithm in terms of facets
of polyhedra.

A Nash equilibrium is given by a mixed strategy for each player that is a best
response to the fixed strategy of the other player. According to the well-known “best
response condition” (Prop.1, due to Nash (1951)), this means that the pure strategies
in the support of the mixed strategy have maximal, and hence equal, expected payoff.
This defines linear equations and inequalities for the mixed strategy probabilities of
the other player. These are captured by a “best response polyhedron”, an approach
that has already been described by Vorob’ev (1958), Kuhn (1961), and Mangasarian
(1964), explained in detail in Sect.3. An equilibrium strategy of a player is a vertex
of his best response polyhedron, or a convex combination of such vertices, as char-
acterized in Prop.4 (Winkels (1979); Jansen (1981)). Hence, the Nash equilibria of
a two-player game can be found by enumerating all pairs of vertices of the two best
reponse polyhedra, and checking the equilibrium property, which gives theextreme
equilibria of the game.

A vertex enumeration program, such aslrs, enumerates all vertices of a polyhe-
dron specified by inequalities (see Sect.6). A straightforward enumeration of extreme
equilibria generates the vertices of both best response polyhedra and outputs the ver-
tex pairs that match as equilibria, as implemented by Canty (2003) and Savani (2005).

Here we describe a different approach, the basics of which have been outlined in
von Stengel (1998). This approach considers the vertices of only one best response
polyhedron, say for player 1. Each such vertexx is an equilibrium strategy of player 1
if and only if the “complementary” inequalities in the other polyhedron are tight, so
these equations determine a face of that polyhedron, called the “complementary face”
to x. (This complementary face is empty ifx is not part of an equilibrium, and a single
point if the equilibrium is isolated.) The approach thus considers the verticesx of one
best response polyhedron, and enumerates the verticesy of the complementary face
to x in the other polyhedron, which defines all extreme equilibria(x,y) of the game.
This may involve only a small number of verticesy of the second polyhedron and

3

thereby save computation time. One may use a preliminary run oflrs to choose the
first polyhedron judiciously.

The programs described in this paper use exact arithmetic with integers of ar-
bitrary precision, given integer or fractional payoffs as input. This avoids rounding
errors that can occur with floating-point arithmetic, and safely finds all equilibria even
when the game is degenerate. Fractional numbers in the input can be scaled to become
integers. The pivoting operations inlrs preserve integers in the linear programming
tableaus via “integer pivoting” (see Sect.5). This known technique is superior to
using fractions of integers (rational arithmetic) because their cancellation requires
greatest common divisor computations which tend to take the bulk of computation
time.

TheEEEapproach due to Audet et al. (2001) enumerates all equilibria by alter-
nately solving parameterized linear programs. It explores a binary search tree where
in each step, a pure strategy is selected and converted to a tight inequality in one of
the two best reponse polyhedra (which defines the binary choice). This ends when
all strategies have been fixed, or the corresponding face of the polyhedron is empty,
detected as an infeasible linear program. Rosenberg (2005) has implemented this ap-
proach with integer pivoting instead of floating-point arithmetic as done by Audet et
al. (2001). We present variants ofEEE that give some speedup for degenerate games.

In Sect.2, we recall the best response condition. For nondegenerate games, this
gives rise to an algorithm for finding all equilibria by enumerating all possible sup-
ports. Section3 describes the best response polyhedra that are the basis of our al-
gorithms. Degenerate games are discussed in Sect.4. The possibly infinite set of all
equilibria in a degenerate game can be described by “maximal Nash subsets”. These
are polytopes obtained from the finite set of extreme equilibria. TheClique Algo-
rithm 2 shows how to determine these maximal Nash subsets, as well as their non-
disjoint unions that define connected components of Nash equilibria. An extreme
equilibrium is a pair of vertices of the best response polyhedra. Vertices are rep-
resented algebraically by linear programming tableaus or “dictionaries”. We recall
these standard techniques in Sect.5 in order to explain the details of our algorithms,
as well as the less known method of “integer pivoting” which is economical for keep-
ing arbitrary precision. In Sect.6, we explain our first algorithm that uses thelrs
program for vertex enumeration. In Sect.7, we explain the second algorithmEEE.
We report experimental results in Sect.8. A number of possible extensions, and open
problems, are discussed in Sect.9.

2 Bimatrix games and the best response condition
s-bimatrix

We use the following notation throughout. Let(A,B) be a bimatrix game, whereA and
B arem×n matrices of payoffs to the row player 1 and column player 2, respectively.
Let M be the set of thempure strategies of player 1 (the row player), and letN be the
set of then pure strategies of player 2 (the column player). It is useful to assume that
these sets are disjoint, as in

M = {1, . . . ,m}, N = {m+1, . . . ,m+n}. (1) defMN

4

The payoff matricesA andB belong toRM×N, soA has entriesai j andB has entries
bi j for i ∈ M and j ∈ N. WhenA andB define the input to an algorithm for finding
all Nash equilibria, the payoffs are assumed to be rationals, or, by suitable scaling,
integers.

A mixed strategy of player 1 is a vectorx of probabilitiesxi for playing rows
i ∈ M, so x ∈ RM; similarly, a mixed strategy of player 2 is a probability vector
y∈ RN. All vectors are column vectors. Thesupportof a mixed strategy is the set of
pure strategies that have positive probability. A vector or matrix with all components
zero is denoted by0, and a vector of all ones by1. Inequalities likex≥ 0 between
two vectors hold for all components.

A best responseto the mixed strategyy of player 2 is a mixed strategyx of
player 1 that maximizes his expected payoffx>Ay. Similarly, a best responsey of
player 2 tox maximizes her expected payoffx>By. A Nash equilibriumis a pair(x,y)
of mixed strategies that are best responses to each other.

The following well-known proposition states that a mixed strategyx is a best
response to an opponent strategyy if and only if all pure strategies in its support are
pure best responses toy. The same holds with the roles of the players exchanged.

Proposition 1 (Best response condition, Nash (1951))Letx andy be mixed strate-p-bestresponse

gies of player1 and2, respectively. Thenx is a best response toy if and only if for all
i ∈M,

xi > 0 =⇒ (Ay)i = u = max{(Ay)k | k∈M}, (2) bestresp

andy is a best response tox if and only if for all j ∈ N,

y j > 0 =⇒ (B>x) j = v = max{(B>x)k | k∈ N}. (3) bestrespy

Proposition1 is useful because it states a finite condition, which is easily checked,
about all pure strategies of the player, rather than about the infinite set of all mixed
strategies. It can also be used to find all Nash equilibria (see Algorithm1 below),
by trying out the different possible supports of mixed strategies. All pure strategies
in the support must have maximum, and hence equal, expected payoff to that player.
This leads to equations for the probabilities of the opponent’s mixed strategy. These
linear equations may not have full rank. To avoid this complication, we apply this
algorithm only tonondegenerategames, defined as follows.

d-nondegenerate Definition 1 A two-player game is callednondegenerateif no mixed strategy with
support of sizek has more thank pure best responses.

The following observation is is immediate from Prop.1.

Proposition 2 In any Nash equilibrium(x,y) of a nondegenerate bimatrix game,x
andy have supports of equal size.

The following “support enumeration algorithm” has been described by Dickhaut
and Kaplan (1991).

5

a-suppenum Algorithm 1 (Equilibria by support enumeration) Input: A nondegenerate bima-
trix game.Output: All Nash equilibria of the game.Method: For eachk = 1, . . . ,
min{m,n} and each pair(I ,J) of k-sized subsetsI of M andJ of N, respectively, solve
the equations∑i∈I xibi j = v for j ∈ J, ∑i∈I xi = 1, ∑ j∈J ai j y j = u for i ∈ I , ∑ j∈J y j = 1,
and check thatx≥ 0, y≥ 0 and that (2) holds forx and (3) for y.

The linear equations considered in this algorithm may not have solutions, which
means that there is no equilibrium for that support pair. Nonunique solutions occur
only for degenerate games, because a linear dependency allows to reduce the support
of a mixed strategy. Degenerate games are discussed in Sect.4 below.

3 Equilibria via labeled polytopes
s-poly

In order to identify the possible supports of equilibrium strategies, one can use “best
response polytopes”. These express directly that best-response payoffs are not only
equal to each other, but also at least as large as the expected payoffs for pure strategies
that are not in the support.

We first recall some notions from the theory of (convex) polyhedra. Anaffine
combinationof points z1, . . . ,zk in some Euclidean space is of the form∑k

i=1ziλi

whereλ1, . . . ,λk are reals with∑k
i=1 λi = 1. It is called aconvex combinationif λi ≥ 0

for all i. A set of points isconvexif it is closed under forming convex combinations.
Given points areaffinely independentif none of these points is an affine combination
of the others. A convex set hasdimensiond if and only if it hasd+1, but no more,
affinely independent points.

A polyhedronP inRd is a set{z∈Rd |Cz≤ q} for some matrixC and vectorq. It
is calledfull-dimensionalif it has dimensiond. It is called apolytopeif it is bounded.
A faceof P is a (possibly empty) set{z∈ P | c>z= q0} for somec∈ Rd, q0 ∈ R so
that the inequalityc>z≤ q0 holds for allz in P. A vertexof P is the unique element
of a 0-dimensional face ofP. An edgeof P is a one-dimensional face ofP. A facet
of a d-dimensional polyhedronP is a face of dimensiond−1. It can be shown that
any nonempty faceF of P can be obtained by turning some of the inequalities that
defineP into equalities, which are then calledbinding inequalities. That is,F = {z∈
P | ciz= qi , i ∈ I}, whereciz≤ qi for i ∈ I are some of the rows inCz≤ q. A facet is
characterized by a single binding inequality that isirredundant, that is, the inequality
cannot be omitted without changing the polyhedron. Ad-dimensional polyhedronP
is calledsimpleif no point belongs to more thand facets ofP, which is true if there
are no special dependencies between the facet-defining inequalities.

Thebest response polyhedronP for player 1 is the set of player 1’s mixed strate-
giesx together with the “upper envelope” of expected payoffs (and any larger payoffs)
v to player 2. The best response polyhedronQ for player 2 is defined analogously:

P = {(x,v) ∈ RM×R | x≥ 0, 1>x = 1, B>x≤ 1v},
Q = {(y,u) ∈ RN×R | Ay≤ 1u, y≥ 0, 1>y = 1} .

(4) hedra

As an example, consider the3×2 bimatrix game(A,B) with

6

A =




3 3
2 5
0 6


 , B =




3 2
2 6
3 1


 . (5) example

In this example,Q is the set of triples(y4,y5,u) that fulfill 3y4+3y5≤ u, 2y4+5y5≤
u, 0y4 +6y5 ≤ u, y4 ≥ 0, y5 ≥ 0, andy4 +y5 = 1. The left picture in Fig.1 showsQ
for 0≤ y4 ≤ 1 which uniquely determinesy5 as1−y4. The circled numbers indicate
the facets ofQ, which are either strategiesi ∈M of the other player or own strategies
j ∈N. Facets 1, 2, 3 of player 1 indicate his best responses together with his expected
payoffu. For example, strategy 1 is a best response wheny4≥ 2/3. Facets 4 and 5 of
player 2 tell when the respective own strategy has probability zero, namelyy4 = 0 or
y5 = 0.

y

Q

u

4

10

0

2

3

5
6

4

3

2
1

5 a

d
e

c
0

b

(back)

(bottom)

(left)

1x

x

x

P

3

2

12

5
4

3

0

r
p

s

q

Q

y5

y
4

1

2

4

5

3

Fig. 1 Left: Best reponse polyhedronQ for (5). Bottom right: Corresponding poly-
topeQ, which has vertices0, p,q, r,s. Top right: Best response polytopeP with ver-
tices0,a,b,c,d,e. f-upper

We say a point(y,u) of Q haslabelk∈M∪N if the kth inequality in the definition
of Q is binding, which fork = i ∈ M is the ith binding inequality∑ j∈N ai j y j = u
(meaningi is a best response toy), and fork = j ∈N is the binding inequalityy j = 0.
In the example,(y4,y5,u) = (2/3,1/3,3) has labels 1 and 2. The labels of a point

7

(x,v) of P are defined correspondingly: It has labeli in M if xi = 0, and labelj in N
if ∑i∈M bi j xi = v.

With these labels, an equilibrium is a pair(x,y) of mixed strategies so that with
the corresponding expected payoffsv andu, the pair((x,v),(y,u)) in P×Q is com-
pletely labeled, which means that every labelk∈M∪N appears as a label of(x,v) or
of (y,u). This is equivalent to the best response conditions (2) and (3), which say that
in equilibrium, every pure strategy is a best response or has probability zero.

The constraints (4) definingP andQ can be simplified by eliminating the payoff
variablesu andv, which works if these are always positive. For that purpose, assume
that

A andB> are nonnegative and have no zero column. (6)ABpos

We could simply assumeA> 0 andB> 0, but it is useful to admit zero matrix entries
(e.g. as in the identity matrix). Even negative entries are possible as long as the upper
envelope remains positive; for example,a34 (currently zero) in (5) could be negative,
as Fig.1 shows.

We changeP by dividing each inequality∑i∈M bi j xi ≤ v by v, wherev is positive
by (6). This gives the new inequality∑i∈M bi j (xi/v)≤ 1, where we treatxi/v as a new
variable that we call againxi . The resulting polyhedron isP. Similarly, Q is replaced
by Q by dividing each inequality inAy≤ 1u by u. Then

P = {x∈ RM | x≥ 0, B>x≤ 1},
Q = {y∈ RN | Ay≤ 1, y≥ 0} .

(7) defPQ

It is easy to see that (6) implies thatP andQ are full-dimensional polytopes, unlike
P andQ. In effect, we have normalized the expected payoffs to be 1, and dropped the
conditions1>x = 1 and1>y = 1. Nonzero vectorsx∈ P andy∈Q are multiplied by
v = 1/1>x andu = 1/1>y to turn them into probability vectors. The scaling factorsv
andu are the expected payoffs to the other player.

The setP is in one-to-one correspondence withP−{0} with the map(x,v) 7→
x · (1/v). Similarly, (y,u) 7→ y · (1/u) defines a bijectionQ→ Q−{0}. These bi-
jections are not linear, but are known as “projective transformations” (for a visual-
ization see von Stengel (2002, Fig. 2.5)). They preserve the face incidences since
a binding inequality inP (respectively,Q) corresponds to a binding inequality in
P (respectively,Q) and vice versa. In particular, points have the samelabels de-
fined by the binding inequalities, which are some of them+ n inequalities that de-
fine P and Q in (7). An equilibrium is then defined by a completely labeled pair
(x,y) ∈ P×Q−{(0,0)}; for brevity, we say(x,y) “is” a Nash equilibrium, with the
understanding thatx andy have to be rescaled to become probability vectorsx·1/1>x
andy·1/1>y, respectively.

For the example (5), the polytopesP andQ are shown on the right in Fig.1. Any
point x in P has at most three labels, and anyy in Q has at most two labels, and only
vertices have that many labels. The following three completely labeled vertex pairs
define the Nash equilibria of the game: The pure strategy equilibrium(a,s), and the
mixed equilibria(b, r) and(d,q). For example, vertexb= (2/7,1/14,0)> of P has la-
bels3, 4, 5, and vertexr = (1/6,1/9)> of Q has labels1 and2, so(b, r) is completely
labeled. This corresponds to the mixed strategy pair((2/3,1/3,0)>,(2/3,1/3)>).
The verticesc andeof P, andp of Q, are not part of an equilibrium.

8

r-label Remark 1A bimatrix game(A,B) is nondegenerate if the polytopesP andQ in (7)
have the property that no point inP has more thanm labels, and no point inQ has
more thann labels.

Proof. If x∈P andx has support of sizek andL is the set of labels ofx, then|L∩M|=
m−k, so|L|> m impliesx has more thank best responses inL∩N. ut

If (A,B) is nondegenerate,P andQ are simple polytopes, because a point ofP,
say, that is on more thanm facets would have more thanm labels. Even ifP andQ
are simple polytopes, the game can still be degenerate if thedescriptionof P or Q is
redundant in the sense that some inequality can be omitted, but nevertheless is some-
times binding. This occurs if a player has a pure strategy that is weakly dominated
by or payoff equivalent to some other mixed strategy. Redundant inequalities of this
kind, or non-simple polytopes, do not occur for generic payoffs. A strictly dominated
strategy may occur generically, but it defines a redundant inequality that is never
binding, so this does not lead to a degenerate game.

If the game is nondegenerate, only vertices ofP can havem labels, and only
vertices ofQ can haven labels. Otherwise, a point ofP with m labels that is not a
vertex would be on a higher-dimensional face, and a vertex of that face, which is a
vertex ofP, would have additional labels. Consequently, only vertices ofP andQ
have to be inspected as possible equilibrium strategies.

4 Degenerate games
s-degen

In a degenerate game, a vertex ofP, for example, may have more thanm labels. As
an example, consider the3×2 game

A =




3 3
2 5
0 6


 , B =




3 3
2 6
3 1


 , (8) degen

which agrees with (5) except thatb15 = 3. The polytopeQ for this game is the same
as before, shown on the right in Fig.2. The polytopeP, shown in the left in Fig.2,
differs fromP in Fig. 1 only in that vertexb has merged witha.

Degenerate games may have infinite sets of equilibria. In the example (8), vertex
a of P, which represents the pure strategy(1,0,0)> of player 1, together with the
entire edge ofQ that joins verticesr ands, defines a component of Nash equilibria,
where player 2 plays some mixed strategy(y4,1−y4) for 2/3≤ y4 ≤ 1.

The following central observation characterizes all Nash equilibria of a general
bimatrix game(A,B) with P andQ as defined in (7).

l-face Proposition 3 For K,L⊆M∪N, let

P(K) = {x∈ P | ∀i ∈ K∩M : xi = 0, ∀ j ∈ K∩N : (B>x) j = 1}
Q(L) = {y∈Q | ∀i ∈ L∩M : (Ay)i = 1, ∀ j ∈ L∩N : y j = 0} (9) PKQL

Then(x,y) ∈ P×Q−{0,0} is a Nash equilibrium if and only if there are setsK and
L so thatK∪L = M∪N and(x,y) ∈ P(K)×Q(L).

9

d
e

c
0

a

(back)

(bottom)

(left)

1x

x

x3

2

P

12

5

4

3

0

r
p

s

q

Q

y5

y
4

1

2

4

5

3

Fig. 2 Best reponse polytopes for the degenerate game (8). f-degen

Proof. Given K andL so thatK ∪ L = M ∪N, any (x,y) ∈ P(K)×Q(L) is by (9)
completely labeled. Ifx = 0, thenB>x < 1, so x has no label inN (i.e., K ⊆ M),
which impliesN ⊆ L and thereforey = 0 (and thusAy < 1 and L = N, K = M);
similarly, y = 0 impliesx = 0. However, the case(x,y) = (0,0) is excluded, so(x,y)
is a Nash equilibrium.

Conversely, given a Nash equilibrium(x,y) in P×Q−{0,0}, it belongs toP(K)×
Q(L) whereK andL are the sets of labels ofx andy, respectively. ut

Clearly, the setP(K) in (9) is a face ofP, andQ(L) is a face ofQ. By Prop.3, the
set of Nash equilibria is the union of productsP(K)×Q(L) of faces of the polytopes
P andQ. The following proposition, due to Winkels (1979) and Jansen (1981), char-
acterizes these products in terms of pairs of vertices ofP andQ. We writeconvU for
the convex hull of a setU .

p-winkels Proposition 4 Let(A,B) be a bimatrix game, and(x,y)∈P×Q. Then(x,y) is a Nash
equilibrium of(A,B) if and only if there is a setU of vertices ofP−{0} and a setV
of vertices ofQ−{0} so thatx∈ convU andy∈ convV, and every(u,v) ∈U×V is
completely labeled.

Proof. By Prop.3, any Nash equilibrium(x,y) belongs toP(K)×Q(L) for suitable
K,L with K∪L = M∪N. LetU andV be the sets of vertices ofP(K) andQ(L), which
are also vertices ofP andQ, respectively. ThenP(K) = convU andQ(L) = convV,
which shows the “only if” part.

Conversely, given vertex setsU andV so that every(u,v) ∈U×V is completely
labeled, letK be the set of labels common to allu∈U , and letL be the set of labels
common to allv∈V. ThenK ∪L = M∪N, because otherwise there would be some
label that was missing from someu ∈U and from somev ∈ V, so that(u,v) is not
completely labeled, contrary to the assumption. ThenconvU ⊆ P(K) andconvV ⊆
Q(L), which implies the “if” part by Prop.3. ut

Proposition4 shows that the set of all Nash equilibria can be completely de-
scribed by the (finitely many) Nash equilibria that are vertex pairs ofP×Q. These

10

are also calledextremeequilibria in the sense that they are not convex combinations
of other equilibria. For example, the two extreme equilibria(a,s) and (a, r) of the
game (8) represent the component{a}×conv{r,s} of equilibria mentioned above.

Consider the bipartite graphR on the vertices ofP−{0} and Q−{0} whose
edges are the completely labeled vertex pairs(x,y), which are the extreme equilibria
of (A,B). The maximal “cliques” (maximal complete bipartite subgraphs) ofRof the
formU×V then define sets of Nash equilibriaconvU×convV, as in Prop.4, whose
union is the set of all Nash equilibria. These sets are called “maximal Nash subsets”
(Millham 1974). They are also the maximal sets of the formX×Y so that any two
Nash equilibria(x,y) and(x′,y′) in X×Y areinterchangeablein the sense that then
(x′,y) and(x,y′) are equilibria as well, which is a property of equilibria in zero-sum
games.

x1

x2

x3

x4

y1 y2 y3 y4

(x1,y1)
(x1,y2)

(x2,y2)

(x3,y2)
(x3,y3)

(x2,y3)

(x4,y4)

11

11

11

1

0

0

00

0

0

0 0 0

Fig. 3 Left: Incidence matrix of a bipartite graphR of extreme equilibria, with
its maximal cliques. Right: Geometry of the two equilibrium components. One
of them is the union of the three maximal Nash subsets{x1} × conv{y1,y2},
conv{x1,x2,x3}× {y2}, andconv{x2,x3}× conv{y2,y3}, and the other consists of
a single vertex pair(x4,y4). f-bipart

Maximal Nash subsets may be nondisjoint, as in the abstract example in Fig.3,
or the game in (17) below. The inclusion-maximal connected sets of Nash equilibria
are usually called the (topological) equilibriumcomponents. The concept of “stable”
equilibria applies to such components; see Kohlberg and Mertens (1986).

The set of extreme equilibria suffices to describe all equilibrium components as
well as their maximal Nash subsets, because if two Nash subsets are not disjoint, they
have a common vertex pair (because by Prop.3, both Nash subsets are products of
faces ofP andQ, and so is their intersection). Hence, equilibrium components are
obtained as connected components of the bipartite graphR above, which are found
by a straightforward graph search algorithm (e.g., Cormen et al. 2001).

a-comp Algorithm 2 (Clique– Equilibrium components) Input: All pairs (x,y) of extreme
equilibria.Output: All components of Nash equilibria, given as unions of maximal
Nash subsets.Method:Consider the set of extreme equilibria as a bipartite graphR.
Each connected componentC of Rdefines an equilibrium component; enumerate the
maximal cliques ofC, which define the maximal Nash subsets.

11

All maximal complete bipartite subgraphs ofR can be found by a variant of the
elegant clique enumeration algorithm by Bron and Kerbosch (1973). An implementa-
tion of theCliqueAlgorithm 2 by von Stengel (1998) is used in the computer systems
of McKelvey, McLennan and Turocy (2007), Canty (2003), and Savani (2005).

In the rest of paper, we are concerned with algorithms for finding all extreme
equilibria, which define the input for theCliqueAlgorithm 2.

5 Vertices and pivoting
s-intpiv

We consider algorithms for enumerating the extreme equilibria of a bimatrix game.
These are vertex pairs of polyhedra derived from the payoff matrices. The algorithms
use standard techniques for representing polyhedra as they are known from linear
programming. For easy reference and in order to explain the details of our algorithms,
we summarize these methods in this section.

The inequalities defining a polyhedron are converted to equations with the help of
nonnegativeslack variables, and vertices are represented asbasic feasible solutions
to these equations. Moving from one vertex to another along an edge of the polyhe-
dron is done by the algebraic operation ofpivoting. Pivoting is used by the simplex
algorithm for solving a linear program, and by the algorithm of Lemke and Howson
(1964) for finding one equilibrium of a bimatrix game.

Consider a polyhedron such asQ= {y∈Rn |Ay≤ q, y≥ 0} for anm×n matrixA
and m-vector q. Theny ∈ Q if and only if there exists a vector of slack variables
r ∈ Rm so that

Ay+ r = q, y≥ 0, r ≥ 0. (10) slacks

The system (10) is of the form
Cz= q (11) tabl

for a matrixC, right-hand sideq, and a vectorzof nonnegative variables. The matrix
C has full row rank, so thatq always belongs to the space spanned by the columnsCj

of C. A basisβ is given by a basis{Cj | j ∈ β} of this column space, so that the square
matrix Cβ formed by these columns is invertible. The correspondingbasic solution
is the unique vectorzβ = (zj) j∈β with Cβ zβ = q, where the variableszj for j in β
are calledbasic variables, andzj = 0 for all nonbasicvariableszj for j 6∈ β , which
implies (11). If this solution also fulfillsz≥ 0, then the basisβ is calledfeasible. If β
is a basis for (11), then the corresponding basic solution can be read directly from the
equivalent systemC−1

β Cz= C−1
β q, called atableau, because the columns ofC−1

β C for
the basic variables form the identity matrix. The tableau and thus (11) is equivalent
to the system, also called adictionary,

zβ = C−1
β q− ∑

j 6∈β
C−1

β Cjzj (12) dict

which shows how the basic variables depend on the nonbasic variables.
The basic feasible solutions to (11) represent the vertices of the polyhedron, for

the following reason. Setting any variableszj in (11) to zero defines a face of the
polyhedron. If these variables are the nonbasic variables of a basic feasible solution,

12

that face contains only a single point of the polyhedron, which is therefore a vertex.
Conversely, consider a vertex of the polyhedron, given by a vectorz in (11). The
vertex is a zero-dimensional face, defined by the binding inequalities that correspond
to the zero components ofz. The positive components ofz define linearly indepen-
dent columns ofC, because otherwise it is easy to see that there would be additional
positive solutions for the same binding inequalities, so that the face would not be
zero-dimensional. The linearly independent columns can be extended with suitable
additional columnsCj (for which zj = 0) to form a basis. In adegeneratebasic fea-
sible solution, some basic variables are zero; the respective vertex can typically be
represented by more than one degenerate basis. If all basic variables are positive, the
basis is callednondegenerate.

We use algorithms that move from one vertex of a polyhedron to another vertex
along an edge. This corresponds to a change of the basisβ in (12) known aspivoting.
Thereby, a nonbasic variablezj for some j not in β entersand a basic variablezi for
somei in β leavesthe set of basic variables. The pivot step is possible if and only if
the coefficient ofzj in the ith row of the current tableau is nonzero, and is performed
by solving theith equation forzj and then replacingzj by the resulting expression in
each of the remaining equations.

For a given entering variablezj , the leaving variable is chosen to preserve feasi-
bility of the basis. Let the components ofC−1

β q beqi and ofC−1
β Cj beci j , for i ∈ β .

Then the largest value ofzj such that in (12) zβ = C−1
β q−C−1

β Cjzj is nonnegative is
given by

min{qi/ci j | i ∈ β , ci j > 0}. (13) ratio

This is called aminimum ratio test. If i in β achieves the minimum in (13), thenzi

can be chosen as a leaving variable. After pivoting, the new basis isβ ∪{ j}−{i}.
The minimum in (13) may be zero, if the current basisβ is degenerate andqi = 0

for somei ∈ β with ci j > 0. Then the pivoting step changes the basis but not the basic
feasible solutionz, so the corresponding vertex stays the same.

If the minimum in (13) is not unique, two (or more) variables can leave the basis,
but only one variable does. The other variable stays basic and becomes zero after the
pivoting step, so that the new basis is degenerate.

Thelexicographic methodextends the minimum ratio test (13) in such a way that
the leaving variable is always unique, even in degenerate cases. The method simulates
an infinitesimal perturbation of the right-hand sideq of the given linear system (11)
and works as follows. For anyε ≥ 0, consider the system

Cz= q+(ε1, . . . ,εm)> (14) perturb

which is equal to (11) for ε = 0 and which is aperturbedsystem forε > 0. Let β be
a basis for this system with basic solution

zβ = C−1
β q+C−1

β · (ε1, . . . ,εm)> = q+C−1
β · (ε1, . . . ,εm)> (15) lexico

andzj = 0 for j 6∈ β . It is easy to see thatzβ is positive for all sufficiently smallε if
and only if all rows of the matrix[q,C−1

β] arelexico-positive, that is, the first nonzero
component of each row is positive. Thenβ is called alexico-positivebasis. This holds

13

in particular forq > 0 whenβ is a nondegenerate basis for the unperturbed system.
BecauseC−1

β has no zero row, any feasible basis for the perturbed system is non-
degenerate. In consequence, the leaving variable for the perturbed system is always
unique. It is determined by thelexico-minimum ratio testwhich is a straightforward
extension of (13) (see Chv́atal (1983) or von Stengel (2002, p. 1741)). Pivoting with
the lexico-minimum ratio test moves from one lexico-positive basis to another. It uses
only the entries ofC−1

β and does not need an actual perturbation with positiveε.
Our algorithms use exact arithmetic withintegersof arbitrary precision, which

avoids rounding errors of floating-point arithmetic. We useinteger pivoting, which
is superior to using fractions of integers (rational arithmetic) because their cancella-
tion requires greatest common divisor computations which tend to take the bulk of
computation time. In integer pivoting, the dictionary (12) is stored with all numbers
multiplied by the determinant ofCβ , so that (by Cramer’s rule) these numbers are in-
tegers if the entries ofC are integers; the determinant is stored separately. Pivoting is
done by row operations on the system followed by a division by the old determinant,
which always produces integers (see Avis 2000, Sect. 7 or Azulay and Pique 2001).
In that way, the dictionary entries are kept from growing indefinitely.

6 Finding all extreme equilibria using vertex enumeration
s-lrs

We first describe a straightforward method to generate all extreme equilibria, which
define the input to the “Clique” Algorithm2.

a-vertenum Algorithm 3 (Enumerating and matching vertices of both polytopes) Input: Bi-
matrix game(A,B). Output: All extreme equilibria(x,y). Method: Enumerate all
verticesx of P−{0} andy of Q−{0} in (7), and output every completely labeled
pair (x,y).

Enumerating all vertices of polytope is an important, well-studied and difficult
problem in polyhedral computation. It is still unknown if it is possible to do this
efficiently in general, i.e., in time polynomial in both the input and output size. Two
basic ways to solve this problem are by the double description method (see Motzkin et
al. (1953), Fukuda and Prodon (1995)) and by pivoting (see Chvátal (1983), Avis and
Fukuda (1992)). Both methods have their strengths and weaknesses, as is discussed
in detail in Avis et al. (1997). As either method may be used for Algorithm3, we give
a few remarks here.

Double description methods tend to work well for highly degenerate polyhedra,
especially those with relatively few vertices. These polyhedra cause pivoting methods
to behave very badly. A drawback is that a large amount of memory may be required
for intermediate steps, even when the output size is small. When the output size is
large, this can cause the program to run out of memory. We remark that the polytopes
P andQ may have as many as(m+n)bm/2c and(m+n)bn/2c vertices, respectively.

General pivoting pivoting methods may use large amounts of memory also, but
this problem has been eliminated in Avis and Fukuda’s (1992)reverse searchalgo-
rithm. This uses space proportional only to the input size, i.e.O(mn), and produces

14

the output as a stream that need not be saved, or can be saved off-line. These proper-
ties will be exploited in thelrsNashAlgorithm 4 to be presented later. The problems
associated with degenerate polyhedra have been overcome to some extent in thelex-
icographic reverse searchalgorithmlrs (Avis 2000; 2006).

Consider the polytopeP as defined in (7). It has a known vertex0, which is the
unique point ofP at which the linear objective functionx 7→ −1>x is maximized. The
simplex algorithm for maximizing this linear function computes from any vertex ofP
a path of pivoting steps to0. With a deterministic pivoting rule, that path is unique. In
lrs, that pivoting rule chooses the variable with the least index (i.e., smallest subscript)
that improves the objective function as entering variable, and the leaving variable via
the lexicographic rule described after (15). (In contrast, the earlierreverse searchby
Avis and Fukuda (1992) used Bland’s least-index rule for the leaving variable.)

P

b d

0

c ea

a

d
e

c

b

0

P

Fig. 4 Left: Tree of simplex steps for maximizing−1>x on the polytopeP for the
example (5). Right: The corresponding reverse search tree. f-lrsP

The unique paths of simplex steps from the vertices ofP to 0 define a tree with
root 0. For the polytopeP resulting from the example (5), as in the top right picture
of Fig. 1, that tree is shown on the left in Fig.4. The lrs algorithm explores this tree
by traversing the edges in the reverse direction using a depth-first search, which in
the example outputs the vertices in the order0,a,c,b,d,e. For a given vertexu of P,
the childrenv of u in the tree are found by considering possible reverse pivots fromu
to v and then checking if the simplex rule would actually move fromv to u.

The simplex method moves from basis to basis, but several degenerate bases may
represent the same vertex, which should be output only once. For a given vertex, it is
straightforward to determine if a given basisβ that represents it is lexicographically
smallest, that is, there is no basisβ ′ representing the vertex withj ∈ β ′−β and j < i
for all i ∈ β − β ′ (Avis 2000, Prop. 5.1). Moreover, that lexicographically smallest
basis is also lexico-positive (Avis 2000, Prop. 5.2). The vertex is only output when
this lexicographically smallest basis is encountered, so there are no duplicate vertices
in the output list.

When usinglrs for enumerating the verticesx of P (and similarly ofQ) in Al-
gorithm 3, the missing labelsk of x can be identified from the positive slack vari-

15

ables (which are only visible asxk > 0 whenk ∈ M, but not whenk ∈ N) via the
printslack option of lrs. This allows a straightforward implementation of Algo-
rithm 3 with lrs, which is used in the website of Savani (2005). For each vertex, its
set of labels is stored as a pattern ofm+n bits. For each vertexx of P, the matching
verticesy of Q are searched linearly to find the equilibria(x,y). If P has p andQ
hasq vertices, this matching process takes timeO(pq), but it tends to be negligible
in comparison to enumerating the vertices in the first place, unlessp andq are very
large. The space required is proportional top+ q, the output size of the two vertex
enumeration problems, both of which must be completely solved.

The following algorithm has several advantages over Algorithm3. Firstly it re-
quires that only one of the two vertex enumeration problems needs to be completely
solved. SinceP and Q need not be related in any way, one of them may well be
easier than the other in terms of vertex enumeration. Secondly, the new algorithm re-
quires only memory proportional to the input sizeO(mn) rather than the output size
O(p+q), which as we saw may be super-exponential inmandn. Thirdly the equilib-
ria are produced as as a stream while the vertex enumeration is being performed, so
useful output may be obtained even when a complete enumeration of all equilibria is
not tractable. Fourthly, it does not require a separate matching process.

The lrsNashAlgorithm 4 enumerates the verticesx of only one polytope, sayP.
The setK of labels ofx defines a setL = (M∪N)−K of labels missing fromx that a
vertexy of Q must have in order to obtain an equilibrium(x,y). The labels inL define
the faceQ(L) of Q according to (9). If the game is nondegenerate, then, by Remark1,
|K| = m and|L| = n andQ(L) is either empty or a single vertex ofQ. If the game is
degenerate, then it is possible that|L| < n so thatQ(L) may be a polytope of higher
dimension, although typically still of much smaller dimension thanQ. If Q(L) is not
empty, it has a vertex that can be used as a starting point for enumerating its vertices
with lrs.

a-singlepol Algorithm 4 (lrsNash) Input: Bimatrix game(A,B). Output:All extreme equilibria
(x,y). Method:For each vertexx of P−{0} and setL of labels missing fromx,
(a) determine whetherQ(L) is empty or else find a vertex ofQ(L), and then
(b) enumerate the verticesy of Q(L) and output(x,y).

The lrsNashAlgorithm 4 is implemented as the methodnash of the lrs program
(Avis 2006). We explain the implementation of part (a), where we assume some fa-
miliarity with linear programming terminology (see, for example, Chvátal (1983)). A
standard way to solve (a) is the phase-1 simplex method. However, we use a special-
ized approach which is adapted to the use oflrs for enumerating the vertices ofP and
therefore very fast.

We distinguish two types of dictionaries. Afull dictionaryas in (12) is an equiva-
lent way of representing all linear constraints that defineQ. The corresponding basis
does not have to be feasible. In areduced dictionary, some nonbasic variables are
fixed at zero. The corresponding columns are omitted, so the reduced dictionary no
longer represents the full information aboutQ. It may happen that a row of the re-
duced dictionary has all coefficients and right-hand side zero (so the basic variable is

16

zero); that row is then omitted. (A zero row cannot appear in a full dictionary because
the system has full row rank.)

A vertexx of P defines a setL of missing labels. We first create a full dictionary
where as many elements ofL as possible become nonbasic variables (we identify the
variables of the dictionary with the elements ofM∪N). This is done by starting with
some full dictionary and pivoting iteratively a basic variable inL out of the basis
using any entering column that does not belong toL. The pivot element can be any
nonzero coefficient because the dictionary does not have to be feasible. LetD(L) be
any full dictionary so that the nonbasic variables contain a maximal subset ofL (often
L itself).

When usinglrs to enumerate the verticesx of P (with missing label setL), the
next vertexx′ (with missing label setL′) is often adjacent tox. In that case, the full
dictionaryD(L′) is usually quickly obtained fromD(L). Moreover,lrs keeps a cache
for storing previous verticesx to speed up backtracking, andlrsNashalso caches
the corresponding full dictionariesD(L). This creates the main speedup compared to
using a standard phase-1 simplex method for part (a) of thelrsNashAlgorithm 4.

After obtaining a full dictionaryD(L) (which is saved for finding the next dic-
tionaryD(L′) as described), it is converted to a reduced dictionary by eliminating all
columns that belong toL, and afterwards omitting any zero rows, which may include
further elements ofL. Suppose some element ofL is basic in the reduced dictionary.
Then in that row, all coefficients of nonbasic variables (none of which belongs toL)
are zero, because otherwise the basic variable could have been pivoted out. Hence the
basic variable is always equal to the constant in that row, which is nonzero (otherwise
the entire row would have been omitted), and the setQ(L) is empty, which com-
pletes (a). Hence, we can assume that the reduced dictionary has no variable inL, so
that the set of its feasible solutions isQ(L).

The nondegenerate case is that|L|= n and the reduced dictionary has no nonbasic
columns at all. ThenQ(L) is nonempty if and only if the basic solution is feasible,
which is then the sole vertex inQ(L). In general, the reduced dictionary may have
some nonbasic variables. If the basic solution is feasible, it defines a vertex ofQ(L).
Otherwise,lrs finds such a vertex, or determines that the system is infeasible, with
the dual simplex method. This completes part (a). Because the reduced dictionary has
typically low dimension, this part is negligible compared to the enumeration of the
vertices ofP. Finally, given a vertex ofQ(L), a standard run oflrs solves part (b) of
Algorithm 4.

In the lrsNashAlgorithm 4, the roles ofP andQ can be exchanged, which one
could calllrsNash>. The running time oflrs is determined by the number of feasible
bases, so enumerating the vertices ofP is faster ifP is the polytope with fewer bases.
This is usually, but not always, the polytope of smaller dimension, that is, for the
player with fewer strategies. A feature oflrs is that it can rapidly provide an unbiased
estimate of the number of feasible bases of a given polyhedron, and this can be used
as a preprocessing step to choose the polytope that plays the role ofP in Algorithm 4.

In terms of running time, part (a) can typically be done quickly, as mentioned
after Algorithm4. Part (b) is necessary because it produces the equilibria, so their
number is always relevant for the running time. IfQ has much more feasible bases
thanP, only a fraction of them are visited bylrsNash, which is then much better than

17

Algorithm 3 because the overall running time only depends on the enumeration of
the vertices ofP.

A bimatrix game may have an exponential number of equilibria. For example, the
coordination game where each payoff matrix is then×n identity matrix has2n−1
equilibria; n× n games with more than2.4n equilibria are described by von Sten-
gel (1999). Hence, enumerating all equilibria cannot be done in a running time that is
polynomial in the input size. A running time that is polynomial in theoutputsize can-
not be expected either, because this would give a polynomial-time algorithm that de-
cides if a game has a unique Nash equilibrium, which is an NP-hard problem (Gilboa
and Zemel 1989). Algorithm4 is howeverspace efficientif lrs is used to do the ver-
tex enumeration. It requires onlyO(mn) space to produce the possibly exponential
number of equilibria, output as a duplicate-free stream.

Algorithms3 and4 can be extended so that only equilibria with a given minimum
payoff, sayu for player 1 andv for player 2, are enumerated. When enumerating all
vertices of polytopeP, say, withlrs, this is done by terminating the reverse search
at verticesx where the objective function−1>x is less than−1/v. One way to do
this would be to add the additional constraint1>x≤ 1/v to the definition ofP(L).
However this would mean that additional vertices would now be produced which are
not vertices ofP(L). They would need to be skipped, and the added constraint would
create many unnecessary pivots. Fortunately the structure of the reverse search tree
can be exploited. From the description given earlier in this section, we see that the
value of the objective function is maximized at the root, and decreases monotonically
along any path in the tree. We simply truncate the tree whenever a pivot would lead
to a vertex that violates the constraint. A similar method is used in the vertex enumer-
ation of Q(L). Clearly the game may not have any equilibria with payoffs satisfying
given bounds, and deciding whether such equilibria exist is NP-complete (Gilboa and
Zemel 1989).

7 The modified EEE algorithm
s-EEE

Audet et al. (2001) describe an algorithm they callEEEfor “Enumeration of Extreme
Equilibria”. The algorithm initially traverses a binary search tree. Each node of the
search tree represents a pair of parameterized linear programs where certain pure
strategies are constrained either to have probability zero or to be a best response. The
two children of a node are obtained by forcing either constraint for an additional pure
strategy. If the added constraint results in an infeasible system, the search terminates,
which hopefully happens as early as possible. If all pure strategies are either best
responses or have zero probability, the resulting solution is an extreme equilibrium.
In a degenerate game, an additional search is needed at this stage to find all extreme
equilibria.

We present two modifications of the originalEEE algorithm by Audet et al.
(2001). The first was implemented as an extension of work by Rosenberg (2005),
the second is new and has not yet been implemented. Both algorithms are relatively
similar and differ fromEEE in how they handle degenerate games. We will explain
the algorithms in geometric terms, rather than as finding alternate solutions to pairs

18

of parameterized linear programs, which clarifies their connection to Algorithms3
and 4. We also specify each algorithm concisely as a recursive depth-first search.
Audet et al. (2001) allow for other traversals of the search tree, even though their im-
plementation is also a depth-first search. Further implementation issues are discussed
in Sect.8.

The EEE algorithm uses the polyhedraP andQ in (4). (It could also be imple-
mented using the polytopesP andQ in (7).) In the course of the computation, certain
inequalities that defineP andQ in (4) are forced to be binding, represented by sets of
labelsK andL, which are subsets ofM∪N. In analogy to (9), let

P(K) = {(x,v) ∈ P | ∀i ∈ K∩M : xi = 0, ∀ j ∈ K∩N : (B>x) j = v},
Q(L) = {(y,u) ∈Q | ∀i ∈ L∩M : (Ay)i = u, ∀ j ∈ L∩N : y j = 0}. (16) PbarK

A nodeof the search tree of the algorithm is defined by disjoint sets of labelsK,L
so that the facesP(K) andQ(L) are not empty. In addition toK andL, a node stores
witnessesx andy so that(x,v) is a vertex ofP(K) and(y,u) is a vertex ofQ(L) for
suitable scalarsv,u. These scalars are uniquely determined byx andy as the best-
response payoffs againstx andy, respectively.

Suppose(K,L,x,y) represents a node of the search tree so that|K ∪L| < m+n.
Then a new labelh not in K∪L is selected and added to eitherK or L, which defines
the two children of that node. However, if the resulting faceP(K∪{h}) or Q(L∪{h})
is empty, the respective child is omitted and the search tree pruned at that point.

The root of the search tree is given byK = L = /0 and vertices(x,v) of P and(y,u)
of Q, respectively. The root haslevelzero, and the level of any other node is one more
than the level of its parent. (The level of a node is one less than the search depth in
Audet et al. (2001) who start with the root at depth one.) At levelm+n, the label sets
K,L fulfill K∪L = M∪N, so that the witness pair(x,y) defines an equilibrium. In a
nondegenerate game, all equilibria are obtained in this way. In general, not all extreme
equilibria are in obtained this way, becauseP(K) andQ(L) may not be singletons,
and an additional enumeration of vertices is required.

The first variant of theEEE algorithm is as follows. Its details, in particular the
selection of the added labelh, are explained afterwards.

a-ieee Algorithm 5 (EEE-m– Modified EEE) Input: Bimatrix game(A,B). Output:All
extreme equilibria(x,y). Method: Implicit depth-first search on a binary tree by
choosing any vertices(x,v) of P and(y,u) of Q, and callingvisit(/0, /0,x,y) with
the recursivevisit method in Fig.5.

Algorithm 5 is based on thevisit method, which is a standard recursive depth-
first exploration of a search tree. A node(K,L,x,y) of the search tree corresponds
to a call to thevisit method, and its children correspond to the two recursive calls
(if they take place) in lines 4 and 6, respectively. The level of the node is given by
|K∪L|. At level m+n, no further recursion takes place, and the method performs the
“else” part in lines 8–9.

Line 2 of thevisit method asks for the selection of a labelh, which is added
to K or L in lines 4 and 6, respectively. Following Audet et al. (2001),h is chosen as
follows. Consider the slack vectorss= 1v−B>x andr = 1u−Ay. First, suppose that

19

visit(K,L,x,y):
[assumption: (x,v) vertex ofP(K), (y,u) vertex ofQ(L)]

1 if |K∪L|< m+n then
2 selecth∈ (M∪N)− (K∪L)
3 if |K|< mand∃ vertex(x′,v′) of P(K∪{h}) then
4 visit(K∪{h},L,x′,y)
5 if |L|< n and∃ vertex(y′,u′) of Q(L∪{h}) then
6 visit(K,L∪{h},x,y′)
7 else
8 for all vertices(x,v) of P(K) and(y,u) of Q(L):
9 output(x,y) if not already output earlier.

Fig. 5 The recursivevisit method used in theEEE-mAlgorithm 5. f-visit

(x,y) is not an equilibrium of the game. Then there is a labelh so thatxhrh > 0 (that
is, h∈M) or yhsh > 0 (that is,h∈N), andh is chosen so thatxhrh or yhsh is maximal
among these products, with smallest suchh in case of ties. Suppose that product
is xhrh, so that addingh to K means forcing the equationxh = 0 when changing
from the faceP(K) to its subfaceP(K ∪{h}), and addingh to L means forcing the
equationrh = 0 when changing from the faceQ(L) to its subfaceQ(L∪{h}). With
this heuristic choice ofh, it is hoped to prune the search tree early when the smaller
faceP(K∪{h}) or Q(L∪{h}) is found to be empty.

If (x,y) is already an equilibrium, thenxhrh = 0 andyhsh = 0 for all h in M∪N.
Then anyh not in K ∪L is selected, and one can use the same witness for one of the
children in the search tree. For example, ifxh = 0, then addingh to K meansx is
already a witness for the faceP(K ∪{h}). However, then typicallyrh > 0 holds and
forcing rh = 0 requires a new witnessy′ for the faceQ(L∪{h}) corresponding to the
other child, if it exists, and(x,y′) may no longer be an equilibrium. In short, during
the search it is irrelevant whether the witness pair(x,y) is an equilibrium.

Lines 3–4 and 5–6 ofvisit describe the branchings to the two children dur-
ing the search. In line 3 ofvisit , a vertex(x′,v′) of P(K ∪{h}) is found using the
previous vertex(x,v) of P(K). This vertex(x,v) corresponds to a basic feasible so-
lution with a dictionary that representsP where all variables inK are nonbasic. By
omitting these nonbasic columns altogether, we obtain areduced dictionarythat rep-
resentsP(K), as explained after Algorithm4. Adding the constraintxh = 0 (if h∈M)
or sh = 0 (if h ∈ N, with s= 1v−B>x) means driving that variablexh or sh out of
the basis, so that the variable becomes nonbasic and its column can be omitted from
the reduced dictionary so that it representsP(K ∪ {h}). If this is not possible, the
system is usually infeasible. The only exception is if the variable corresponds to an
all-zero row of the reduced dictionary, in which case that row is omitted. This is anal-
ogous to the discussion following Algorithm4. In line 5 ofvisit , a vertex(y′,u′) of
Q(L∪{h}) is found analogously.

As described so far, the search for a witnessx′ stops at the first vertex(x′,v′) found
on the faceP(K∪{h}), which suffices for the algorithm to work. Audet et al. (2001)

20

maximize anobjective functionsubject to the constraints that defineP(K ∪ {h}).
Their objective function isx′>(Ay)− v′ (using the other witnessy), and similarly
(x>B)y′− u′ to find a vertex(y′,u′) of Q(L∪{h}) in line 5 of visit , in order to
“guide” the computation towards equilibria(x,y) where the sumx>(Ay)+(x>B)y−
u−v of these two objective functions is zero and therefore maximal. Section8 reports
on computational experiments that compare this pair of objective functions by Audet
et al. (2001) with other possibilities.

In a nondegenerate game, no vertex ofP has more thanm labels, and no vertex
of Q has more thann labels. Hence, the condition|K ∪L| = m+ n that reaches the
final “else” part in lines 7–9 ofvisit(K,L,x,y) occurs only when|K| = m and
|L| = n. Then it suffices to output the unique equilibrium(x,y) at this terminal node
of the search tree. Indeed, then the enumerations in line 8 are trivial because then
P(K) = {(x,v)} andQ(L) = {(y,u)}.

P

v

x2

5
4
3

0

0 1

4

2

3

1 4

1

3Q

y4

u

10

0

2

5
2

Fig. 6 The polyhedraP andQ for the degenerate game (17), and its extreme equi-
libria. f-else

For degenerate games, we give an example that shows that we need the enumer-
ation in line 8 ofvisit . Consider the degenerate game(A,B) defined by

A =
[

2 5
2 5

]
, B =

[
3 4
5 4

]
. (17) else

The polyhedraP andQ are shown in Fig.6. The polyhedronP has three vertices
(x1,x2,v), namely(1,0,4) with label set{2,4}, and(1/2,1/2,4) with label set{3,4},
and(0,1,5) with label set{1,3}. The polyhedronQ has only two vertices(y3,y4,v),
namely(1,0,2) with label set{1,2,4}, and(0,1,5) with label set{1,2,3}. The game
has four extreme equilibria: The two pure equilibria((1,0),(0,1)) and((0,1),(1,0))
shown as pairs of triangles and pentagons, respectively, in Fig.6, and two equilibria
((1/2,1/2),(1,0)) and ((1/2,1/2),(0,1)) that use the mixed strategy of player 1,
indicated by the square inP paired with either square inQ. The maximal Nash sub-
sets (see Prop.4) of the game are conv{(1,0),(1/2,1/2)}×{(0,1)}, {(1/2,1/2)}×
conv{(1,0),(0,1)}, and conv{(1/2,1/2),(0,1)}×{(1,0)}.

21

The only two-element setsK so thatP(K) is not empty are{2,4}, {3,4}, and
{1,3}, which define the three vertices ofP(K). Then the last level 4 of the search
tree is reached forL = {1,3}, {1,2}, and{2,4}, respectively. ForL = {1,3} and
L = {2,4}, the corresponding faceQ(L) is a vertex; these two pairs(K,L) give the
pure-strategy equilibria. ForK = {3,4}, x = (1/2,1/2), andL = {1,2}, however,
Q(L) is a higher-dimensional face, an edge ofQ. Only one of its vertices gives a
witnessy, for exampley= (1,0). If one would now only output the equilibrium(x,y),
one would miss the equilibrium(x,y′) for the other vertexy′ of Q(L), in the example
y′ = (0,1), so the enumeration in line 8 ofvisit is needed.

The necessity of doing additional enumeration after reaching levelm+ n of the
search tree was already observed by Audet et al. (2001); we discuss their implemen-
tation of this stage in Sect.8. The following proposition asserts that Algorithm5 is
correct, which is slightly more involved than the original correctness proof of Audet
et al. (2001) for theirEEEalgorithm which does not test for the conditions|K| < m
and|L|< n in lines 3 and 5 of thevisit method.

p-ee Proposition 5 Algorithm5 enumerates all extreme Nash equilibria of the game.

Proof. Let (x,y) be an extreme equilibrium, with vertices(x,v) of P and(y,u) of Q.
Let Kx andLy be the sets of labels ofx andy, respectively. We claim that there are
disjoint setsK andL so that|K| = m, |L| = n, andK ⊆ Kx andL ⊆ Ly (note thatK
andL need not define bases that represent the vertices). Namely, the setM∪N is the
disjoint union ofKx−Ly, Kx∩Ly andLy−Kx. With k= |Kx−Ly| andl = |Ly−Kx|, we
havek≤mbecause|Ly| ≥ n andl ≤ n because|Kx| ≥m. PartitionKx∩Ly arbitrarily
into setsK′ andL′ of sizesm− k andn− l , respectively. Then the claim holds with
K = (Kx−Ly)∪K′ andL = (Ly−Kx)∪L′.

Then (x,v) and (y,u) are vertices of the facesP(K) andQ(L), respectively, so
these two faces are nonempty, and the two vertices are found in line 8 of thevisit
method in Fig.5. ut

Because of the size constraints|K|< mand|L|< n in lines 3 and 5 of thevisit
method in Fig.5, the enumeration in line 8 is reached only for setsK,L with |K|= m
and|L|= n. This has the advantage that even when only one of the polyhedraP or Q
is simple and has no redundant inequalities due to weakly dominated or payoff equiv-
alent pure strategies, as in Fig.6, the list of extreme equilibria is free of duplicates:

p-nodupl Proposition 6 If P or Q are nondegenerate in the sense that no vertex ofP has more
thanm labels or no vertex ofQ has more thann labels, then the extreme equilibria
are enumerated without the need to check for duplicates in lines 8–9 of thevisit
method.

Proof. Suppose thatP is nondegenerate as described; the case forQ is analogous.
ThenP(K) in line 8 of thevisit method consists of a single vertex(x,v) because
|K|= m, so distinct setsK will produce distinct equilibria(x,y). ut

As the proof of Prop.6 shows, an even weaker condition is thatP(K) (or cor-
respondinglyQ(L)) is a singleton for anym-element setK encountered during the
search. A sufficient condition for this is that allm basic variables are positive in the
reduced dictionary that representsP(K). As long as this holds for all bases found for
either polyhedron, one can omit the search for duplicates in line 9 ofvisit .

22

The tests for|K| < m and |L| < n in lines 3 and 5 ofvisit are new. In the
originalEEEalgorithm of Audet et al. (2001), larger setsK or L are considered until
K ∪ L = M ∪N. This may lead to unnecessary duplicates: In the example (17), all
equilibria are found again with the setsK,L of labelsK = {4}, L = {1,2,3}, and
K = {3}, L = {1,2,4}, as Fig.6 shows.

We now give another version ofEEE that handles the problem of degenerate
games in a different manner. In this version we allow the setK to exceedmelements.

a-ieee2 Algorithm 6 (EEE-2– Modified EEE, version 2) Identical to Algorithm5, except
that thevisit method is replaced by thevisit′ method in Fig.7.

visit′ (K,L,x,y):
1 if |K∪L|< m+n then
2 selecth∈ (M∪N)− (K∪L)
3 if ∃ vertex(x′,v′) of P(K∪{h}) then
4 visit′ (K∪{h},L,x′,y)
5 if |L|< n and∃ vertex(y′,u′) of Q(L∪{h}) then
6 visit′ (K,L∪{h},x,y′)
7 else
8 if K is the set of all labels ofx then
9 enumerate all vertices(y,u) of Q(L) and output(x,y).

Fig. 7 The recursivevisit′ method used in Algorithm6. f-visit2

Note that ifP is nondegenerate as in Prop.6 (in particular if the game is non-
degenerate), then the label setK cannot contain more thanm labels andP(K) is a
singleton, so that theEEE-2Algorithm 6 behaves identically to theEEE-mAlgo-
rithm 5. In the game (17), the two algorithms behave differently whenA andB are
interchanged, that is, when the polyhedra in Fig.6 switch roles; for simplicity, as-
sume we switch the namesP andQ in that figure but keep the labels. Then the only
cases whereK in line 8 of visit′ is the set ofall labels of a vertex (of the right
polyhedron in Fig.6) is for K = {1,2,3}, L = {4} andK = {1,2,4}, L = {3}. Then
the enumeration in line 9 ofvisit′ produces each extreme equilibrium exactly once.
The following proposition asserts that this is the case in general.

p-ee2 Proposition 7 Algorithm6 enumerates all extreme Nash equilibria of the game with-
out duplicates.

Proof. Let (x,y) be an extreme equilibrium, so that(x,v) and(y,u) are vertices of
P andQ, respectively, with equilibrium payoffsv andu. Let K be the complete set
of labels ofx, so thatP(K) = {(x,v)}. Now L = (M ∪N)−K, so L is the set of
labels missing fromx. All labels inL are labels ofy because(x,y) is an equilibrium.
Therefore the faceQ(L) of Q contains(y,u) and is not empty, and lines 7–9 ofvisit′
are reached with parametersK andL. Then the vertex(y,u) of Q(L) is found in line 9,

23

and(x,y) is output. BecauseK is the set of all labels ofx, the enumeration in lines 9 is
performed at most once for each vertexx of P. Therefore, if the vertex enumeration of
Q(L) produces vertices without repetition, e.g. by usinglrs, then the equilibria(x,y)
are also output without repetition. ut

Like the lrsNashAlgorithm 4, theEEE-2Algorithm 6 is space efficient iflrs is
used to enumerate vertices. The search tree has depthm+ n, so an efficient imple-
mentation may need to cache up to this many dictionaries, each of sizeO(mn). The
vertex enumeration in line 9 requires an additionalO(mn) space.

We conclude with an improvement of Algorithm6 omitted initially for simplicity.
If {(x′,v′)}= P(K∪{h}) in lines 3–4 ofvisit′ , then there is no need for subsequent
branching in lines 1–6. We may add all labels ofx′ to K, setL to be the remaining
labels, setx= x′ and go directly to line 8. Note thatQ(L) may in this case be empty, in
which case no output is produced. Ifx′ is a highly degenerate vertex, this eliminates
uneccessarily creating a large subtree at the current node. However, this shortcut to
the search may create duplicate outputs, because the complete label set forx′ may
now be produced in different ways. It is therefore necessary to modify line 8 so that
vertex enumeration is only done once for each vertexx, which requires maintaining a
list of such vertices. This in turn means that the algorithm is no longer space efficient,
as this list may have exponential size.

Detecting the condition{(x′,v′)} = P(K ∪{h}) depends on the implementation.
If we have an explicit reduced dictionary that representsP(K ∪{h}), this condition
happens when the dictionary has no cobasic columns.

Finally, theEEE-2Algorithm 6 is not symmetric between the two players. Imple-
mentations and tests, which have yet to be done, should show which order of players
is best, and how the algorithm competes with theEEE-mAlgorithm 5.

8 Implementation and computational experiments
s-exper

In this section, we discuss aspects of the implementations of theEEE algorithm by
Audet et al. (2001) and Rosenberg (2005), and its modification in Algorithm5. We
report on the empirical performance of these variants for some instances of games.

We also describe results of computational experiments that compare theEEEal-
gorithm (its original versionEEE-o as well asEEE-m) with thelrsNashAlgorithm 4.
Both algorithms have their strengths and weaknesses:EEE is not very suitable for de-
generate games, already acknowledged as a possibility by Audet et al. (2001). How-
ever, for larger nondegenerate games, in particular square games, it scales better than
an algorithm based on vertex enumeration such aslrsNash.

The implementation of theEEE algorithm by Audet et al. (2001) uses the com-
mercial CPLEX solver for linear programs. It uses floating-point arithmetic, which
may produce rounding errors. Equalities are assumed to hold whenever the compared
numbers differ by less than10−5, so the computation is not exact. In contrast, Rosen-
berg (2005) has implemented theEEE algorithm as a stand-alone program in Java
with exact arithmetic and integer pivoting (see the end of Sect.5).

Both Audet et al. (2001) and Rosenberg (2005) use multiway branching as an
implementation of the vertex enumeration in line 8 of thevisit method in Fig.5.

24

multiway(K,L,x,y):
[assumptions:K∪L = M∪N, equilibrium(x,y),

(x,v) vertex ofP(K), (y,u) vertex ofQ(L)]

1 output(x,y) if not already output earlier
2 s= 1v−Ay, r = 1u−B>x
3 for all h∈M so thatxh > 0 and for all h∈ N so thatsh > 0
4 if ∃ vertex(x′,v′) of P(K∪{h}) then
5 multiway(K∪{h},L,x′,y)
6 for all h∈M so thatrh > 0 and for all h∈ N so thatyh > 0
7 if ∃ vertex(y′,u′) of Q(L∪{h}) then
8 multiway(K,L∪{h},x,y′)

Fig. 8 Recursivemultiway method that implements the vertex enumeration in
line 8 ofvisit in Fig. 5 by Audet et al. (2001) and Rosenberg (2005). f-multiway

This is shown as the recursive methodmultiway in Fig. 8. The vectorss andr of
slack variables in line 2 are already stored in the reduced dictionaries that represent
P(K) and Q(L), and are also available when using CPLEX. The possible indices
h in lines 3 and 6 are positive basic variables of these dictionaries, and therefore
not elements ofK ∪ L. When all cobasic variables have been eliminated from the
reduced dictionary, the recursion is terminated immediately in the implementation by
Rosenberg (2005) which has explicit access to the dictionary. This is slightly faster
than the method of Audet et al. (2001) which terminates after unsuccessfully trying
to set all positive basic variables to zero at that point.

size 5×5 5×10 5×15 5×20 5×25 5×30 10×10 10×15
sparse payoff matrices, nonzero with density 0.5

#NE 6.3 5.6 12.8 9.6 7.1 18.1 6.8 9.5
EEE-m 0.30 0.02 0.45 0.31 0.30 1.14 0.17 0.69
EEE-o 0.54 0.03 1.23 0.44 0.32 2.89 0.14 0.77
lrsNash 0.01 0.03 0.03 0.04 0.07 0.11 0.30 1.43
lrsNash> 0.01 0.04 0.24 1.08 3.43 8.47 0.31 5.01

sparse payoff matrices, nonzero with density 0.2
#NE 13.3 38.3 27.7 36.1 51.9 35.0 334.6 1967.3
EEE-m 0.05 0.24 3.14 0.26 9.84 25.07 26.94 388.98
EEE-o 0.09 13.63 10.83 1.23 44.33 148.41 3183.81 1658.49
lrsNash 0.02 0.02 0.03 0.03 0.05 0.05 0.21 0.75
lrsNash> 0.01 0.04 0.11 0.32 1.43 3.44 0.25 1.75

Table 1 Average running times in seconds for degenerate games obtained by sparse
payoff matrices. Depending on the game size, around ten random games were tested
for each size and density. #NE is the average number of extreme Nash equilibria,
EEE-o is the originalEEEalgorithm without the tests|K|< m and|L|< n in lines 3
and 5 of thevisit method in Fig.5, andlrsNash> is thelrsNashAlgorithm 4 with
P andQ interchanged. t-testdeg

25

The multiway branching in Fig.8 is an extension of the binary branching in
visit . In effect, it is a brute-force and inefficient vertex enumeration as required
in line 8 of visit . This is probably one of the reasons thatEEE performs poorly
on degenerate games, as shown in the comparison of running times1 in Fig. 1. For
payoff matrices with a density 0.2 of nonzero entries,EEE-o may perform very badly
on some instances. ForEEE-m, the tests|K|< mand|L|< n in lines 3 and 5 ofvisit
improve this behavior, which is still much worse than that oflrsNashfor these game
sizes. In a future implementation, line 8 ofvisit should be performed by a call to
lrs, which so far has not happened because of the different programming languages
(Java and C) used for the two programs. These also affect the running times to some
extent.

size 5×5 5×10 5×15 5×20 5×25 5×30
#NE 3.0 3.6 7.4 9.0 7.6 14.4
EEE-m 0.06 0.05 0.51 0.94 1.66 3.24
lrsNash 0.01 0.03 0.04 0.04 0.08 0.11
size 10×10 10×15 10×20 10×25 10×30
#NE 11.2 20.0 30.0 31.6 34.5
EEE-m 1.18 1.68 5.00 10.19 21.79
lrsNash 0.35 1.38 3.20 5.24 9.75
lrsNash> 0.32 6.42 90.81 466.01 3079.38
size 15×15 15×20 15×25 15×30
#NE 36.6 55.8 117.8 174.8
EEE-m 10.21 31.88 137.18 398.09
lrsNash 50.28 199.26 651.26 772.83
lrsNash> 42.20
size 20×20 20×25 20×30
#NE 140.7 320.2 651.0
EEE-m 299.40 1728.48 8341.56
lrsNash 5628.06 23154.05 ∞
lrsNash> 4836.70
size 25×25 25×30
#NE 354.0 327
EEE-m 6309.72 19000.81
lrsNash ∞ ∞

Table 2 Average running times in seconds for nondegenerate games with random
full matrices. Typically ten games were tested per size, fewer for large sizes. Tests
showing∞ were cancelled because they took longer than a day. t-testfull

For random games with full payoff matrices, which are in most cases nondegen-
erate, theEEE algorithm behaves better and scales well, as shown in Table2. The
original EEEalgorithmEEE-o is then identical toEEE-m. The lrsNashAlgorithm 4
becomes inferior toEEEwhen each player has 15 or more strategies. For these games,
the algorithm works better on the polytopeP with fewer vertices, which is here the

1 Tests were run on a standard 32-bit processor with 1.2 GHz clockspeed, provided by the “Amazon
Elastic Compute Cloud” webservice,http://aws.amazon.com/

http://aws.amazon.com/

26

polytope of lower dimension. This is demonstrated by the entries forlrsNash>, which
uses the higher-dimensional polytope, for games of size10×n. For square games, ei-
ther polytope can be chosen; we also tested sizes15×15 and20×20, and observed
that the running time often differs by a factor of two or more. Current computers
are often dual- or quad-core with several processors that can be used simultaneously.
These can work on the same game with different algorithms in parallel, cancelling
the other computations when the first one finishes. This has been implemented for
lrsNashand lrsNash>, and is available from thelrs website (Avis 2006). The space
efficiency ofEEE-m(Algorithm 4) means that there is little competition for mem-
ory or other resources, and the parallel version indeed runs in the shorter of the two
running times.

As mentioned in Sect.7, Audet et al. (2001) consider linear programs parameter-
ized byx andy, with an objective function to find new vertices(x′,v′) of P(K∪{h})
and(y′,u′) of Q(L∪{h}) in lines 3 and 5, respectively, of thevisit method. Ta-
ble 3 compares various objective functions; the “guessing game” and “dollar game”
are defined in Rosenberg (2005, pp. 41–43). The first line in Table3 gives the orig-
inal objective function. A motivation for that choice is that the sum of the objective
functions for the two polyhedra is indeed maximized at an equilibrium, when the two
duality gaps of the parameterized linear programs are both zero. Thevisit method
would also run with an objective function that finds the lowest point on the upper
envelope (minimizingv′ andu′, respectively) or when only looking for any feasible
vertex with a constant objective function. Indeed, this provides a slight speedup for
games that have many equilibria, as in the last column in Table3. However, for games
with fewer equilibria, or random games, the original objective functions are better.
Compared to that, the last line in the figure shows even better objective functions
x′>(A+B)y−v′ andx>(A+B)y′−u′ which seem to guide the search towards vertex
pairs with good payoffs for both players; maximizing the sum of these two functions
also closes the duality gaps. This last objective function is used in the computational
experiments in Tables1 and2.

Random Guessing Dollar
objective function objective function (average) Game Game

for finding for finding 17×17 22×22 15×15

(x′,v′) ∈ P(K∪{h}) (y′,u′) ∈Q(L∪{h}) 45.8 NE 3 NE 211 NE

max x′>Ay−v′ max x>By′−u′ 36.25 9.03 93.38

max−v′ max−u′ 70.00 37.48 52.53

0 0 84.80 40.23 72.30

max x′>(A+B)y−v′ max x>(A+B)y′−u′ 28.45 6.55 98.82

Table 3 Running times in seconds for various objective functions to determine the
vertices(x′,v′) in line 3 and(y′,u′) in line 5 of thevisit method in Fig.5. t-objective

27

9 Further work and open questions
s-open

The algorithms that we have described in Sect.6 and Sect.7 work for two-player
games in strategic form. In general, one may consider “constrained” bimatrix games
where the set of strategies of a player is not a simplex but a polytope define by more
complex linear constraints. One such description is the “sequence form” that allows
an efficient representation of behavior strategies of a game in extensive form (von
Stengel 1996). An enumeration of equilibria based on this description should be pos-
sible by extending the presented algorithms. Crucially, there is typically more than
one equality constraint that defines a player’s strategy space. In consequence (by
using linear programming duality), there will be more than one unbounded payoff
variable. This is one of the reasons why we have studied theEEE algorithm using
unbounded polyhedra and not polytopes. Equilibrium enumeration for constrained
bimatrix games has been studied by Audet, Belhaı̈za, and Hansen (2006; 2009) and
is also a topic for future work.

As the computational experiments show, the running times for equilibrium enu-
meration are exponential, so that sizes of games that can be solved soon hit a limit. An
alternative to enumeration is the simpler problem of finding one Nash equilibrium.
This can addressed by the algorithm by Lemke and Howson (1964), which seems to
be efficient in practice. Apart from finding one equilibrium, the modeller is typically
also interested in its uniqueness. This can only be decided in the negative with an
algorithm that finds a second equilibrium if there is one. However, if many starting
points always lead to the same equilibrium, this may be considered sufficient reason
to accept it as “the” equilibrium that players are likely to play in practice. For this
purpose, an algorithm with a large choice of starting points is desirable, such as that
by van den Elzen and Talman (1991).

Even if many starting points are attempted, the path-following methods by Lemke
and Howson (1964) and van den Elzen and Talman (1991) only find equilibria of
positive index (for a definition of the index see Shapley (1974) or, for example, von
Schemde and von Stengel 2008). Negatively indexed equilibria can be found as soon
as one has two different positively index equilibria, by following the path backwards
from one such equilibrium with the starting point that led to the other equilibrium.
This may still fail to find all equilibria. At any rate, this approach has to our knowl-
edge not yet been implemented.

Another useful feature would be to output the index of an equilibrium component,
as an additional information provided by theCliqueAlgorithm 2. This is nontrivial in
degenerate games where the index is computed for a component. It would be nice to
find this lexicographically, that is, by means of symbolic, and not actual, perturbation
techniques.

The Clique Algorithm 2 represents equilibrium components via their maximal
Nash subsets, as the convex hull of their extreme equilibria. For a highly degenerate
game, the definition by inequalities of the facets ofP andQ that define the maximal
Nash subset may be of use. This representation is trivial, but it is suitable to answer,
for example, the query as to which component a given equilibrium belongs.

A shortcoming of many published algorithms for equilibrium computation is that
they have been implemented ad hoc, to demonstrate some computational experi-

28

ments, but not robustly for public use. Thelrs program by Avis (2000; 2006) is under
constant development to be as useful as possible. We hope to make the algorithms
presented in this paper easily available and convenient to use for the community.

Acknowledgements We thank Charles Audet for helpful comments.

10 References

Audet, C., Belhäıza, S., Hansen, P., Enumeration of all extreme equilibria in game theory: Bimatrix and
polymatrix games. J. Optim. Theory Appl. 129, 349–372 (2006)

Audet, C., Belhäıza, S., Hansen, P., A new sequence form approach for the enumeration of all extreme
nash equilibria for extensive form games. International Game Theory Review, to appear (2009)

Audet, C., Hansen, P., Jaumard, B., Savard G., Enumeration of all extreme equilibria of bimatrix games.
SIAM J. Sci. Comput. 23, 323–338 (2001)

Avis, D. lrs: A revised implementation of the reverse search vertex enumeration algorithm. In: Kalai, G.,
Ziegler, G. (eds.): Polytopes – Combinatorics and Computation, DMV Seminar Band 29, pp. 177–
198. Birkḧauser, Basel (2000)

Avis, D.: User’s Guide for lrs.http://cgm.cs.mcgill.ca/~avis (2006)

Avis, D., Fukuda K., A pivoting algorithm for convex hulls and vertex enumeration of arrangements and
polyhedra. Discrete and Computational Geometry 8, 295–313 (1992)

Azulay, D.-O., Pique, J.-F.: A revised simplex method with integer Q-matrices. ACM Trans. Math. Soft-
ware 27, 350–360 (2001)

Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph. Comm. ACM 16, 575–577 (1973)

Canty, M. J.: Resolving Conflicts with Mathematica: Algorithms for Two-Person Games. Academic Press,
Amsterdam (2003)

Chvátal, V.: Linear Programming. Freeman, New York (1983)

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms, 2nd ed. MIT Press,
Cambridge, Mass. (2001)

Dickhaut, J., Kaplan, T.: A program for finding Nash equilibria. The Mathematica Journal 1:4, 87–93

(1991) Typesetter: 1:4 STET – this journal numbers pages separately per issue; delete this box

Fukuda, K., Prodon A.: Double description method revisited. In: Deza, M. et al. (eds.) Combinatorics and
Computer Science, Lecture Notes in Computer Science, Vol. 1120, pp. 91–121. Springer, Heidelberg
(1996)

Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complexity considerations. Games Econom.
Behav. 1, 80–93 (1989)

Jansen, M. J. M.: Maximal Nash subsets for bimatrix games. Naval Res. Logist. Quart. 28, 147–152 (1981)

Kohlberg, E., Mertens, J.-F.: On the strategic stability of equilibria. Econometrica 54, 1003–1037 (1986)

Kuhn, H. W.: An algorithm for equilibrium points in bimatrix games. Proc. Nat. Acad. Sci. U.S.A. 47,
1657–1662 (1961)

Lemke, C. E., Howson, J. T., Jr.: Equilibrium points of bimatrix games. J. Soc. Indust. Appl. Math. 12,
413–423 (1964)

Mangasarian, O. L.: Equilibrium points in bimatrix games. J. Soc. Indust. Appl. Math. 12, 778–780. (1964)

McKelvey, R. D., McLennan, A. M., Turocy, T. L.: Gambit: Software Tools for Game Theory, Version
0.2007.01.30http://econweb.tamu.edu/gambit (2007)

Millham, C. B.: On Nash subsets of bimatrix games. Naval Res. Logist. Quart. 21, 307–317 (1974)

Motzkin, T. S., Raiffa, H., Thompson, G. L., Thrall, R. M.: The double description method. In: Kuhn,
H. W., Tucker, A. W. (eds.) Contributions to the Theory of Games II, pp. 51–73. Annals of Mathe-
matics Studies 28, Princeton Univ. Press, Princeton (1953)

Nash, J. F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

http://cgm.cs.mcgill.ca/~avis
http://econweb.tamu.edu/gambit

29

Rosenberg, G. D.: Enumeration of All Extreme Equilibria of Bimatrix Games with Integer Pivoting and Im-
proved Degeneracy Check. CDAM Research Report LSE-CDAM-2005-18, London School of Eco-
nomics (2005)

Savani, R.: Solve a bimatrix game. Interactive website.http://banach.lse.ac.uk/form.html (2005)

Shapley, L.S.: A note on the Lemke–Howson algorithm. Mathematical Programming Study 1: Pivoting
and Extensions, pp. 175–189 (1974)

van den Elzen, A. H. and Talman, A. J. J.: A procedure for finding Nash equilibria in bi-matrix games.
Mathematical Methods of Operations Research 35, 27–43 (1991)

von Schemde, A., von Stengel, B.: Strategic characterization of the index of an equilibrium. In: Monien,
B., Schroeder, U.-P. (eds.) Symposium on Algorithmic Game Theory (SAGT) 2008, Lecture Notes in
Computer Science, Vol. 4997, pp. 242–254. Springer-Verlag, Berlin (2008)

von Stengel, B.: Efficient computation of behavior strategies. Games Econom. Behav. 14, 220–246 (1996)

von Stengel, B.: Improved equilibrium enumeration for bimatrix games. Extended Abstract, International
Conference on Operations Research, ETH Zurich, Aug 31–Sept 3.http://www.maths.lse.ac.

uk/Personal/stengel/TEXTE/complement-enum.pdf (1998)

von Stengel, B.: New maximal numbers of equilibria in bimatrix games. Discrete and Computational
Geometry 21, 557–568 (1999)

von Stengel, B.: Computing equilibria for two-person games. In: Aumann, R. J., Hart, S. (eds.) Handbook
of Game Theory, Vol. 3, pp. 1723–1759. North-Holland, Amsterdam (2002)

Vorob’ev, N. N.: Equilibrium points in bimatrix games. Theory of Prob. Appl. 3, 297–309 (1958)

Winkels, H.-M.: An algorithm to determine all equilibrium points of a bimatrix game. In: Moeschlin, O.,
Pallaschke, D. (eds.) Game Theory and Related Topics, pp. 137–148. North-Holland, Amsterdam
(1979)

http://banach.lse.ac.uk/form.html
http://www.maths.lse.ac.uk/Personal/stengel/TEXTE/complement-enum.pdf
http://www.maths.lse.ac.uk/Personal/stengel/TEXTE/complement-enum.pdf

	Introduction
	Bimatrix games and the best response condition
	Equilibria via labeled polytopes
	Degenerate games
	Vertices and pivoting
	Finding all extreme equilibria using vertex enumeration
	The modified EEE algorithm
	Implementation and computational experiments
	Further work and open questions
	References

