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1 Introduction

This paper describes algorithms for finding all Nash equilibria of a two-player game.
These methods apply to games in strategic form, and have the potential to be extended
to other game descriptions, for example games in extensive form (discussed briefly
in Sect[9). We present two main algorithms, and some variants, that extend earlier
work. For both of the algorithms we give a variant that is space efficient, requiring
memory polynomial in the input size only, in order to produce a duplicate free output
list. As far as we know, these are the only known algorithms with this property. Our
presentation is self-contained, and explains the two methods in a unified framework
based on polyhedra.

The first method is based on the vertex enumeration progpsugfor “lexico-
graphic reverse search”) described in Avis and Fukuda (1992) and Avis (2000). The
extensions ofrs to finding Nash equilibria are here described for the first time in a
journal article. The second method is tBEE algorithm (for “enumeration of ex-
treme equilibria”) by Audet, Hansen, Jaumard, and Savard (2001), implemented in
exact arithmetic by Rosenberg (2005), and presented here in modified form. We also
give for the first time a geometric description of tBEE algorithm in terms of facets
of polyhedra.

A Nash equilibrium is given by a mixed strategy for each player that is a best
response to the fixed strategy of the other player. According to the well-known “best
response condition” (Profdl, due to Nash (1951)), this means that the pure strategies
in the support of the mixed strategy have maximal, and hence equal, expected payoff.
This defines linear equations and inequalities for the mixed strategy probabilities of
the other player. These are captured by a “best response polyhedron”, an approach
that has already been described by Vorob’ev (1958), Kuhn (1961), and Mangasarian
(1964), explained in detail in Se@. An equilibrium strategy of a player is a vertex
of his best response polyhedron, or a convex combination of such vertices, as char-
acterized in Prof4 (Winkels (1979); Jansen (1981)). Hence, the Nash equilibria of
a two-player game can be found by enumerating all pairs of vertices of the two best
reponse polyhedra, and checking the equilibrium property, which givesxtneme
equilibria of the game.

A vertex enumeration program, suchless enumerates all vertices of a polyhe-
dron specified by inequalities (see SE}t A straightforward enumeration of extreme
equilibria generates the vertices of both best response polyhedra and outputs the ver-
tex pairs that match as equilibria, as implemented by Canty (2003) and Savani (2005).

Here we describe a different approach, the basics of which have been outlined in
von Stengel (1998). This approach considers the vertices of only one best response
polyhedron, say for player 1. Each such ventéxan equilibrium strategy of player 1
if and only if the “complementary” inequalities in the other polyhedron are tight, so
these equations determine a face of that polyhedron, called the “complementary face”
tox. (This complementary face is emptyifs not part of an equilibrium, and a single
point if the equilibrium is isolated.) The approach thus considers the vextimfesne
best response polyhedron, and enumerates the veytiwethe complementary face
to x in the other polyhedron, which defines all extreme equilixig) of the game.

This may involve only a small number of verticgof the second polyhedron and
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thereby save computation time. One may use a preliminary rins &6 choose the
first polyhedron judiciously.

The programs described in this paper use exact arithmetic with integers of ar-
bitrary precision, given integer or fractional payoffs as input. This avoids rounding
errors that can occur with floating-point arithmetic, and safely finds all equilibria even
when the game is degenerate. Fractional numbers in the input can be scaled to become
integers. The pivoting operations lirs preserve integers in the linear programming
tableaus via “integer pivoting” (see SeB). This known technique is superior to
using fractions of integers (rational arithmetic) because their cancellation requires
greatest common divisor computations which tend to take the bulk of computation
time.

The EEE approach due to Audet et al. (2001) enumerates all equilibria by alter-
nately solving parameterized linear programs. It explores a binary search tree where
in each step, a pure strategy is selected and converted to a tight inequality in one of
the two best reponse polyhedra (which defines the binary choice). This ends when
all strategies have been fixed, or the corresponding face of the polyhedron is empty,
detected as an infeasible linear program. Rosenberg (2005) has implemented this ap-
proach with integer pivoting instead of floating-point arithmetic as done by Audet et
al. (2001). We present variants BEE that give some speedup for degenerate games.

In SectZ, we recall the best response condition. For nondegenerate games, this
gives rise to an algorithm for finding all equilibria by enumerating all possible sup-
ports. Sectiof describes the best response polyhedra that are the basis of our al-
gorithms. Degenerate games are discussed in[@eEhe possibly infinite set of all
equilibria in a degenerate game can be described by “maximal Nash subsets”. These
are polytopes obtained from the finite set of extreme equilibria. Clgue Algo-
rithm[2 shows how to determine these maximal Nash subsets, as well as their non-
disjoint unions that define connected components of Nash equilibria. An extreme
equilibrium is a pair of vertices of the best response polyhedra. Vertices are rep-
resented algebraically by linear programming tableaus or “dictionaries”. We recall
these standard techniques in SEHin order to explain the details of our algorithms,
as well as the less known method of “integer pivoting” which is economical for keep-
ing arbitrary precision. In Sed&, we explain our first algorithm that uses the
program for vertex enumeration. In Sd@t.we explain the second algorithBEEE
We report experimental results in Sé&tA number of possible extensions, and open
problems, are discussed in Sé&t.

2 Bimatrix games and the best response condition

We use the following notation throughout. L&t B) be a bimatrix game, whereand

B aremx n matrices of payoffs to the row player 1 and column player 2, respectively.
Let M be the set of then pure strategies of player 1 (the row player), andNdte the

set of then pure strategies of player 2 (the column player). It is useful to assume that
these sets are disjoint, as in

M=1{1,...,m}, N={m+1,...,m+n}. Q)



4

The payoff matriceé\ andB belong toRM*N, soA has entries;; andB has entries

bij fori € M andj € N. WhenA andB define the input to an algorithm for finding

all Nash equilibria, the payoffs are assumed to be rationals, or, by suitable scaling,
integers.

A mixed strategy of player 1 is a vectarof probabilitiesx; for playing rows
i € M, sox € RM; similarly, a mixed strategy of player 2 is a probability vector
y € RN. All vectors are column vectors. Tisaipportof a mixed strategy is the set of
pure strategies that have positive probability. A vector or matrix with all components
zero is denoted b9, and a vector of all ones b, Inequalities likex > 0 between
two vectors hold for all components.

A best respons¢o the mixed strategy of player 2 is a mixed strategy of
player 1 that maximizes his expected payoffAy. Similarly, a best responseof
player 2 tox maximizes her expected payaffBy. A Nash equilibriunis a pair(x, y)
of mixed strategies that are best responses to each other.

The following well-known proposition states that a mixed stratgdy a best
response to an opponent stratggfand only if all pure strategies in its support are
pure best responsesyoThe same holds with the roles of the players exchanged.

-bestresponse| PTroposition 1 (Best response condition, Nash (19510)tx andy be mixed strate-
gies of playerl and2, respectively. Theris a best response toif and only if for all

ieM,
x>0 = (Ay)i =u=max{ (Ay) | ke M}, 2

andy is a best response toif and only if for all j € N,

yi>0 = (B'x)j=v=max (B x)x| ke N} (3)

Propositiorlis useful because it states a finite condition, which is easily checked,
about all pure strategies of the player, rather than about the infinite set of all mixed
strategies. It can also be used to find all Nash equilibria (see Algofitueliow),
by trying out the different possible supports of mixed strategies. All pure strategies
in the support must have maximum, and hence equal, expected payoff to that player.
This leads to equations for the probabilities of the opponent’s mixed strategy. These
linear equations may not have full rank. To avoid this complication, we apply this
algorithm only tonondegeneratgames, defined as follows.

-nondegenerate | Definition 1 A two-player game is calledondegeneratd no mixed strategy with
support of siz&k has more thak pure best responses.

The following observation is is immediate from Prip.

Proposition 2 In any Nash equilibriun{x,y) of a nondegenerate bimatrix game,
andy have supports of equal size.

The following “support enumeration algorithm” has been described by Dickhaut
and Kaplan (1991).
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Algorithm 1 (Equilibria by support enumeration) Input: A nondegenerate bima-
trix game.Output: All Nash equilibria of the gameMethod: For eachk = 1,...,
min{m,n} and each paifl , J) of k-sized subsetsof M andJ of N, respectively, solve
the equationg ¢, xbij =vforj€J, Yic X =1, 3 jesajyj=uforiel, ¥icyj =1,
and check that > 0, y > 0 and that[@) holds forx and @) fory.

The linear equations considered in this algorithm may not have solutions, which
means that there is no equilibrium for that support pair. Nonunique solutions occur
only for degenerate games, because a linear dependency allows to reduce the support
of a mixed strategy. Degenerate games are discussed irfdbetow.

3 Equilibria via labeled polytopes

In order to identify the possible supports of equilibrium strategies, one can use “best
response polytopes”. These express directly that best-response payoffs are not only
equal to each other, but also at least as large as the expected payoffs for pure strategies
that are not in the support.

We first recall some notions from the theory of (convex) polyhedraafime
combinationof points z,...,z in some Euclidean space is of the fo@{LlaAi
wheres, ..., A are reals withy X_; Aj = 1. Itis called aconvex combinatioif A; > 0
for all i. A set of points isconvexf it is closed under forming convex combinations.
Given points araffinely independerit none of these points is an affine combination
of the others. A convex set hdimensiord if and only if it hasd + 1, but no more,
affinely independent points.

A polyhedrorP in R% is a set{zc RY | Cz< q} for some matrixC and vecton. It
is calledfull-dimensionalf it has dimensiord. It is called apolytopeif it is bounded.

A faceof P is a (possibly empty) sgtze P | c'z= qo} for somec € RY, go € R so
that the inequalitc "z < g holds for allzin P. A vertexof P is the unique element
of a 0-dimensional face d®. An edgeof P is a one-dimensional face & A facet
of ad-dimensional polyhedroR is a face of dimensiod — 1. It can be shown that
any nonempty fac& of P can be obtained by turning some of the inequalities that
defineP into equalities, which are then calleéhdinginequalities. Thatisk = {z¢
P|cz=q;, i €1}, whereciz< g fori €| are some of the rows iBz< g. A facet is
characterized by a single binding inequality thatisdundant that is, the inequality
cannot be omitted without changing the polyhedrord-Aimensional polyhedroR
is calledsimpleif no point belongs to more thashfacets ofP, which is true if there
are no special dependencies between the facet-defining inequalities.

Thebest response polyhedréhfor player 1 is the set of player 1's mixed strate-
giesx together with the “upper envelope” of expected payoffs (and any larger payoffs)
v to player 2. The best response polyhed@for player 2 is defined analogously:

={(xV)eERMxR|x>0,1"x=1 B'x< 1v},

{(x,
{(yy) eRNxR |Ay<1u y>0, 1Ty=1}. @)

As an example, consider tl3ex 2 bimatrix game(A, B) with

Ol ol
Il



A=

3 3 3 2
25], lez e]. (5) [exanpis]

0 6 3 1

In this exampleQ is the set of triplegya, ys, u) that fulfill 3y + 3ys < U, 2y4+ 5ys <

U, Oy4 +6ys < U, Y4 > 0, y5 > 0, andy, +ys = 1. The left picture in Figdl showsQ

for 0 < y4 < 1 which uniquely determineg asl—y,. The circled numbers indicate

the facets oD, which are either strategiég M of the other player or own strategies

j € N. Facets 1, 2, 3 of player 1 indicate his best responses together with his expected
payoffu. For example, strategy 1 is a best response when2/3. Facets 4 and 5 of
player 2 tell when the respective own strategy has probability zero, ngmely or

ys =0.

Ol

oNe

0 Y,
0 S
0 1 (5)
Fig. 1 Left: Best reponse polyhedrdfor (5). Bottom right: Corresponding poly-
topeQ, which has vertice§, p,q,r,s. Top right: Best response polytopewith ver-

tices0,a,b,c,d,e.

We say a pointy, u) of Q haslabelk € MUN if the kth inequality in the definition
of Q is binding, which fork =i € M is theith binding inequalityy jenaijy; = u
(meaning is a best response 19, and fork = j € N is the binding inequality; = O.
In the example(ys,ys,u) = (2/3,1/3,3) has labels 1 and 2. The labels of a point
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(x,v) of P are defined correspondingly: It has labé M if x; = 0, and labelj in N
if SiembijXi =v.

With these labels, an equilibrium is a p&i;y) of mixed strategies so that with
the corresponding expected payoffandu, the pair((x,V), (y,u)) in P x Q is com-
pletely labeledwhich means that every labek M UN appears as a label ¢f, v) or
of (y,u). This is equivalent to the best response conditiZhsad ), which say that
in equilibrium, every pure strategy is a best response or has probability zero.

The constraintdd) definingP andQ can be simplified by eliminating the payoff
variablesu andv, which works if these are always positive. For that purpose, assume
that

AandB' are nonnegative and have no zero column. 1

We could simply assum& > 0 andB > 0, but it is useful to admit zero matrix entries
(e.g. as in the identity matrix). Even negative entries are possible as long as the upper
envelope remains positive; for exampdeg, (currently zero) in[§) could be negative,
as Fig[lshows.
We changeP by dividing each inequalit§ <y bijx; < v by v, wherev is positive
by (). This gives the new inequality;-y bij (X /v) < 1, where we treax; /v as a new
variable that we call agaig. The resulting polyhedron B. Similarly, Q is replaced
by Q by dividing each inequality ity < 1u by u. Then

P={xeRM| x>0, B'x<1},

Q={ycEN |Ay<1 y>0}. %

It is easy to see thab) implies thatP andQ are full-dimensional polytopes, unlike

P andQ. In effect, we have normalized the expected payoffs to be 1, and dropped the
conditionsl"x =1 and1"y = 1. Nonzero vectors € P andy € Q are multiplied by
v=1/1"xandu=1/1"yto turn them into probability vectors. The scaling facters
andu are the expected payoffs to the other player.

The setP is in one-to-one correspondence wiRh- {0} with the map(x,v) —

X- (1/v). Similarly, (y,u) — y- (1/u) defines a bijectiorQ — Q — {0}. These bi-
jections are not linear, but are known as “projective transformations” (for a visual-
ization see von Stengel (2002, Fig. 2.5)). They preserve the face incidences since
a binding inequality inP (respectively,Q) corresponds to a binding inequality in

P (respectively,Q) and vice versa. In particular, points have the sdateels de-

fined by the binding inequalities, which are some of the n inequalities that de-

fine P andQ in (7). An equilibrium is then defined by a completely labeled pair
(x,y) € PxQ—{(0,0)}; for brevity, we say(x,y) “is” a Nash equilibrium, with the
understanding thatandy have to be rescaled to become probability vecteig'1" x
andy-1/1"y, respectively.

For the exampldH), the polytope$ andQ are shown on the right in Fiffl Any
pointx in P has at most three labels, and any Q has at most two labels, and only
vertices have that many labels. The following three completely labeled vertex pairs
define the Nash equilibria of the game: The pure strategy equilibfaus), and the
mixed equilibria(b,r) and(d, q). For example, verteli= (2/7,1/14,0) " of P has la-
bels3, 4,5, and vertex = (1/6,1/9) " of Q has labeld and2, so(b,r) is completely
labeled. This corresponds to the mixed strategy pedy3,1/3,0)",(2/3,1/3)7).

The vertices ande of P, andp of Q, are not part of an equilibrium.
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Remark 1A bimatrix game(A, B) is nondegenerate if the polytopPsandQ in (7)
have the property that no point has more tham labels, and no point iQ has
more tham labels.

Proof. If xe P andx has support of sizeandL is the set of labels of, then|LNM| =
m—k, so|L| > mimpliesx has more thak best responses InNN. O

If (A,B) is nondegenerat® andQ are simple polytopes, because a poinPpf
say, that is on more tham facets would have more thanlabels. Even ifP andQ
are simple polytopes, the game can still be degenerate dekeriptionof P or Q is
redundant in the sense that some inequality can be omitted, but nevertheless is some-
times binding. This occurs if a player has a pure strategy that is weakly dominated
by or payoff equivalent to some other mixed strategy. Redundant inequalities of this
kind, or non-simple polytopes, do not occur for generic payoffs. A strictly dominated
strategy may occur generically, but it defines a redundant inequality that is never
binding, so this does not lead to a degenerate game.

If the game is nondegenerate, only verticesPofan havem labels, and only
vertices ofQ can haven labels. Otherwise, a point ¢ with m labels that is not a
vertex would be on a higher-dimensional face, and a vertex of that face, which is a
vertex of P, would have additional labels. Consequently, only vertice® ahd Q
have to be inspected as possible equilibrium strategies.

4 Degenerate games

In a degenerate game, a vertexyffor example, may have more thamlabels. As
an example, consider tt3ex 2 game

3 3 3 3
A=|2 5/, B=|2 6, (8) [asgen]

0 6 3 1

which agrees withg) except thab;s = 3. The polytopeQ for this game is the same
as before, shown on the right in F@. The polytopeP, shown in the left in Fig2,
differs fromP in Fig.[@ only in that vertexb has merged witla.

Degenerate games may have infinite sets of equilibria. In the exaB)pilettex
a of P, which represents the pure stratedy0,0) " of player 1, together with the
entire edge of) that joins vertices ands, defines a component of Nash equilibria,
where player 2 plays some mixed stratégy, 1 —ya) for 2/3 <y, < 1.

The following central observation characterizes all Nash equilibria of a general
bimatrix game A, B) with P andQ as defined inf{).

Proposition 3 For K,L C MUN, let

PK)={xeP|VieKNM: x=0, VjeKNN:(B'x); =1}
QL) —{ycQ|vicLnM: (AYi—1 VjeLnN: y—o} O [ma]

Then(x,y) € P x Q—{0,0} is a Nash equilibrium if and only if there are sésand
L sothatK UL =MUN and(x,y) € P(K) x Q(L).



(1) (back) p
r
@] o \@
X Y,
2 0 @ s 4
(3) (bottom)
X1
Fig. 2 Best reponse polytopes for the degenerate gine (

Proof. GivenK andL so thatKk UL = MUN, any (x,y) € P(K) x Q(L) is by ©)
completely labeled. Ik = 0, thenB'x < 1, sox has no label ifN (i.e., K C M),
which impliesN C L and thereforey = 0 (and thusAy < 1 andL = N, K = M);
similarly, y = 0 impliesx = 0. However, the casgx,y) = (0,0) is excluded, s@x,y)
is a Nash equilibrium.
Conversely, given a Nash equilibriumy) in P x Q—{0, 0}, it belongs tdP(K) x
Q(L) whereK andL are the sets of labels afandy, respectively. O
Clearly, the seP(K) in (9) is a face ofP, andQ(L) is a face 0ofQ. By Prop[3, the
set of Nash equilibria is the union of produ&&) x Q(L) of faces of the polytopes
P andQ. The following proposition, due to Winkels (1979) and Jansen (1981), char-
acterizes these products in terms of pairs of verticd3aidQ. We writeconwU for
the convex hull of a sed.

Proposition 4 Let(A,B) be a bimatrix game, angk,y) € P x Q. Then(x,y) is a Nash
equilibrium of (A, B) if and only if there is a sét) of vertices o — {0} and a seV

of vertices ofQ — {0} so thatx € conwJ andy € conw, and everyu,v) e U xV is
completely labeled.

Proof. By Prop[3 any Nash equilibriungx,y) belongs toP(K) x Q(L) for suitable
K,Lwith KUL=MUN. LetU andV be the sets of vertices 8{K) andQ(L), which
are also vertices d? andQ, respectively. TheP(K) = convU andQ(L) = conw/,
which shows the “only if” part.

Conversely, given vertex sdtsandV so that everyu,v) € U x V is completely
labeled, leK be the set of labels common to alke U, and letL be the set of labels
common to alv e V. ThenK UL = MUN, because otherwise there would be some
label that was missing from somec U and from somev € V, so that(u,V) is not
completely labeled, contrary to the assumption. ThbemU C P(K) andconw C
Q(L), which implies the “if” part by Progd3 O

Propositiorld shows that the set of all Nash equilibria can be completely de-
scribed by the (finitely many) Nash equilibria that are vertex pai® ®fQ. These
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are also calleéxtremeequilibria in the sense that they are not convex combinations
of other equilibria. For example, the two extreme equilif@das) and (a,r) of the
game[B) represent the componefd} x conv{r,s} of equilibria mentioned above.
Consider the bipartite grapR on the vertices oP — {0} andQ — {0} whose
edges are the completely labeled vertex pgéirg), which are the extreme equilibria
of (A,B). The maximal “cliques” (maximal complete bipartite subgraphs} of the
form U x V then define sets of Nash equilibdanvU x conw/, as in Propidl whose
union is the set of all Nash equilibria. These sets are called “maximal Nash subsets”
(Millham 1974). They are also the maximal sets of the fotm Y so that any two
Nash equilibria(x,y) and(x,y’) in X x Y areinterchangeablén the sense that then
(X,y) and(x,y') are equilibria as well, which is a property of equilibria in zero-sum

games.
yvioyr oy oy 1,2
G @D o o o —"
2| 0 0 0, y%)
N 0.5
b 04,y%) 0¢.¥°)
x*'0 0 O @ o O,y

Fig. 3 Left: Incidence matrix of a bipartite grapR of extreme equilibria, with

its maximal cliques. Right: Geometry of the two equilibrium components. One
of them is the union of the three maximal Nash subsefs x conv{y!,y?},
conv{xt,x?,x3} x {y?}, andconv{x?,x3} x conv{y?,y®}, and the other consists of

a single vertex paifx*,y*).

Maximal Nash subsets may be nondisjoint, as in the abstract example [B, Fig.
or the game in[I7) below. The inclusion-maximal connected sets of Nash equilibria
are usually called the (topological) equilibritsomponentsThe concept of “stable”
equilibria applies to such components; see Kohlberg and Mertens (1986).

The set of extreme equilibria suffices to describe all equilibrium components as
well as their maximal Nash subsets, because if two Nash subsets are not disjoint, they
have a common vertex pair (because by PBmoth Nash subsets are products of
faces ofP andQ, and so is their intersection). Hence, equilibrium components are
obtained as connected components of the bipartite graghove, which are found
by a straightforward graph search algorithm (e.g., Cormen et al. 2001).

Algorithm 2 ( Clique— Equilibrium components) Input: All pairs (x,y) of extreme
equilibria. Output: All components of Nash equilibria, given as unions of maximal
Nash subsetdviethod: Consider the set of extreme equilibria as a bipartite giRRph
Each connected compondlbf R defines an equilibrium component; enumerate the
maximal cliques o, which define the maximal Nash subsets.
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All maximal complete bipartite subgraphs Rfcan be found by a variant of the
elegant clique enumeration algorithm by Bron and Kerbosch (1973). An implementa-
tion of theClique Algorithm[2 by von Stengel (1998) is used in the computer systems
of McKelvey, McLennan and Turocy (2007), Canty (2003), and Savani (2005).

In the rest of paper, we are concerned with algorithms for finding all extreme
equilibria, which define the input for thélique Algorithm[2

5 Vertices and pivoting

We consider algorithms for enumerating the extreme equilibria of a bimatrix game.
These are vertex pairs of polyhedra derived from the payoff matrices. The algorithms
use standard techniques for representing polyhedra as they are known from linear
programming. For easy reference and in order to explain the details of our algorithms,
we summarize these methods in this section.

The inequalities defining a polyhedron are converted to equations with the help of
nonnegativeslack variablesand vertices are representedbasic feasible solutions
to these equations. Moving from one vertex to another along an edge of the polyhe-
dron is done by the algebraic operationpdfoting Pivoting is used by the simplex
algorithm for solving a linear program, and by the algorithm of Lemke and Howson
(1964) for finding one equilibrium of a bimatrix game.

Consider a polyhedron such@s={y € R" | Ay< g, y > 0} for anmx n matrix A
and m-vectord. Theny € Q if and only if there exists a vector of slack variables

r e R™so that
Ay-+r =q, y>0, r>0. (10)
The system[I0) is of the form
Cz=q (11)

for a matrixC, right-hand sidey, and a vector of nonnegative variables. The matrix
C has full row rank, so tha always belongs to the space spanned by the col@yns
of C. A basisp is given by a basi¢C; | j € B} of this column space, so that the square
matrix Cg formed by these columns is invertible. The correspondiagic solution

is the umque_vecto_zB = (zj)jep With Cgzg = q, where Fhe vanableg,— for j in B

are calledbasic variablesandz; = 0 for all nonbasicvariablesz; for j € 3, which
implies [IJ). If this solution also fulfillsz> 0, then the basig is calledfeasible If B

is a basis forlT]), then the corresponding basic solution can be read directly from the
equivalent systerﬁ[;lCz: Cglq, called atableay because the columns @glc for

the basic variables form the identity matrix. The tableau and fhilsi§ equivalent

to the system, also calleddictionary,

5 = 051q— > clglc,-z,- (12)
i7B

which shows how the basic variables depend on the nonbasic variables.

The basic feasible solutions @) represent the vertices of the polyhedron, for
the following reason. Setting any variablgsin (11) to zero defines a face of the
polyhedron. If these variables are the nonbasic variables of a basic feasible solution,
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that face contains only a single point of the polyhedron, which is therefore a vertex.
Conversely, consider a vertex of the polyhedron, given by a vector(I). The
vertex is a zero-dimensional face, defined by the binding inequalities that correspond
to the zero components af The positive components afdefine linearly indepen-
dent columns o€, because otherwise it is easy to see that there would be additional
positive solutions for the same binding inequalities, so that the face would not be
zero-dimensional. The linearly independent columns can be extended with suitable
additional column£; (for which zj = 0) to form a basis. In @egeneratdasic fea-
sible solution, some basic variables are zero; the respective vertex can typically be
represented by more than one degenerate basis. If all basic variables are positive, the
basis is callechondegenerate

We use algorithms that move from one vertex of a polyhedron to another vertex
along an edge. This corresponds to a change of the Basifl2) known aspivoting
Thereby, a nonbasic varialdg for somej not in 8 entersand a basic variablg for
somei in B leavesthe set of basic variables. The pivot step is possible if and only if
the coefficient of; in theith row of the current tableau is nonzero, and is performed
by solving theith equation forz; and then replacing; by the resulting expression in
each of the remaining equations.

For a given entering variablg, the leaving variable is chosen to preserve feasi-
bility of the basis. Let the components@;lq beg; and OfCl;le betj, fori € B.

Then the largest value af such that in[{2) zz = C[;lq—CE]'Cj zj is nonnegative is

given by

min{qi/tij |iep, Gij > 0}. (13)
This is called aninimum ratio testlf i in 8 achieves the minimum ifl@), thenz
can be chosen as a leaving variable. After pivoting, the new bagisiisj} — {i}.

The minimum in[[3) may be zero, if the current bagisis degenerate arg =0
for somei € B with ©j; > 0. Then the pivoting step changes the basis but not the basic
feasible solutiorz, so the corresponding vertex stays the same.

If the minimum in [L3) is not unique, two (or more) variables can leave the basis,
but only one variable does. The other variable stays basic and becomes zero after the
pivoting step, so that the new basis is degenerate.

Thelexicographic methoéxtends the minimum ratio te§f3) in such a way that
the leaving variable is always unique, even in degenerate cases. The method simulates
an infinitesimal perturbation of the right-hand siglef the given linear systenil{)
and works as follows. For arg/> 0, consider the system

Cz=q+(¢t,...,eMT (14)

which is equal to[l]) for € = 0 and which is gerturbedsystem fore > 0. Let 8 be
a basis for this system with basic solution

25 =Cgla+Czt (e ,eM  =q+Cz - (et,....eM) T (15)

andz; = Ofor j € B. Itis easy to see thag is positive for all sufficiently smalk if
and only if all rows of the matri*ch 1] arelexico-positivethat is, the first nonzero
component of each row is positive. ThBris called dexico-positivebasis. This holds
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in particular forg > 0 whenp is a nondegenerate basis for the unperturbed system.
Because(:[; ! has no zero row, any feasible basis for the perturbed system is non-
degenerate. In consequence, the leaving variable for the perturbed system is always
unique. It is determined by tHexico-minimum ratio teswhich is a straightforward
extension of[{J) (see Chatal (1983) or von Stengel (2002, p. 1741)). Pivoting with
the lexico-minimum ratio test moves from one lexico-positive basis to another. It uses
only the entries o€, ! and does not need an actual perturbation with positive

Our algorithms use exact arithmetic withtegersof arbitrary precision, which
avoids rounding errors of floating-point arithmetic. We isieger pivoting which
is superior to using fractions of integers (rational arithmetic) because their cancella-
tion requires greatest common divisor computations which tend to take the bulk of
computation time. In integer pivoting, the dictionah?) is stored with all numbers
multiplied by the determinant @, so that (by Cramer’s rule) these numbers are in-
tegers if the entries af are integers; the determinant is stored separately. Pivoting is
done by row operations on the system followed by a division by the old determinant,
which always produces integers (see Avis 2000, Sect. 7 or Azulay and Pique 2001).
In that way, the dictionary entries are kept from growing indefinitely.

6 Finding all extreme equilibria using vertex enumeration

We first describe a straightforward method to generate all extreme equilibria, which
define the input to the “Clique” Algorithidl

Algorithm 3 (Enumerating and matching vertices of both polytopes) Input: Bi-
matrix game(A,B). Output: All extreme equilibria(x,y). Method: Enumerate all
verticesx of P— {0} andy of Q— {0} in (@), and output every completely labeled

pair (x,y).

Enumerating all vertices of polytope is an important, well-studied and difficult
problem in polyhedral computation. It is still unknown if it is possible to do this
efficiently in general, i.e., in time polynomial in both the input and output size. Two
basic ways to solve this problem are by the double description method (see Motzkin et
al. (1953), Fukuda and Prodon (1995)) and by pivoting (se&@h¢1983), Avis and
Fukuda (1992)). Both methods have their strengths and weaknesses, as is discussed
in detail in Avis et al. (1997). As either method may be used for Algorme give
a few remarks here.

Double description methods tend to work well for highly degenerate polyhedra,
especially those with relatively few vertices. These polyhedra cause pivoting methods
to behave very badly. A drawback is that a large amount of memory may be required
for intermediate steps, even when the output size is small. When the output size is
large, this can cause the program to run out of memory. We remark that the polytopes
P andQ may have as many ds+n).™2) and(m-+n)L"/2l vertices, respectively.

General pivoting pivoting methods may use large amounts of memory also, but
this problem has been eliminated in Avis and Fukuda’s (1982rse searchalgo-
rithm. This uses space proportional only to the input sizeQ(en), and produces
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the output as a stream that need not be saved, or can be saved off-line. These proper-
ties will be exploited in thdrsNashAlgorithm[4lto be presented later. The problems
associated with degenerate polyhedra have been overcome to some extefdxn the
icographic reverse searcilgorithmirs (Avis 2000; 2006).

Consider the polytop® as defined in[{). It has a known verte®, which is the
unique point o at which the linear objective function— —1' xis maximized. The
simplex algorithm for maximizing this linear function computes from any vertéx of
a path of pivoting steps t@. With a deterministic pivoting rule, that path is unique. In
Irs, that pivoting rule chooses the variable with the least index (i.e., smallest subscript)
that improves the objective function as entering variable, and the leaving variable via
the lexicographic rule described aftAEj. (In contrast, the earlieeverse searchy
Avis and Fukuda (1992) used Bland’s least-index rule for the leaving variable.)

e

d 0

/TN

(A A

Fig. 4 Left: Tree of simplex steps for maximizingl'x on the polytopeP for the
example[B). Right: The corresponding reverse search tree.

o]
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The unique paths of simplex steps from the verticeB td 0 define a tree with
root 0. For the polytopeP resulting from the exampl&), as in the top right picture
of Fig.[D that tree is shown on the left in Fidl Thelrs algorithm explores this tree
by traversing the edges in the reverse direction using a depth-first search, which in
the example outputs the vertices in the ordex, c,b,d, e. For a given vertexi of P,
the childrenv of uin the tree are found by considering possible reverse pivots from
to v and then checking if the simplex rule would actually move frota u.

The simplex method moves from basis to basis, but several degenerate bases may
represent the same vertex, which should be output only once. For a given vertex, it is
straightforward to determine if a given bagighat represents it is lexicographically
smallest, that is, there is no bagisrepresenting the vertex withe 8/ — 8 andj < i
for all i € B — B’ (Avis 2000, Prop. 5.1). Moreover, that lexicographically smallest
basis is also lexico-positive (Avis 2000, Prop. 5.2). The vertex is only output when
this lexicographically smallest basis is encountered, so there are no duplicate vertices
in the output list.

When usinglrs for enumerating the verticesof P (and similarly ofQ) in Al-
gorithm[3, the missing label& of x can be identified from the positive slack vari-
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ables (which are only visible ag > 0 whenk € M, but not wherk € N) via the
printslack option ofIrs. This allows a straightforward implementation of Algo-
rithm 3 with Irs, which is used in the website of Savani (2005). For each vertex, its
set of labels is stored as a pattermof- n bits. For each vertex of P, the matching
verticesy of Q are searched linearly to find the equilibfigy). If P hasp andQ
hasq vertices, this matching process takes ti®gaq), but it tends to be negligible
in comparison to enumerating the vertices in the first place, uplesglq are very
large. The space required is proportionalpte- g, the output size of the two vertex
enumeration problems, both of which must be completely solved.
The following algorithm has several advantages over Algoriffnfrirstly it re-
quires that only one of the two vertex enumeration problems needs to be completely
solved. SinceP® and Q need not be related in any way, one of them may well be
easier than the other in terms of vertex enumeration. Secondly, the new algorithm re-
quires only memory proportional to the input si2émn) rather than the output size
O(p+q), which as we saw may be super-exponentiahiandn. Thirdly the equilib-
ria are produced as as a stream while the vertex enumeration is being performed, so
useful output may be obtained even when a complete enumeration of all equilibria is
not tractable. Fourthly, it does not require a separate matching process.
ThelrsNashAlgorithm[4 enumerates the verticef only one polytope, sap.
The seK of labels ofx defines a sdt = (MUN) — K of labels missing fronx that a
vertexy of Q must have in order to obtain an equilibriumy). The labels irL define
the faceQ(L) of Q according to[@). If the game is nondegenerate, then, by Reriihrk
|[K| =mand|L| = nandQ(L) is either empty or a single vertex §f If the game is
degenerate, then it is possible thiat < n so thatQ(L) may be a polytope of higher
dimension, although typically still of much smaller dimension tkarf Q(L) is not
empty, it has a vertex that can be used as a starting point for enumerating its vertices
with Irs.

Algorithm 4 (IrsNash Input: Bimatrix game(A, B). Output: All extreme equilibria
(x,y). Method:For each vertex of P— {0} and seL of labels missing fronx,

(a) determine whethéd(L) is empty or else find a vertex @J(L), and then

(b) enumerate the verticgf Q(L) and outputx,y).

ThelrsNashAlgorithm[@is implemented as the methadsh of thelrs program
(Avis 2006). We explain the implementation of part (a), where we assume some fa-
miliarity with linear programming terminology (see, for example, &ay (1983)). A
standard way to solve (a) is the phase-1 simplex method. However, we use a special-
ized approach which is adapted to the uskofor enumerating the vertices Bfand
therefore very fast.

We distinguish two types of dictionaries.fall dictionary as in [[2) is an equiva-
lent way of representing all linear constraints that de@n&he corresponding basis
does not have to be feasible. Irreduced dictionarysome nonbasic variables are
fixed at zero. The corresponding columns are omitted, so the reduced dictionary no
longer represents the full information abdpt It may happen that a row of the re-
duced dictionary has all coefficients and right-hand side zero (so the basic variable is
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zero); that row is then omitted. (A zero row cannot appear in a full dictionary because
the system has full row rank.)

A vertexx of P defines a sdt of missing labels. We first create a full dictionary
where as many elementslofas possible become nonbasic variables (we identify the
variables of the dictionary with the elementshdfJ N). This is done by starting with
some full dictionary and pivoting iteratively a basic variableLirout of the basis
using any entering column that does not belong.td@he pivot element can be any
nonzero coefficient because the dictionary does not have to be feasib2(L)dbe
any full dictionary so that the nonbasic variables contain a maximal subk¢b&itn
L itself).

When usindlrs to enumerate the verticesof P (with missing label seL), the
next vertexx’ (with missing label set’) is often adjacent ta. In that case, the full
dictionaryD(L’) is usually quickly obtained fror®(L). Moreover,rs keeps a cache
for storing previous vertices to speed up backtracking, aidNashalso caches
the corresponding full dictionarig3(L). This creates the main speedup compared to
using a standard phase-1 simplex method for part (a) dfshiashAlgorithm[4l

After obtaining a full dictionaryD(L) (which is saved for finding the next dic-
tionaryD(L’) as described), it is converted to a reduced dictionary by eliminating all
columns that belong th, and afterwards omitting any zero rows, which may include
further elements of. Suppose some elementlofs basic in the reduced dictionary.
Then in that row, all coefficients of nonbasic variables (none of which belonigs to
are zero, because otherwise the basic variable could have been pivoted out. Hence the
basic variable is always equal to the constant in that row, which is nonzero (otherwise
the entire row would have been omitted), and the@gt) is empty, which com-
pletes (a). Hence, we can assume that the reduced dictionary has no varlgtde in
that the set of its feasible solutionsQgL).

The nondegenerate case is that= n and the reduced dictionary has no nonbasic
columns at all. Thei®(L) is nonempty if and only if the basic solution is feasible,
which is then the sole vertex IQ(L). In general, the reduced dictionary may have
some nonbasic variables. If the basic solution is feasible, it defines a vei@x pf
Otherwise|rs finds such a vertex, or determines that the system is infeasible, with
the dual simplex method. This completes part (a). Because the reduced dictionary has
typically low dimension, this part is negligible compared to the enumeration of the
vertices ofP. Finally, given a vertex of(L), a standard run dfs solves part (b) of
Algorithm[4

In the IrsNashAlgorithm[4, the roles ofP andQ can be exchanged, which one
could calllrsNash'. The running time ofrs is determined by the number of feasible
bases, so enumerating the vertice® g faster ifP is the polytope with fewer bases.
This is usually, but not always, the polytope of smaller dimension, that is, for the
player with fewer strategies. A featureld is that it can rapidly provide an unbiased
estimate of the number of feasible bases of a given polyhedron, and this can be used
as a preprocessing step to choose the polytope that plays the Poie Afgorithm[4l

In terms of running time, part (a) can typically be done quickly, as mentioned
after Algorithm[l Part (b) is necessary because it produces the equilibria, so their
number is always relevant for the running timeQfas much more feasible bases
thanP, only a fraction of them are visited bgsNash which is then much better than
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Algorithm[3 because the overall running time only depends on the enumeration of
the vertices oP.

A bimatrix game may have an exponential number of equilibria. For example, the
coordination game where each payoff matrix is the n identity matrix has2" — 1
equilibria; n x n games with more tha@.4" equilibria are described by von Sten-
gel (1999). Hence, enumerating all equilibria cannot be done in a running time that is
polynomial in the input size. A running time that is polynomial in thetputsize can-
not be expected either, because this would give a polynomial-time algorithm that de-
cides if a game has a unique Nash equilibrium, which is an NP-hard problem (Gilboa
and Zemel 1989). Algorithid]is howeverspace efficien Irs is used to do the ver-
tex enumeration. It requires onfy(mn) space to produce the possibly exponential
number of equilibria, output as a duplicate-free stream.

Algorithms3anddcan be extended so that only equilibria with a given minimum
payoff, sayu for player 1 andr for player 2, are enumerated. When enumerating all
vertices of polytopd, say, withlrs, this is done by terminating the reverse search
at verticesx where the objective function-1"x is less than-1/v. One way to do
this would be to add the additional constrairitx < 1/v to the definition ofP(L).
However this would mean that additional vertices would now be produced which are
not vertices ofP(L). They would need to be skipped, and the added constraint would
create many unnecessary pivots. Fortunately the structure of the reverse search tree
can be exploited. From the description given earlier in this section, we see that the
value of the objective function is maximized at the root, and decreases monotonically
along any path in the tree. We simply truncate the tree whenever a pivot would lead
to a vertex that violates the constraint. A similar method is used in the vertex enumer-
ation of Q(L). Clearly the game may not have any equilibria with payoffs satisfying
given bounds, and deciding whether such equilibria exist is NP-complete (Gilboa and
Zemel 1989).

7 The modified EEE algorithm

Audet et al. (2001) describe an algorithm they &HIEfor “Enumeration of Extreme
Equilibria”. The algorithm initially traverses a binary search tree. Each node of the
search tree represents a pair of parameterized linear programs where certain pure
strategies are constrained either to have probability zero or to be a best response. The
two children of a node are obtained by forcing either constraint for an additional pure
strategy. If the added constraint results in an infeasible system, the search terminates,
which hopefully happens as early as possible. If all pure strategies are either best
responses or have zero probability, the resulting solution is an extreme equilibrium.
In a degenerate game, an additional search is needed at this stage to find all extreme
equilibria.

We present two modifications of the originBEE algorithm by Audet et al.
(2001). The first was implemented as an extension of work by Rosenberg (2005),
the second is new and has not yet been implemented. Both algorithms are relatively
similar and differ fromEEE in how they handle degenerate games. We will explain
the algorithms in geometric terms, rather than as finding alternate solutions to pairs
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of parameterized linear programs, which clarifies their connection to Algorihms
andld We also specify each algorithm concisely as a recursive depth-first search.
Audet et al. (2001) allow for other traversals of the search tree, even though their im-
plementation is also a depth-first search. Further implementation issues are discussed
in Sect@

The EEE algorithm uses the polyhedRandQ in (@). (It could also be imple-
mented using the polytop&andQ in (7).) In the course of the computation, certain
inequalities that definB andQ in (@) are forced to be binding, represented by sets of
labelsK andL, which are subsets &fl UN. In analogy to[®), let

|3(K):{(va)€|3|Vi€KmM: Xi =0, ijKmN:(BTX)':V},
QL) ={(y,uyeQ|VieLnNM: (Ay)i=u, Vje LNN: y}:O}. (16)

A nodeof the search tree of the algorithm is defined by disjoint sets of labgdls
so that the faceB(K) andQ(L) are not empty. In addition t& andL, a node stores
witnessex andy so that(x,v) is a vertex ofP(K) and (y,u) is a vertex ofQ(L) for
suitable scalarg,u. These scalars are uniquely determinedxtgndy as the best-
response payoffs againsandy, respectively.

Suppos€K,L,x,y) represents a node of the search tree so|tatL| < m+n.
Then a new labeh not inK UL is selected and added to eith€or L, which defines
the two children of that node. However, if the resulting f&¢K U {h}) orQ(LU{h})
is empty, the respective child is omitted and the search tree pruned at that point.

The root of the search tree is given Ky= L = 0 and verticegx, v) of P and(y, u)
of Q, respectively. The root hasvelzero, and the level of any other node is one more
than the level of its parent. (The level of a node is one less than the search depth in
Audet et al. (2001) who start with the root at depth one.) At leveln, the label sets
K, L fulfil KUL =MUN, so that the witness pafk,y) defines an equilibrium. In a
nondegenerate game, all equilibria are obtained in this way. In general, not all extreme
equilibria are in obtained this way, becal®g) andQ(L) may not be singletons,
and an additional enumeration of vertices is required.

The first variant of th&eEE algorithm is as follows. Its details, in particular the
selection of the added lable| are explained afterwards.

Algorithm 5 (EEE-m— Modified EEE) Input: Bimatrix game(A, B). Output: All
extreme equilibria(x,y). Method: Implicit depth-first search on a binary tree by
choosing any verticeg,v) of P and (y,u) of Q, and callingvisit (0,0,x,y) with
the recursiverisit method in FigH

Algorithm[Bis based on theisit method, which is a standard recursive depth-
first exploration of a search tree. A nodé,L,x,y) of the search tree corresponds
to a call to thevisit method, and its children correspond to the two recursive calls
(if they take place) in lines 4 and 6, respectively. The level of the node is given by
KUL]|. At levelm+n, no further recursion takes place, and the method performs the
“else” part in lines 8-9.

Line 2 of thevisit method asks for the selection of a lalbelwnhich is added
toK orL in lines 4 and 6, respectively. Following Audet et al. (2001is chosen as
follows. Consider the slack vectoss= 1v— B x andr = 1u— Ay. First, suppose that
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visit (K,L,xy):
[ assumption: (x,v) vertex ofP(K), (y,u) vertex ofQ(L) 1]
if [KUL|<m+n then
selecthe (MUN) — (KUL)
if |K| <mand3 vertex(X,V) of P(KU{h}) then
visit (KU{h},L,X,y)
if |L| <n and3 vertex(y,u’) of Q(LU{h}) then
visit (K,LU{h},x,y)
else
for all vertices(x,v) of P(K) and(y,u) of Q(L):
output(x,y) if not already output earlier.

© ® N o ¢ A& w N R

Fig. 5 The recursiverisit method used in thEEE-mAlgorithm[E

(x,y) is not an equilibrium of the game. Then there is a ldbgb thatx,ry > O (that

is, h e M) oryhs, > 0 (that is,h € N), andh is chosen so tha,ry, or y»s, is maximal
among these products, with smallest sicn case of ties. Suppose that product
iS Xnrh, SO that addindh to K means forcing the equatiog, = 0 when changing
from the faceP(K) to its subfaceP(K U {h}), and addindh to L means forcing the
equationr, = 0 when changing from the fad@(L) to its subfaceQ(L U {h}). With

this heuristic choice offi, it is hoped to prune the search tree early when the smaller
faceP(K U {h}) or Q(LU{h}) is found to be empty.

If (x,y) is already an equilibrium, thexyrp = 0 andyhs, = O for all hin MUN.

Then anyh not inK UL is selected, and one can use the same witness for one of the
children in the search tree. For examplexif= 0, then addingh to K meansx is
already a witness for the fa¢K U {h}). However, then typically, > 0 holds and
forcingr, = O requires a new witnesg for the faceQ(L U {h}) corresponding to the
other child, if it exists, andx,y’) may no longer be an equilibrium. In short, during
the search it is irrelevant whether the witness paiy) is an equilibrium.

Lines 3—4 and 5-6 ofisit describe the branchings to the two children dur-
ing the search. In line 3 ofisit, a vertex(X,V) of P(K U {h}) is found using the
previous vertexx,v) of P(K). This vertex(x,v) corresponds to a basic feasible so-
lution with a dictionary that represen®where all variables ik are nonbasic. By
omitting these nonbasic columns altogether, we obtagdaced dictionarghat rep-
resentP(K), as explained after Algorithi#l Adding the constraint, = 0 (if he M)
or s, = 0 (if h e N, with s= 1v— B"x) means driving that variable, or s, out of
the basis, so that the variable becomes nonbasic and its column can be omitted from
the reduced dictionary so that it represeR{& U {h}). If this is not possible, the
system is usually infeasible. The only exception is if the variable corresponds to an
all-zero row of the reduced dictionary, in which case that row is omitted. This is anal-
ogous to the discussion following AlgoritHd In line 5 of visit, a vertex(y,u’) of
Q(Lu{h}) is found analogously.

As described so far, the search for a witnéstops at the first vertg’, v') found
on the faceP(K U {h}), which suffices for the algorithm to work. Audet et al. (2001)
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maximize anobjective functionsubject to the constraints that defiRéK U {h}).
Their objective function is<’T(Ay) —V (using the other witnesg), and similarly
(x"B)y — U to find a vertex(y',u) of Q(LU{h}) in line 5 of visit, in order to
“guide” the computation towards equilibr{a,y) where the sunx' (Ay) + (x' B)y —
u— v of these two objective functions is zero and therefore maximal. Sd&tieports
on computational experiments that compare this pair of objective functions by Audet
et al. (2001) with other possibilities.

In a nondegenerate game, no vertexPdias more tham labels, and no vertex
of Q has more tham labels. Hence, the conditidik UL| = m+ n that reaches the
final “else” part in lines 7-9 ofrisit (K,L,X,y) occurs only whernK| = m and
IL| = n. Then it suffices to output the unique equilibrimy) at this terminal node
of the search tree. Indeed, then the enumerations in line 8 are trivial because then

P(K) = {(x,v)} andQ(L) = {(y.u)}.
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Fig. 6 The polyhedrd andQ for the degenerate gani&f), and its extreme equi-

libria.

For degenerate games, we give an example that shows that we need the enumer-
ation in line 8 ofvisit. Consider the degenerate ga(eB) defined by

A:B 2} B:E ﬂ. 17)

The polyhedraP and Q are shown in FigEl The polyhedrorP has three vertices
(x1,X2,V), namely(1,0,4) with label se{2,4}, and(1/2,1/2,4) with label set{3,4},
and(0, 1,5) with label set{1,3}. The polyhedrorQ has only two vertice$ys, ya, V),
namely(1,0,2) with label set{1,2 4}, and(0, 1,5) with label set{1,2 3}. The game
has four extreme equilibria: The two pure equilibf{a, 0), (0,1)) and((0,1), (1,0))
shown as pairs of triangles and pentagons, respectively, ifgFand two equilibria
((1/2,1/2),(1,0)) and ((1/2,1/2),(0,1)) that use the mixed strategy of player 1,
indicated by the square P paired with either square iQ. The maximal Nash sub-
sets (see Prof) of the game are corf{1,0),(1/2,1/2)} x {(0,1)},{(1/2,1/2)} x
conv{(1,0),(0,1)}, and con{(1/2,1/2),(0,1)} x {(1,0)}.
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The only two-element seté so thatP(K) is not empty areg{2,4}, {3,4}, and
{1,3}, which define the three vertices BfK). Then the last level 4 of the search
tree is reached fok = {1,3}, {1,2}, and{2,4}, respectively. FoL. = {1,3} and
L = {2,4}, the corresponding fad®(L) is a vertex; these two paif¥,L) give the
pure-strategy equilibria. F&K = {3,4}, x = (1/2,1/2), andL = {1,2}, however,
Q(L) is a higher-dimensional face, an edgeQ@fOnly one of its vertices gives a
witnessy, for exampley = (1,0). If one would now only output the equilibriu(x, y),
one would miss the equilibriurfx,y’) for the other vertey’ of Q(L), in the example
y = (0,1), so the enumeration in line 8 efisit is needed.

The necessity of doing additional enumeration after reaching taveh of the
search tree was already observed by Audet et al. (2001); we discuss their implemen-
tation of this stage in Sed8 The following proposition asserts that Algorittfsris
correct, which is slightly more involved than the original correctness proof of Audet
et al. (2001) for theiEEE algorithm which does not test for the conditigfg < m
and|L| < ninlines 3 and 5 of theisit method.

Proposition 5 AlgorithmE enumerates all extreme Nash equilibria of the game.

Proof. Let (x,y) be an extreme equilibrium, with verticés, v) of P and(y,u) of Q.
Let Ky andLy be the sets of labels ofandy, respectively. We claim that there are
disjoint setsK andL so that|K| =m, |L| = n, andK C Ky andL C Ly (note thatk
andL need not define bases that represent the vertices). Namely, te_d¢tis the
disjoint union ofky — Ly, KyNLy andLy — Ky. With k= |[Ky—Ly| andl = |Ly — K|, we
havek < mbecausély| > nandl < nbecausgK,| > m. PartitionK, N Ly arbitrarily
into setsK’ andL’ of sizesm— k andn— I, respectively. Then the claim holds with
K= (Kx—Ly)UK"andL = (Ly — Ky) UL".

Then (x,v) and (y,u) are vertices of the face®(K) andQ(L), respectively, so
these two faces are nonempty, and the two vertices are found in line 8 of ¢he
method in FigE O

Because of the size constraifit§ < mand|L| < ninlines 3 and 5 of theisit
method in Fig[5, the enumeration in line 8 is reached only for 4tk with |[K| =m
and|L| = n. This has the advantage that even when only one of the polyFeair®
is simple and has no redundant inequalities due to weakly dominated or payoff equiv-
alent pure strategies, as in Hfj.the list of extreme equilibria is free of duplicates:

Proposition 6 If P or Q are nondegenerate in the sense that no vertéXluds more
thanm labels or no vertex o has more tham labels, then the extreme equilibria
are enumerated without the need to check for duplicates in lines 8-9 ofithe
method.

Proof. Suppose thaP is nondegenerate as described; the cas®f analogous.
ThenP(K) in line 8 of thevisit method consists of a single vertéx v) because
|K| = m, so distinct set& will produce distinct equilibrigx, y). O

As the proof of PropB shows, an even weaker condition is tR4K) (or cor-
respondinglyQ(L)) is a singleton for anyn-element seK encountered during the
search. A sufficient condition for this is that atlbasic variables are positive in the
reduced dictionary that represe®& ). As long as this holds for all bases found for
either polyhedron, one can omit the search for duplicates in linev@aft .
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The tests forlK| < mand|L| < nin lines 3 and 5 ofvisit are new. In the
original EEE algorithm of Audet et al. (2001), larger sé¢sor L are considered until
KUL = MUN. This may lead to unnecessary duplicates: In the exarfide 4ll
equilibria are found again with the sefsL of labelsK = {4}, L = {1,2,3}, and
K = {3}, L={1,2,4}, as Figld shows.

We now give another version &EE that handles the problem of degenerate
games in a different manner. In this version we allow the<stet exceedn elements.

Algorithm 6 (EEE-2— Modified EEE, version 2) Identical to Algorithm, except
that thevisit method is replaced by theisit’ method in FigZl

visit’ (K,L,x,y):
if |[KUL| <m+n then
selecthe (MUN) — (KUL)
if Jvertex(X,V) of P(KU{h}) then
visit/ (KU {h},L,X,y)
if |L| <n and3vertex(y,u’) of Q(LU{h}) then
visit' (K,LU{h},x,Y)

© ® N o o A W N e

else
if K is the set of all labels of then
enumerate all verticey, u) of Q(L) and outputx,y).
Fig. 7 The recursiverisit’ method used in Algorithil

Note that if P is nondegenerate as in Pré@(in particular if the game is non-
degenerate), then the label $ettannot contain more tham labels andP(K) is a
singleton, so that th&EE-2 Algorithm [@ behaves identically to thEEE-m Algo-
rithm[E In the game[l?), the two algorithms behave differently whénandB are
interchanged, that is, when the polyhedra in Bgwitch roles; for simplicity, as-
sume we switch the nam@&andQ in that figure but keep the labels. Then the only
cases wher& in line 8 of visit’ is the set ofall labels of a vertex (of the right
polyhedron in FigB) is for K = {1,2,3}, L = {4} andK = {1,2,4}, L = {3}. Then
the enumeration in line 9 afisit’ produces each extreme equilibrium exactly once.
The following proposition asserts that this is the case in general.

p-ee2| Proposition 7 AlgorithmB@enumerates all extreme Nash equilibria of the game with-
out duplicates.

Proof. Let (x,y) be an extreme equilibrium, so th@t v) and (y,u) are vertices of
P andQ, respectively, with equilibrium payoffg andu. Let K be the complete set
of labels ofx, so thatP(K) = {(x,v)}. Now L = (MUN) — K, soL is the set of
labels missing fronx. All labels inL are labels of becausé€x,y) is an equilibrium.
Therefore the fac®(L) of Q containgy,u) and is not empty, and lines 7-9wufsit’
are reached with parameté¢sandL. Then the vertexy,u) of Q(L) is found in line 9,
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and(x,y) is output. Becausk is the set of all labels of, the enumeration in lines 9 is
performed at most once for each veneof P. Therefore, if the vertex enumeration of
Q(L) produces vertices without repetition, e.g. by udiisgthen the equilibrigx, y)
are also output without repetition. O

Like thelrsNashAlgorithm[4], the EEE-2 Algorithm[Gis space efficient ifrs is
used to enumerate vertices. The search tree has depth, so an efficient imple-
mentation may need to cache up to this many dictionaries, each oD&mr). The
vertex enumeration in line 9 requires an additiod&nn) space.

We conclude with an improvement of Algoritiomitted initially for simplicity.
If {(X,V)} =P(Ku{h})inlines 3-4 ofvisit’, then there is no need for subsequent
branching in lines 1-6. We may add all labelsxbfo K, setL to be the remaining
labels, sex = x' and go directly to line 8. Note thg(L) may in this case be empty, in
which case no output is producedxlfis a highly degenerate vertex, this eliminates
uneccessarily creating a large subtree at the current node. However, this shortcut to
the search may create duplicate outputs, because the complete labelxehyr
now be produced in different ways. It is therefore necessary to modify line 8 so that
vertex enumeration is only done once for each vextexhich requires maintaining a
list of such vertices. This in turn means that the algorithm is no longer space efficient,
as this list may have exponential size.

Detecting the conditiod(X,V)} = P(K U {h}) depends on the implementation.
If we have an explicit reduced dictionary that represéits U {h}), this condition
happens when the dictionary has no cobasic columns.

Finally, theEEE-2Algorithm[@is not symmetric between the two players. Imple-
mentations and tests, which have yet to be done, should show which order of players
is best, and how the algorithm competes with BteE-mAlgorithm[5

8 Implementation and computational experiments

In this section, we discuss aspects of the implementations diBtealgorithm by
Audet et al. (2001) and Rosenberg (2005), and its modification in Algofihvie
report on the empirical performance of these variants for some instances of games.

We also describe results of computational experiments that compaEEthal-
gorithm (its original versiolEEE-0 as well a£EE-n) with thelrsNashAlgorithm[4l
Both algorithms have their strengths and weakne$d€RK:is not very suitable for de-
generate games, already acknowledged as a possibility by Audet et al. (2001). How-
ever, for larger nondegenerate games, in particular square games, it scales better than
an algorithm based on vertex enumeration sudnsiash

The implementation of thEEE algorithm by Audet et al. (2001) uses the com-
mercial CPLEX solver for linear programs. It uses floating-point arithmetic, which
may produce rounding errors. Equalities are assumed to hold whenever the compared
numbers differ by less thak0D~°, so the computation is not exact. In contrast, Rosen-
berg (2005) has implemented tE&E algorithm as a stand-alone program in Java
with exact arithmetic and integer pivoting (see the end of &ct.

Both Audet et al. (2001) and Rosenberg (2005) use multiway branching as an
implementation of the vertex enumeration in line 8 of theit method in Fig[8
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[

multiway (K,L,X,y):

assumptionsK UL = MUN, equilibrium(x,y),

(x,v) vertex ofP(K), (y,u) vertex ofQ(L) ]

output(x,y) if not already output earlier
s=1v—-Ay, r=1u—B'x

for all he M so thatx, > 0 and for all h e N so thats, > 0
if 3 vertex(x,V) of P(KU{h}) then

for all he M so thatry, > 0 and for all h € N so thaty, > 0
if 3 vertex(y,u’) of Q(LU{h}) then

multiway (KU {h},L,X,y)

multiway (K,LU{h},xY)

Fig. 8 Recursivemultiway method that implements the vertex enumeration in
line 8 of visit in Fig.[5by Audet et al. (2001) and Rosenberg (2005).

This is shown as the recursive methedltiway in Fig.[8 The vectorss andr of

slack variables in line 2 are already stored in the reduced dictionaries that represent
P(K) and Q(L), and are also available when using CPLEX. The possible indices
h in lines 3 and 6 are positive basic variables of these dictionaries, and therefore
not elements oK UL. When all cobasic variables have been eliminated from the
reduced dictionary, the recursion is terminated immediately in the implementation by
Rosenberg (2005) which has explicit access to the dictionary. This is slightly faster
than the method of Audet et al. (2001) which terminates after unsuccessfully trying
to set all positive basic variables to zero at that point.

size|[ 5x5 [ 5x10 [ 5x15 [ 5x20 [ 5x25 [ 5x30 [ 10x10 [ 10x15
sparse payoff matrices, nonzero with density 0.5
#NE 6.3 5.6 12.8 9.6 7.1 18.1 6.8 9.5
EEE-m 0.30 0.02 0.45 0.31 0.30 1.14 0.17 0.69
EEEo0 0.54 0.03 1.23 0.44 0.32 2.89 0.14 0.77
IrsNash 0.01 0.03 0.03 0.04 0.07 0.11 0.30 1.43
IrsNash’ 0.01 0.04 0.24 1.08 3.43 8.47 0.31 5.01
sparse payoff matrices, nonzero with density 0.2
#NE 13.3 38.3 27.7 36.1 51.9 35.0 334.6 1967.3
EEE-m 0.05 0.24 3.14 0.26 9.84 | 25.07 26.94 | 388.98
EEEo0 0.09 | 13.63| 10.83 1.23 | 44.33| 148.41 | 3183.81| 1658.49
IrsNash 0.02 0.02 0.03 0.03 0.05 0.05 0.21 0.75
IrsNash 0.01 0.04 0.11 0.32 1.43 3.44 0.25 1.75

Table 1 Average running times in seconds for degenerate games obtained by sparse
payoff matrices. Depending on the game size, around ten random games were tested
for each size and density. #NE is the average number of extreme Nash equilibria,

EEE-o is the originaEEE algorithm without the testd| < mand|L| < nin lines 3
and 5 of thevisit method in Fig[B, andirsNash' is thelrsNashAlgorithm 4 with

P andQ interchanged.

t-testdeg



Themultiway branching in Figl8is an extension of the binary branching in
visit. In effect, it is a brute-force and inefficient vertex enumeration as required

in line 8 of visit. This is probably one of the reasons i E performs poorly
on degenerate games, as shown in the comparison of running!timegy. Il For
payoff matrices with a density 0.2 of nonzero entrleEF-0 may perform very badly
on some instances. FBEE-m, the test$K| < mand|L| < ninlines 3and 5 ofisit
improve this behavior, which is still much worse than thalrelashfor these game

sizes. In a future implementation, line 8 wfsit should be performed by a call to
Irs, which so far has not happened because of the different programming languages
(Java and C) used for the two programs. These also affect the running times to some

extent.

size 5x5 5x10 5x 15 5x 20 5x 25 5x 30
#NE 3.0 3.6 7.4 9.0 7.6 14.4
EEE-m 0.06 0.05 0.51 0.94 1.66 3.24
IrsNash 0.01 0.03 0.04 0.04 0.08 0.11
size 10x 10 | 10x15 | 10x20 10x 25 10x 30
#NE 11.2 20.0 30.0 31.6 34.5
EEE-m 1.18 1.68 5.00 10.19 21.79
IrsNash 0.35 1.38 3.20 5.24 9.75
IrsNash’ 0.32 6.42 90.81 466.01 | 3079.38
size 15x 15 | 15x20 15%x 25 15x 30
#NE 36.6 55.8 117.8 174.8
EEE-m 10.21 31.88 137.18 398.09
IrsNash 50.28 199.26 651.26 772.83
IrsNash’ 42.20

size 20x 20 20x 25 20x 30
#NE 140.7 320.2 651.0
EEE-m 299.40 | 1728.48| 8341.56
IrsNash 5628.06 | 23154.05 00
IrsNash’ 4836.70

size 25%x 25 25%x 30
#NE 354.0 327
EEE-m 6309.72 | 19000.81
IrsNash 00 o

Table 2 Average running times in seconds for nondegenerate games with random
full matrices. Typically ten games were tested per size, fewer for large sizes. Tests
showinge were cancelled because they took longer than a day.

For random games with full payoff matrices, which are in most cases nondegen-

erate, theEEE algorithm behaves better and scales well, as shown in TAblae
original EEE algorithmEEE-o is then identical t&EE-m ThelrsNashAlgorithm[4]

becomes inferior t&e EEwhen each player has 15 or more strategies. For these games,
the algorithm works better on the polytopewith fewer vertices, which is here the

1 Tests were run on a standard 32-bit processor with 1.2 GHz clockspeed, provided by the “Amazon
Elastic Compute Cloud” webservigettp: //aws . amazon. com/
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polytope of lower dimension. This is demonstrated by the entridssidash’, which

uses the higher-dimensional polytope, for games of Blzen. For square games, ei-

ther polytope can be chosen; we also tested dises15and20x 20, and observed

that the running time often differs by a factor of two or more. Current computers
are often dual- or quad-core with several processors that can be used simultaneously.
These can work on the same game with different algorithms in parallel, cancelling
the other computations when the first one finishes. This has been implemented for
IrsNashandIrsNash', and is available from thies website (Avis 2006). The space
efficiency of EEE-n{Algorithm [4) means that there is little competition for mem-

ory or other resources, and the parallel version indeed runs in the shorter of the two
running times.

As mentioned in Sedf, Audet et al. (2001) consider linear programs parameter-
ized byx andy, with an objective function to find new verticég, V) of P(K U {h})
and (y,u) of Q(LU{h}) in lines 3 and 5, respectively, of theisit method. Ta-
ble[3 compares various objective functions; the “guessing game” and “dollar game”
are defined in Rosenberg (2005, pp. 41-43). The first line in TAblees the orig-
inal objective function. A motivation for that choice is that the sum of the objective
functions for the two polyhedra is indeed maximized at an equilibrium, when the two
duality gaps of the parameterized linear programs are both zera:iie method
would also run with an objective function that finds the lowest point on the upper
envelope (minimizing/ andu/, respectively) or when only looking for any feasible
vertex with a constant objective function. Indeed, this provides a slight speedup for
games that have many equilibria, as in the last column in Tabewever, for games
with fewer equilibria, or random games, the original objective functions are better.
Compared to that, the last line in the figure shows even better objective functions
X" (A+B)y—V andx' (A+B)y — U which seem to guide the search towards vertex
pairs with good payoffs for both players; maximizing the sum of these two functions
also closes the duality gaps. This last objective function is used in the computational
experiments in Tablég andZl

Random  Guessing  Dollar

objective function objective function (average) Game Game
for finding for finding 17x 17 22x 22 15x 15
(X,V) e P(Ku{h}) (Y,u) e Q(Lu{h}) 45.8 NE 3NE 211 NE
maxx ' Ay—V maxx' By —u’ 36.25 9.03 93.38
max —V max —u’ 70.00 37.48 52.53

0 0 84.80 40.23 72.30

maxx' | (A+B)y—V | maxx' (A+B)y — U 28.45 6.55 98.82

Table 3 Running times in seconds for various objective functions to determine the
vertices(X,V) in line 3 and(y', ) in line 5 of thevisit method in Figa

t-objective
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9 Further work and open questions

The algorithms that we have described in Sgcand Sectll] work for two-player
games in strategic form. In general, one may consider “constrained” bimatrix games
where the set of strategies of a player is not a simplex but a polytope define by more
complex linear constraints. One such description is the “sequence form” that allows
an efficient representation of behavior strategies of a game in extensive form (von
Stengel 1996). An enumeration of equilibria based on this description should be pos-
sible by extending the presented algorithms. Crucially, there is typically more than
one equality constraint that defines a player’s strategy space. In consequence (by
using linear programming duality), there will be more than one unbounded payoff
variable. This is one of the reasons why we have studiedEtie algorithm using
unbounded polyhedra and not polytopes. Equilibrium enumeration for constrained
bimatrix games has been studied by Audet, Belhaand Hansen (2006; 2009) and

is also a topic for future work.

As the computational experiments show, the running times for equilibrium enu-
meration are exponential, so that sizes of games that can be solved soon hit a limit. An
alternative to enumeration is the simpler problem of finding one Nash equilibrium.
This can addressed by the algorithm by Lemke and Howson (1964), which seems to
be efficient in practice. Apart from finding one equilibrium, the modeller is typically
also interested in its uniqueness. This can only be decided in the negative with an
algorithm that finds a second equilibrium if there is one. However, if many starting
points always lead to the same equilibrium, this may be considered sufficient reason
to accept it as “the” equilibrium that players are likely to play in practice. For this
purpose, an algorithm with a large choice of starting points is desirable, such as that
by van den Elzen and Talman (1991).

Even if many starting points are attempted, the path-following methods by Lemke
and Howson (1964) and van den Elzen and Talman (1991) only find equilibria of
positive index (for a definition of the index see Shapley (1974) or, for example, von
Schemde and von Stengel 2008). Negatively indexed equilibria can be found as soon
as one has two different positively index equilibria, by following the path backwards
from one such equilibrium with the starting point that led to the other equilibrium.
This may still fail to find all equilibria. At any rate, this approach has to our knowl-
edge not yet been implemented.

Another useful feature would be to output the index of an equilibrium component,
as an additional information provided by t6&queAlgorithm 2. This is nontrivial in
degenerate games where the index is computed for a component. It would be nice to
find this lexicographically, that is, by means of symbolic, and not actual, perturbation
techniques.

The Cligue Algorithm [2 represents equilibrium components via their maximal
Nash subsets, as the convex hull of their extreme equilibria. For a highly degenerate
game, the definition by inequalities of the facet?adndQ that define the maximal
Nash subset may be of use. This representation is trivial, but it is suitable to answer,
for example, the query as to which component a given equilibrium belongs.

A shortcoming of many published algorithms for equilibrium computation is that
they have been implemented ad hoc, to demonstrate some computational experi-
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ments, but not robustly for public use. The program by Avis (2000; 2006) is under
constant development to be as useful as possible. We hope to make the algorithms
presented in this paper easily available and convenient to use for the community.

Acknowledgements We thank Charles Audet for helpful comments.
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