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ON POP-STACKS IN SERIES

David Avis and Monroe Newborn

ABSTRACT. A pop-stack is a stack with a restricted pop operation: a
push operation is performed in the usual way but a pop operation causes
all elements in the stack to be output at once. We consider m pop

stacks in series and analyze the permutations that can be sorted.

I, Introduction.

The "power" of a sorting primitive can be measured by its
ability to sort permutations. Increased power results when several
primitives are connected together to form a network. For a given
network, it is natural to ask how many permutations of n elements can
be sorted. This problem has been studied for stacks, queues, and
deques and partial results for the case of series and parallel networks
have appeared in Knuth [1], [2], Nozaki [6], and Tarjan [5]. It is
also of interest to study and characterize properties of permutations
that can be sorted by a given network. For the case of a single stack,
results have been obtained by Rotem [3], [4]. When several stacks are
connected in series, the problem of characterizing the sortable
permutations seems to be very difficult. In this paper, we consider a
type of primitive called a "pop-stack' that has less power than a stack.
A pop-stack is a stack with a restricted pop operation: a push operation
is performed in the usual way, but a pop operation causes all elements
in the stack to be output at once. We will consider m pop-stacks in
series and analyze the permutations that result from an input stream
consisting of the integers 1,2,...,n after arbitrary sequences of
pop-stack operations. This alternate formulation of the sorting problem

above is easily seen to be equivalent.

We call a permutation m-feasible if it can be realized by a
network of m pop-stacks in series, but not by m-1 (or fewer) pop-
stacks in series. A permutation is called feasible if it is m-feasible

for some m.
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The results of this paper are:

(i) a characterization of feasible permutations;

(ii) a formula for the number of feasib}e permutations of the integers
{1,2,...,n}, and exponential asymptotic bounds;

(iii) a characterization of the m-feasible permutations; and

(iv) a recursion for the number of m-feasible permutations.

2. Feasible Permutations.

We will denote by = = Mpeeem, @ permutation of the integers

{1,2,...,n}. The transpose, T eeeT is denoted 7. We define the

1’
set of good permutations recursively as follows:

(i) the permutation of length 1 is good;

(ii) if m is good then 7 is good;

(iii) for n 2 2, m is good if there exists an integer k < n such
that Tyseses = {1,2,...,k} and both LERERAR and Megpree™, are
good permutations.

In (iii) above, we regard the permutation M1 Ty 28 the translation
of a permutation of {1,2,...,n-k}. We call permutations that satisfy
(iii) forward decomposable. Their transposes are called backward
decomposable. As an example, consider the permutation 2167534. TFigure 1
shows that it is good. Figure 2 shows that it is feasible. This

suggests the following theorem.
THEOREM 2.1. 4 permutation mw <s good if and only if it is feasible.

Proof. (Good + Feasible). By induction on n. The assertion is true by
inspection for n < 2. Let 7 be a good permutation of length n 2 3.

We may assume that 7 is forward decomposable since it is clear that

is feasible if and only if 7 is feasible. Let k be the smallest
integer such that TpeeeT = {1,2,...,k}. Since this is a good permutation
and k <mn, it is feasible by induction. Similarly e+l T is
feasible. We may thus obtain m by first performing the necessary

operations on {1,2,...,k} to obtain my+--m  and following with the
o

operations required to obtai b oo :
3 A A Myt My
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2167534 (111)

2'1(11) 67534 (i1)
12 (iii) L3 5l7 6 (ii1)
1 (1) 2 (1) L3 (ii) 576 (iii)
34 (1ii) ]
5 (1) 76 . (ii)
3 (1) bo(1) ,
6 7 (1ii)

—

6 (1) 7 (1)

Figure 1. Decomposition of the permutation 2167534

(Numerals in parentheses refer to the step
number given in the definition in Section 2.)

(Feasible - Good) Let m be the shortest counterexample, so that
is feasible but not good. Now in any series of pop-stacks, the first
output from the last stack must be a set {1,2,...,k}, of consecutive
integers in a feasible permutation. Since m is the shortest counter-
example, the first output string must have length n. Thus 7 was the
contents of the last stack. But 7 is also not good, thus a similar
argument shows that = must be the contents of the second last stack,
and so on. Therefore 7 cannot be feasible.

From the proof of the first part of the theorem, it can be seen
that the number of stacks required to output a feasible permutation of
length n 1is at most one more than that required to output feasible
permutations of length max {k, n-k} for some k. This idea motivates
the following recursive definition of a stack number s(m) of a feasible
permutation w. Let k be the smallest integer such that

= {1,2,...,k} or = {1,2,...,k}. Define s(1) =0

TTl...TTk n...ﬂn_k_'_l
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R 1234567
Output Input

Key
P: Push onto stack Sl
Q: Pop from stack S, onto
1
stack S
2°

R: Pop from stack S to

output.
(a) Starting Configuration $: Empty sequence

67

UU

(b) Configuration after operations PQPQRPP

11

(c) Configuration after operations PQPQRPPQPQPP

216753M-|1 H 4

¢ g.

(d) Configuration after operations PQPQRPPQPQPPQR

Figure 2. TIllustration of the generation of the feasible
pérmutation 2167534

- 132 -




and

max{s(wl...nk), s(wk ..nn)}, ™ forward decomposible,

+1°
(1) s(m) =
l+max{s(nn_k...nl), s(wn...ﬁn_k+l)},.n backward decomposible.

This definition provides us with an efficient means of deciding how many
pPop-stacks in series are required to output a feasible permutation, as

the next theorem shows.
TREOREM 2.2. 4 permutation 1 s m-feasible if and only if s(m) = m.

Proof. By induction on mn. For n=2, s(12) =0 and s(21) = 1, Tt is
easily verified that these are the minimum number of pop-stacks required.
Consider a feasible permutation of length n > 3, Let k be defined as

above,

Case (7). T 1is forward decomposible. MyeeeTy = {1,2,...,k}. As in
Theorem 2.1, we may output 7w by concatenating the operations for

l"'nk and nk+l"'ﬂn° Thus the minimum number of stacks required is
max{s(ﬂl...ﬂk), s(ﬂk+l...wn)}, by the induction hypothesis.

i

Case (i1). 7 1is backward decomposable. In this case, the entire string
must be output in one operation, and so that last stack contains 7
which is forward decomposable. Thus we may use the results of Case (i) to

verify that the number of stacks required is 1 + max{s(nn_k...rl),
s(nn...ﬂn_k+l)}.

COROLLARY 2.3, p-1 pop-stacks are requirved to output all feasible
permutations of length n.

Proof. That n-1 pop-stacks are sufficient follows immediately from
the definition of s(m) and Theorem 2.2. The permutations below show

that n-1 pop stacks are necessary.

n 2k+1 m
n = 2k T

2kHL,2k-1,...,3, 1, 2, 4,... 2k
2k, 2k-2,...,2, 1, 3,...,2k-1.

In each case, an easy induction argument shows s(m) = n-1,

*133.—




8. Enumeration of Feasible Permutations.

In this section we derive an exact formula for the number of
feasible permutations of n integers, and derive an asymptotic bound.
These results are based on the characterization of feasible permutations
given by Theorem 2.1. We begin with a definition. Let fn denote the

number of feasible permutations of length n.

THEOREM 3.1.
n-1
(2) £ = 1<Z=:1 T TR Lr. niEes

Proof. We count the number of forward decomposable permutations. The
total number of feasible permutations is precisely twice this number.
For each k, 1 <k < n-1, we wish to count the number of forward
decomposable permutations © for which k is the smallest integer so
that MpeeaT, = {1,2,...,k}. Now for all such permutations 7, the

permutation T M must be backward decomposable, Otherwise 7 could

1°
be forward decomposed with a smaller value of k. For k > 2, the number

of such permutations is thus 1/2 £, f since precisely one-half of

k "n-k’
the feasible permutations of length k are backwards decomposable, and

N

the remaining n-k integers may be arranged in any feasible permutation.
The exceptional case is k=1. Here the number of forward decomposable
permutations is fn—l' Summing over k and multiplying by 2 gives the

desired conclusion.
We now derive an exact formula for fn' For any real number x
. % o i - X . . £ e
and integers i and j, we denote by- (i j) the multinomial coefficient
3

(X = x(x-1) ... (x=1i-j+1)
i, i’ ily!

We will need the following lemma.

LEMMA 3.2.

(3) ( s )y = 21 +25 - Zyiag E:Ei:fffi . (-nyiti-l
1,3 1,3 iHj-1
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) (- - _ 2i+23-3
Préof. (< 532 (- )

i,j ilj!

= 1(=1)(=3)...(=2i-24+3) *2-4- -+ (2i42§-2)
1130 (i4g-1)1 2232371 a4l

The formula (3) follows.

We may now derive the following formula for fn.

THEOREM 3.3.
1 (2i+2§-2)! 33
= -1 T e 22,
(4) L éé% -1 TIEH-DT a0 "
320
2i+j=n

Proof, Let f(x) be the generating function of fn’ so that

f(x) = 2: fnxn. By multiplying each side of (2) by %" and summing, we
n=1

obtain
o © n-1 i
n n-1
2: fx = E: f f X +x E: £ 1%
n=2 o n=2 k=1 k "n-k n=2 ©
We note that
2 55 nl n
f7(x) = f f X,
' n=2 k=1 K n-k

and hence we 6btain the relation
2
f(x) - x= f(x) + xf (%)
Rewriting, we obtain the formal quadratic expression for f(x):
2
7))+ (x-1) f(x) +x=0 .

Hence P

2
£(x) = Q—x)ivgx—l) -4x

Since f£(0) = 0, we obtain the expression
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(1-x) - Jéé = 6x+.1
2 .

f(x) =

1
For n 2 2, we may apply the multinomial theorem to %(x2—6x+l)€ to

obtain the coefficient fn of x". Indeed,

fom2 Y () o
n 2i+j=n 1,3
-3 (2i+23-2)! (-1)i-1 67
= GV ca T - ° . PREETY
2{Ti=n 1:30(i+H-1)! 221+2J

where we have applied Lemma 3.2. The formula (4) follows.

The formula (4) does not give any simple estimate on the growth

of fn. This can be obtained by the observation that

3 0= -1
() 5’ = fk fn
We define the sequence &, by
3 0=

& = ) Z; Bk Bn-k *
It is easily seen that f < g .

n n

n-1 n-1
-1 /2n-2, 3 6

THEOREM 3.4. e, =5 ¢, l)() < ==

Proof. Let g(x) be the generatlng function of 8, A similar argument
to that of Theorem 3.3 shows that

g(x) - x = % gZ(X)

Hence
1l -vi - 6x
g(x) = _——__3__““"

The binomial theorem then yields

_ 1 % 2n-2, ,~2n+l _n
8n“3n)(6) n(n_l)Z 6
- L2y dnn 67!
n -1 n °
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On the other hand, a simple computation shows that for n > 11,

fn >5 fn-l’ and so we have the following

6n—l
COROLLARY 3.5. 5% < £< =

4.  Bnumeration of m-feasible Permutations.

In this section we develop a recursion for the number of m-feasible
permutations of n elements. Let fz denote this number. The main

result of this section is:

THEOREM 4.1.
m = m = m-i_i-1 m
£ = > fn_k<Z(—l) £ >+fn_l, m>1,n22,
k=2 i=1
where we establish the initial conditions
= f =f;‘=1, a=1,2,,.100

Before proving the theorem we look at the cases m=1 and m= 2

as examples,

Case m = 1. For n > 2, applying Theorem 4.1 gives:

n n-1
1 1 0 .0 1 1
(6) fn = giz fn-k (-1) fk + fn = kéo fk 3

It is easily verified that fi = 2]:1_l solves (6).

Case m = 2. For n > 2, Theorem 4.1 yields

n
2 2 132040
£ = k§=2: £ (F - £) + £

2 D09 k-1 2
n-1 ~ éé; fn—k & -+ fn—l 4

from which fﬁ may be readily computed. The expression can be simplified
by some manipulation. Rearranging and temporarily dropping superscripts
gives

% k-1

n
> f = 20T f L+ f
=0 k =1 n-k n-1
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Taking first difference gives

k-1
f = 2: 2 £ - 2 f + £ - f
n = n-k &= n-k-1 n-1 n-2
n-1
k-1
= » 2 £ g TE 7T 2f - 2f
n-1
—z=:0fk+2f 1”2,

Therefore,

n
f = 2f - 2f + 2f .
kz=:0 k n n-1 n-2

Another first difference yields

£ o= 2f - 4E HAE 5 - 2f 4

or, finally, inserting the superscripts

2 _ 2 2
fn = éfn_l - 4fn—2 + an_3 .
Proof of Theorem. For the purposes of the proof, it is useful to

introduce two new functions

g: = number of forward decomposable m-feasible permutations
of n elements,
hﬁ = number of backward decomposable m-feasible permutations
of n elements.
Thus fg = g: + hg, n = 2. Consider any m-feasible forward decomposable

permutation m, and let k be the smallest subscript so that
100 M = {1,2,...,k}. If k =2, TyeeeTy must be a backward decomposable
m

m-feasible permutation of length k, and there are exactly hk of these.

™

k1 Ty is any m-feasible permutation,

and there are exactly f:—k of these. If k =1, there are precisely

The remaining permutation
m . . .
fn— such permutations. Hence we obtain the expression:

1

n-1
(7) gg = 2: hE fﬁ—k + f:—l’ m=21,n2=21,
k=2
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with the initial conditions:
g =f ' =h =1, q-= 252,35 o573

From the results of Section 2, we see that every backward decomposable
m-feasible permutation is the transpose of a forward decomposable

(m-1)-feasible permutation, and vice versa; hence:

m m-1
hn=gn’ m=21,n=>2
Therefore, f: = g: + g:;l_l, m21,n22,

which may be inverted to give

v

m . .
m m-1 1
g, = iZE)(—l) f, nz2

Making the indicated substitutions into (7) yields
& m-i i ol /m-l m-i-1 i) _m m
Z(—l) -fn - kz:l Z -1 fk fn—k * fn—l ’
i=0 = i=0

and thus

m I/m=l m-i-1 i m n-1 m-i-1 i m
£ iZ:b (-1) £ )En + .1;0 (-1) £+ £

=]
1

d
N

M=

m ol m-i-1 _i m
fn—k<i=0 (-1) fk + fn—l .

d

2
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