Two-party Bell inequalities derived from combinatorics
via triangular elimination

David Avis', Hiroshi Imai?3, Tsuyoshi Ito?, and Yuuya Sasaki?

1School of Computer Science, McGill University
3480 University, Montreal, Quebec, Canada H3A 2A7.
2Department of Computer Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
SERATO Quantum Computation and Information Project, Tokyo, Japan.

March 25, 2005

Abstract

Bell inequalities, originally introduced as a method to prove that some quantum states show nonlocal
behavior, are now studied as a method to capture the extent of the nonlocality of quantum states. Tight Bell
inequalities are considered to be more important than redundant ones. Despite the increasing importance
of the study of Bell inequalities, few kinds of tight Bell inequalities have been found. Examples include
the Clauser-Horne-Shimony-Holt inequality, the I,mwv» inequalities, the CGLMP inequalities, and the Bell
inequalities in systems small enough to generate all the Bell inequalities by exhaustive search. In this paper,
we establish a relation between the two-party Bell inequalities for two-valued measurements and a high-
dimensional convex polytope called the cut polytope in polyhedral combinatorics. Using this relation, we
propose a method, triangular elimination, to derive tight Bell inequalities from facets of the cut polytope.
This method gives two hundred million inequivalent tight Bell inequalities from currently known results
on the cut polytope. In addition, this method gives general formulas which represent families of infinitely
many Bell inequalities. These results can be used to examine general properties of Bell inequalities.

1 Introduction

Entanglement and nonlocality have been important topics in quantum physics since the beginning of the
discipline. Bell [3] formulated nonlocality of quantum states, which was the first consequence of the existence
of entanglement. Using an inequality satisfied by the results of a correlation experiment using classical states,
Bell showed that there exists a quantum state which produces results which do not satisfy the inequality.
Clauser, Horne, Shimony and Holt [5] replaced Bell’s inequality with another inequality, called the CHSH
inequality, which admits a more realistic interpretation. Extending the CHSH inequality, a Bell inequality
is a linear inequality which the results of a correlation experiment with two or more distant parties always
satisfy. In this paper, we focus on the two-party case where one party has ma choices of possible two-valued
measurements and the other party has mp choices. In this notation, the CHSH inequality is a Bell inequality
in the case my = mp = 2. The CHSH inequality is important both theoretically and experimentally to the
extent that the terms “CHSH inequality” and “Bell inequality” are sometimes used synonymously.

Fine [12] proved that in the smallest case ma = mp = 2, there are only two kinds of Bell inequalities
up to symmetric transformations: the inequalities representing nonnegativity of probability and the CHSH
inequalities. After that, a connection between Bell inequalities and convex polytope theory proved by Peres [16]
and progress in polyhedral computation have allowed us to compute the complete list of Bell inequalities in
many small cases [7, 19, 21]. As a result, we know the complete list of Bell inequalities in the cases mp = 2,
(ma,mp) = (3,3) and (ma,mp) = (3,4). However, due to the complex structure of the polytope, it is
unlikely that there exists a compact representation of the complete set of Bell inequalities for an arbitrarily
large ma and mp, and the test whether a given result for Bell’s experiment can be produced by some local
state is NP-complete [2]. This leads to research to find a partial list of Bell inequalities which have some
good properties. In this direction, Collins and Gisin [7] show a family 1,22 of Bell inequalities in the case



ma = mp = m for general m. Besides, there are several extensions [7, 8, 14] of the CHSH inequality for multi-
valued measurements. Readers are referred to a survey by Werner and Wolf [22] for an in-depth discussion of
Bell inequalities.

Nonlocality is an important concept in quantum information science not only because it is evidence of
entanglement, but also because it can sometimes be considered as a resource by itself. Examples include the
gap of success probability between quantum and classical communication protocols [15] or cooperative games
with incomplete information [6].

Polyhedral geometry plays an important role in study of Bell inequalities. The results of a correlation
experiment with ma choices of measurements for one party and mg choices for the other are represented as a
vector of ma + mp + mamp probabilities. In classical mechanics, the set of vectors which are feasible as the
results of a correlation experiment forms an (ma+mp—+mamp)-dimensional convex polytope. A Bell inequality
is nothing but a linear inequality valid for this polytope, or a linear inequality satisfied by all the points in
this polytope. A tight Bell inequality, or a Bell inequality which cannot be represented as a sum of other Bell
inequalities, corresponds to a facet of this polytope. Interestingly, if we transform the coordinates of this high-
dimensional space, the polytope becomes another convex polytope called the cut polytope cut (K1 mams)
of the complete tripartite graph K ;,, my, which is studied in polyhedral combinatorics. This relation enables
us to use rich results on cut polytope to study Bell inequalities. Related to this, Pironio [17] uses lifting, which
is a common approach in study of cut polytope, to generate tight Bell inequalities in a larger system from
those in a smaller system.

One obstacle to this approach is that many existing results on cut polytopes deal with the cut polytope
CUTY = CUTP(K,,) of the complete graph K,, instead of the cut polytope CUTZ(Ky ny.mg) of the com-
plete tripartite graph. In particular, many results are known on valid inequalities and facets of CUTE. To
overcome this gap, we introduce a method called triangular elimination to convert an inequality valid for
CUTE to another inequality valid for CUT D(KLm A,mz), Which is then converted to a Bell inequality by a
transformation of coordinates. The CHSH inequality and some of the other previously known inequalities can
be explained in this manner. More importantly, triangular elimination converts a facet of CUTE to a facet of
CUT (K1 1my.mg ), Which corresponds to a tight Bell inequality.

A complete list of facets of CUTE for n < 7 and a conjectured complete list for n = 8,9 are known. We
apply triangular elimination to these facets to obtain 201,374,783 tight Bell inequalities. On the other hand,
several formulas which represent many different inequalities valid for CUTE are known. We apply triangular
elimination to these formulas to obtain new families of Bell inequalities. We discuss their properties such as
tightness and inclusion of the CHSH inequality.

The rest of this paper is organized as follows. In Section 2, we introduce triangular elimination to derive
tight Bell inequalities from facets of the cut polytope of the complete graph, and show its properties. We also
give a computational result on the number of Bell inequalities obtained by triangular elimination. In Section 3
we apply triangular elimination to some of the known classes of facets of the cut polytope of the complete
graph to obtain general formulas representing many Bell inequalities.

2 Triangular elimination

2.1 Bell inequalities and facets of cut polytopes

Consider a system composed of subsystems A (Alice) and B (Bob). Suppose that on both subsystems, one of
ma observables for Alice and one of mg observables for Bob are measured. For each observable, the outcome
is one of two values (in the rest of the paper, we label the outcomes as 0 or 1). The experiment is repeated a
large number of times. The result of such a correlation experiment consists of the probability distribution of
the mamp joint measurements by both parties. Throughout this paper, we represent the experimental result
as a vector q in ma +mp +mamp dimensional space in the following manner: q4,, gg, and ga,p, correspond
to the probabilities Pr[A; = 1], Pr[B; = 1] and Pr[4; = 1 A B; = 1] respectively.

In classical mechanics, the result of a correlation experiment must correspond to a probability distribution
over all classical configurations, where a classical configuration is an assignment of the outcomes {0, 1} to each
of the ma + mp observables. The experimental result has a local hidden variable model if and only if a given
experimental result can be interpreted as a result of such a classical correlation experiment.

Bell inequalities are valid linear inequalities for every experimental result which has a local hidden variable



model. Specifically using the above formulation, we represent a Bell inequality in the form

Z ba,qa; + Z bg,qB; + Z ba,B;q4;B; < bo.

1<i<ma 1<j<mp 1<i<ma, 1<j<mp

for suitably chosen constants b,.
For example, Clauser, Horn, Shimony and Holt [5] have shown that the following CHSH inequality is a
valid Bell inequality:
—qA, — 4B, + 44,8, +q4,B, 94,8, — qa,B, < 0.

In general, the set of all experimental results with a local hidden variable model forms a convex polytope
with extreme points corresponding to the classical configurations. If the results of the experiment are in the
above form, the polytope is called a correlation polytope, a name introduced by Pitowsky [18]. (Such polyhedra
have been discovered and rediscovered several times, see for instance Deza and Laurent [11].) From such a
viewpoint, Bell inequalities can be considered as the boundary, or face inequalities, of that polytope. Since
every polytope is the intersection of finitely many half spaces represented by linear inequalities, every Bell
inequality can be represented by a convex combination of finitely many extremal inequalities. Such extremal
inequalities are called tight Bell inequalities. Non-extremal inequalities are called redundant.

In polytopal theory, the maximal extremal faces of a polytope are called facets. Therefore, tight Bell
inequalities are facet inequalities of the polytope formed by experimental results with a local hidden variable
model. Note that for a given linear inequality bTq < by and d dimensional polytope, the face represented by
the inequality is a facet of that polytope if and only if the dimension of the convex hull of the extreme points
for which the equality holds is d — 1.

2.1.1 Cut polytope of complete tripartite graph

We introduce a simple representation of an experimental setting as a graph. Consider a graph which consists
of vertices corresponding to observables A; or B; and edges corresponding to joint measurements between A;
and B;. In addition, to represent probabilities which are the results of single (not joint) measurements, we
introduce a vertex X (which represents the trace out operation of the other party) and edges between X and
A; for every 1 < i < my , and between X and B; for every 1 < j < mp. This graph is a complete tripartite
graph since there exist edges between each party of vertices (observables) {X}, {A;} and {B;}. Using this
graph, we can conveniently represent either the result probabilities or the coefficients of a Bell inequality as
edge labels. We denote this graph by Ki m, mg-

In polyhedral combinatorics, a polytope affinely isomorphic to the correlation polytope has been well
studied. Specifically, if we consider the probabilities x4, 5, = Pr[A; # B;] instead of q4,5;, = Pr[4; = 1A B; =
1] for each edge, the probabilities form a polytope called the cut polytope. Thus, the cut polytope is another
formulation of the polytope formed by Bell inequalities.

A cut in a graph is an assignment of {0,1} to each vertex, 1 to an edge between vertices with different
values assigned, and 0 to an edge between vertices with the same values assigned. In the above formulation,
each cut corresponds to a classical configuration. Note that since the 0,1 exchange of all values of vertices
yields the same edge cut, we can without loss of generality assume that the vertex X is always assigned the
label 0.

Let the cut vector §'(S') € RIXAFHUXBIU{AB} for some cut S be &,,(5") = 1 if vertices u and v
are assigned different values, and 0 if assigned the same values. Then, the convex combination of all the cut
vectors CUTD(KLmAmB) ={zx =g, 50 (5) | Dg . cut Asr = 1 and Ag: > 0} is called the cut polytope
of the complete tripartite graph. The cut polytope has full dimension. Therefore, dim(CUTEI (Kima,mp)) =
ma +mp +mamsg.

In this formulation, a tight Bell inequality bTq < by corresponds to a facet inequality a’Tx < ag of the cut
polytope. The affine isomorphisms between them are:

. =X .
TxA, = qXA,, axA; XA

. =X .
TXB; = X B> 4x B, lXB], (1)
TaA,B; = 4xA;, + qxB; — 2q4;B;, qa,B, = §(xXAi +axB, —Ta,B,)-

Actually, because cut polytopes are symmetric under the switching operation (explained in Section 2.4) we
can assume that the right hand side of a facet inequality of the cut polytope is always 0. This means that a
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Figure 1: The most simple case of triangular elimination: The sum of two triangle inequalities is the CHSH
inequality.

given Bell inequality is tight if and only if for the corresponding facet inequality aT« < 0 of the cut polytope,
there exist ma + mp +mamp — 1 linearly independent cut vectors &'(S’) for which a’Té’(S’) = 0.

For example, there exists a facet inequality —z 4,5, — Ta,B, — Ta,B, + Z4,B, < 0 for CUTD(KLmA,mB)7
1 < ma,mp which corresponds to the CHSH inequality. Therefore, the CHSH inequality is tight in addition
to being valid.

A consequence of the above affine isomorphisms is that any theorem concerning facets of the cut polytope
can be immediately translated to give a corresponding theorem for tight Bell inequalities. For example,
the original proof of the validity of the CHSH inequality is rather long. However it is well known that the
triangle inequality X, — Tyw — Twe < 0, for any three vertices u,v,w, is valid for the cut polytope. In
fact, Bell’s original inequality [3] is essentially this inequality. Since the positive sum of valid inequalities is
always a valid inequality, the validity of the inequality corresponding to the CHSH inequality is immediate:
—T A, B, —TA Bs—TAyB, +TA,B, < 0isthesumof wa, 4,—Ta, B, —Ta,B, <0and xa,p,—Ta,B,—T4,4, <0 (see
Figure 1). Recently, Collins and Gisin [7] gave the following conjecture about the tightness of Bell inequalities:
if a Bell inequality bTq < bg is tight in a given setting ma,mg, then for each m/y > ma and m’z > mg, the
inequality &'Tq’ < by is also tight. Here b is the vector b/, = by, if the vertices (observables) u,v appear in
b and is zero otherwise. They gave empirical evidence for this conjecture based on numerical experiments. In
fact, a special case of the zero-lifting theorem by De Simone [9] gives a proof of their conjecture.

2.2 Triangular elimination
2.2.1 Cut polytope of complete graph

In the previous section we saw that the problem of enumerating tight Bell inequalities is equivalent to that of
enumerating facet inequalities of the cut polytope of a corresponding complete tripartite graph. The properties
of facet inequalities of the cut polytope of the complete graph K,, are well studied and there are rich results.
For example, several general classes of facet inequalities with relatively simple representations are known.

For n < 7 the complete list of facets is known [13], and for n = 8,9 a conjectured complete list is
known [4, 20]. In addition, the symmetry of the polytope is also well-understood. We show how to apply such
results to our complete tripartite graph case.

First, we introduce the cut polytope of complete graph. The graph is denoted by K,,, has n vertices, and
has an edge between each pair of vertices. As before, a cut is an assignment of {0, 1} to each vertex, and an
edge is labeled by 1 if the endpoints of the edge are labeled differently or 0 if labeled the same. The cut vectors
5(S) of the complete graph are defined in the same manner as before. The set of all convex combinations of
cut vectors CUTZ(K,,) = {z = Y5 cut ASO(S) | D5 cur As = 1 and Ag > 0} is called the cut polytope of the
complete graph. CUT™(K,,) is also written as CUT.

In contrast to the complete tripartite graph, the space on which the cut polytope of the complete graph
exists has elements corresponding to probabilities of joint measurement by the same party. Because of the
restrictions of quantum mechanics, such joint measurements are prohibited. Therefore, if we want to generate
tight Bell inequalities from the known facet inequalities of the cut polytope of the complete graph, we must
transform the inequalities to eliminate joint measurement terms. In polyhedral terms, CUTD(KL,”AMB) is a
projection of CUTD(Kn) onto a lower dimensional space.

2.2.2 Definition of triangular elimination

A well known method for projecting a polytope is called Fourier-Motzkin elimination. This is essentially
the summation of two facet inequalities to cancel out the target term. For example, the CHSH inequality
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Figure 2: The I3300 inequality is generated by triangular elimination from the pentagonal inequality of CUTE.

—TA, B, — %A By —TAyB, +TA,B, < 0isthesumof 4,4, —%a, B, — 24,8, <0and za,p, — 4,8, —Ta,4, <0.

In general, the result of Fourier-Motzkin elimination is not necessarily a facet. For example, it is known
that the pentagonal inequality

TxA, FTxA, —TXB, —TXB, + TA Ay — LA B, —TAIBy, — TA,B; — TAyB, +TB B, <0 (2)

is a facet inequality of cuTH (K5). If we eliminate joint measurement terms x4, 4, and x g, g, by adding triangle
inequalities T4, B, — %A, 4, —%a,B, <0 and 4,5, — TB,B, — T4,B, <0, the result is zx 4, + x4, —TxB, —
TXBy — LA By — 3T A,B, < 0. Therefore, this inequality is a valid inequality for CUTD(K1,373). However, the
inequality is a summation of four valid triangle inequalities for cuUT" (Ki,3,3), namely x4, —2xp, —%a, B, <0,
TXAy —TXBy —LAyBy <0, Txa, —TxB, —Ta,B, < 0and —zxa, + Txp, — Ta,B, < 0. This means that the
inequality with eliminated terms is redundant.

Fourier-Motzkin elimination often produces large numbers of redundant inequalities, causing the algorithm
to be computationally intractable when iterated many times. Therefore, it is important to find situations
where the new inequalities found are guaranteed to be tight.

The difference between the two examples is that in the CHSH case, the second triangle inequality introduced
a new vertex By where “new” means that the first triangle inequality had no term with subscript labeled Bs.
Generalizing this operation, we will show that Fourier-Motzkin elimination by triangle inequalities which
introduce new vertices, is almost always guaranteed to yield non-redundant inequalities. We call the operation
triangular elimination.

Definition 2.1 (triangular elimination). For a given valid inequality for CUT™ (K 4y, 1np)

E axA,TxA; + E axB;TxB; + E A;B;TA,B,

1<i<na 1<j<ng 1<i<na,1<j<np
+ E aAA,TA A, + E ap;B, TB;B, < a0, (3)
1<i<i’<na 1<j<j'<mp

the triangular elimination is defined as follows:

E AxXA;TXA; T g OXB;TXB; T+ E QA;B;TA;B,
1<i<ma 1<j<ms 1<i<ma 1<j<mn
+ § (aAiAi/xAiBAiAi, - |a/AiAi’|xAi’BAiAj/) + § (a/Bij/mABij,Bj - ‘aAJ'AjI|‘rABij/Bj/)
1<i<i <ma 1<j <7/ <mn

< ao, (4)

(npat+np)(natnp+1)
pl

where ma = na + w,mg = ng + 220D e denote (3) by aTx <0, a,z € R and

2 2
(4) by a'Tx’ < 0,a’, 2’ € Rmatmetmams  yegpectively.

Note that forbidden terms of the form z 4,4, and zp, B, do not appear in (4).

As an example, let us see how the I3300 inequalities is generated by triangular elimination (see Figure 2)
of the pentagonal inequality (2). This inequality has two terms xa,a, and zg,p, which correspond to joint
measurements of two observables in one subsystem and are not allowed. Therefore, we eliminate these terms by
adding two new nodes A p and By ,, and adding two triangle inequalities —za, A, TTABY o, "TABY ,, S0
and —zp,B, + TAL 5 B1 ~ TAL o B, < 0. If we rewrite the resulting inequality in terms of the vector g instead



of the vector @ by using the isomorphism (1), this inequality becomes the I3320 inequality. As we will see in
the next subsection, this gives another proof of the tightness of the I3302 inequality than directly checking the
dimension of the face computationally.

2.3 Triangular elimination and facet

In this subsection, we show the main theorem of this paper: under a very mild condition, the triangular
elimination of a facet is a facet.

Theorem 2.1. The triangular elimination of a facet inequality a™x < 0 of cut? (Ki4ns+ngs) @8 facet inducing
for CUTD(KLmA,mB) except for the cases that the inequality a¥x < 0 is a triangle inequality labelled as either
—XTXxA —TXA, +Ta 4, S0 0r —Ta 4, —Ta A5+ Ta,a, <0.

For example, as we saw, the CHSH inequality is the triangular elimination of Bell’s original inequality, which
is a triangle inequality. The I330o inequality, found by Pitowsky and Svozil [19] and Collins and Gisin [7], is
the triangular elimination of a pentagonal inequality.

Proof. Let rp be the set of cut vectors on the hyperplane /T’ = 0: rp = {6’(5’) |a/Té’ =0,9": cut} for
CUTD(KLm A.mp)- We prove the theorem by exhibiting a linearly independent subset of these cut vectors with
cardinality ma + mp + mamp — 1.

In the following proof, we restrict ourselves to the case ng = 1 to avoid the existence of the term corre-
sponding to the joint measurement of Bob’s observables, ;. If there exist such terms, apply the following
proof in two steps, first for Alice’s forbidden terms, and secondly for Bob’s. In addition, we assume that
aa; A, <0 for all eliminated terms. For the other cases, the proof is similar.

By the above restriction, ma + mg + mamp — 1 = w -1+ M

A sketch of proof is as follows: first, we restrict 7p and decompose the whole space of CUT" (K1 ma,ms)
into two subspaces. For each subspace, we can pick a set of cut vectors which are linearly independent in that
subspace. Next, we show that these sets of cut vectors are linearly independent in the whole space.

First, let the subset 7% of rr be those cuts such that, for any 1 <4 < i’ < na, two vertices A, and Ba;a,
are assigned same value. Then, consider the intersection of the space spanned by 8’(S”) € 7% and the subspace

_ T
W= {(xXA'NxXBj?'xAiBj?xAiBAiAi/ )1§i<i’§nA,1§j§nB} .

From the definition of rf, 514./BA‘A,/ (S8") = 0. Therefore,

CL/T(S,(S/): Z aXAi(iXAi(S’)Jr Z aXB].(;XBj(S’)
1<i<na 1<j<np

+ Z aAiBj(SAiBj (Sl) + Z aAiAl/(S/AiBAiA%, (S/) =0.

1<i<na,1<j<ng 1<i<i’<na

This means that the intersection of space spanned by 8'(S’) € 7% and W is equivalent to the space spanned
by the cut vectors ry = {8(S) | a¥6 = 0,5 : cut} of CUT™(K14ny4ny)- Therefore, from the assumption that

na(na—1)
k 2alnasl)

the inequality aTx < 0 is facet supporting, we can pic — 1 linearly independent cut vectors and

transform the cut vectors of CUTY (K14, 4ny) into corresponding cut vectors of CUTZ (K . mp ). Let this
set of linearly independent cut vectors be Dy.
The remaining subspace of CUTZ(Ky s my) is

T
V:@VAiAi/ :@ (JTXBA.A_/7$Ai,BA,A,,,$Ai//BA.A.,), .
L L i4; 145 iy i £i,i
i<e’ 1<é/

for each eliminated term A; A, 1 <1 <1 < na.
Instead of V', we consider the space

T
’ / _ _
V= @ VAiAi/ - @ { (xXBAiAi, ‘rAi/BA,iAi, va,i/BAiAi, ) xaAi,Ai,,Ai,, >i”¢i i’}

1<’ 1<’



where
1 -/ -/
E(waBA-A,, — XA, Ba,a, — LAyBa,a, +3‘rAi//BA.,Av,,) ('L <t )
— 2 i i 3 i £
xaAi,A./,A.,, - l(x — — _ ) (i” < i/)
il A 3 A'i”BAiAi/ Ai”BAi”Ai’ Ai/BA/L-Ai, A,i/BAi,,A,i,

in the following. Since the transform V to V' is linear, the linear independence of vectors in V is equivalent
to that in V.

Then, we consider the subset r}ft AA, of rg for each A;A; restricted as follows: A;; must be assigned 0
and both By, 4, and A; must be assigned 1. For other terms Ay Ay (1 <" <" < nyp), vertices Ay and
B, A,.,,, must be assigned the same value. From that restriction, the equations

6;(BAMH (8") - &HBAMV (8") = —bxa,(9),
5141-/BA-A./ (SN) = 15
6(/1AiyA7;/,Ai// (SH) = _6Ai’/Az" (S)

hold for 6'(S”) € 7% 4, 4,,- This means that the intersection of the space spanned by ¢’(S”) and the subspace
V4,4, is equivalent to that of the space spanned by §(S) € r; and the subspace

UAiAi/ = {('rXAi” 17 LA Ay )3’7&',2”} .
Now, because 7 is on the hyperplane a™x = 0, the above intersection has dimension n or ns —1. However,
from the condition on the inequality aTx < 0, the space spanned by s is not parallel to Ua, 4, . Therefore,
the dimension is na and we can extract ma cut vectors which are linearly independent in the subspace V'
using the cut vectors from . Let this set of cut vectors be Da, 4, .

Finally, we show that Do U Dy, 4., is a linearly independent set of cut vectors. Suppose that the linear

combination
Yoo okedT(SH+ Y Yoo agteT(s) =0

8'T(S")eDg 1<i<i’<na 8'7(S")ED A, a,,

holds. Consider the subspace V., of the above linear combination. From the construction, for Dy and
Da,, 4, the elements of cut vectors in that subspace are all zero. Therefore, for the linear combination to
hold, it must be that 3 5 g/ A?;AHJ/T (8") = 0. However, the linear independence of D 4,4, means

iA,',’
"

€Da;a,

that the coefficients are all zero. By repeating this argument, we can conclude that the coefficient )\g must
be zero. So, from the linear independence of Dy, the coefficients kg are also zero. O

2.4 Triangular elimination and symmetry

Many Bell inequalities are equivalent to each other due to the arbitrariness in the labelling of the party,
observable and value identifiers. This corresponds to symmetries of the underlying polytope. We consider
ways of representing nonequivalent Bell inequalities in this section.

The nonequivalence of Bell inequalities can be translated into two questions about facet inequalities f and
J! of a given cut polytope of a complete graph, and their triangular eliminations F' and F”, respectively:

1. does the equivalence of f and f’ imply the equivalence of F' and F'?
2. does the equivalence of F' and F’ imply the equivalence of f and f’?

The answers are both affirmative if we define equivalence appropriately, so equivalence before triangular
elimination is logically equivalent to equivalence after triangular elimination. This means that, for example,
to enumerate the nonequivalent Bell inequalities, we need only enumerate the facet inequalities of the cut
polytope of the complete graph up to symmetry by party, observable and value exchange.

In CUTD(KLm A.mp), the relabelling of all vertices of Alice to that of Bob and vice versa corresponds to
a party exchange. On the other hand, the local relabelling of some vertices of Alice (or Bob) corresponds
to an observable exchange. Thus by the observable exchange of Alice represented by the permutation o over
{Ay,..., A, }, an inequality aTx < ag is transformed into a’Tx < ag where a;(Ai)V = aa,y for any vertex

V.



In addition, there is an operation which corresponds to a value exchange of some observables, called a
switching in the theory of cut polytopes. By the switching corresponding to the value exchange of an Alice’s
observable A; , an inequality a®x < aq is transformed into a’Tz < ag — dv aa,,v where a;‘iov = —aa, v,
and @'y .y = aa,v for any i # ig and any vertex V' # A;; (definitions for Bob’s exchange are similar).

It is well known, and easily shown, that by repeated application of the switching operation we may reduce
the right hand side of any facet inequality to zero.

Let np <ng and n =1+ na +ng. Let f and f’ be facets of CUTEI where the n nodes of K,, is labelled
by V.={Ai,...,An,,B1,...,Bny, X}. The two facets f and f’ are said to be equivalent and denoted f ~ f’
if f can be transformed to f’ by applying zero or more of the following operations: (1) (only applicable in
the case na = np) swapping labels of nodes A; and B; for all 1 < i < na, (2) relabelling the nodes within
Ay, ..., Ay, (3) relabelling the nodes within By, ..., B,,, and (4) switching.!

Two facets F and F’ of CUTD(KL,,LAMB) are said to be equivalent and denoted F ~ F' if F can be
transformed to F’ by applying permutation which fixes node X, switching, or both. This notion of equivalence
of facets of CUTD(KLm Amp) corresponds to equivalence of tight Bell inequalities up to party, observable and
value exchange.

Theorem 2.2. Let the triangular elimination of facet inequalities f and f' be F and F’', respectively. Then,
f~f << F~F.

Proof. A sketch of the proof is as follows. Since the permutation and switching operations are commutative, it is
sufficient to prove the proposition under each operation separately. Because the = direction is straightforward
for both permutation and switching, we concentrate on the proof of < direction.

First, consider switching. Suppose F' is obtained from a switching of F’. The switching could involve
either (i) a new observable introduced by the triangular elimination, or (ii) an observable which had a joint
measurement term eliminated. Since a switching of type (i) has no effect on f and f’, we need only consider
type (ii). We can view the triangular elimination of the term A; A; as addition of triangle inequality x4,4, —
TA;Ba,a, —TA;rBa, s, < 0orits switching equivalent inequality —z 4,4, —24,B4,4, +TA,1B4, 4, < 0according
to the siIgH of the coefficient a A;4,,- Thus, if ' is switching of F” of vertices 4; and B A A then f is switching
of f/ of A;.

Next, consider the permutation corresponding to an observable exchange. Observe that for any vertex
A;(1 <i < ny), triangular elimination does not change the number of terms A;V with non-zero coefficient. In
addition, it can be shown that for any facet inequality f of the cut polytope of the complete graph other than the
triangle inequality, there is no vertex satisfying the following conditions: (a) there are exactly two terms A;V,
with non-zero coefficients, and (b) for those non-zero coefficients a4,w and aa,v, |laa,w| = |aa,u] [2]. This
means that if ' ~ F’, then the corresponding permutation o is always in the following form: for permutations
7a over {Ay,...,An,} and 75 over {Bi,...,Bny}, 0(Ai) = 7a(A;) and 0(Ba,a,) = Br,(a)raa,)- The
situation is the same for Bob.

Therefore, f and f’ are equivalent under the permutations 74 and 75. O

2.5 Computational results

By Theorem 2.2, we can compute the number of the classes of facets of CUTD(KLm Amp) Of the same type
obtained by applying triangular elimination to non-triangular facets of CUTE. We consulted De Simone, Deza
and Laurent [10] for the H-representation of CUT7, and the “conjectured complete description” of CUTg and
the “description possibly complete” of CUTy in SMAPO [20]. The result is summarized in Table 1. A program
is available on request to generate these Bell inequalities from the list in [20]. For n = 8 and 9, the number is
a lower bound since the known list of the facets of CUTE is not proved to be complete.

3 Families of Bell inequalities
While a large list of individual tight Bell inequalities is useful in some applications, a few formulas which

give many different Bell inequalities for different values of parameters are easier to treat theoretically. The
cut polytope of the complete graph has several classes of valid inequalities whose subclasses of facet-inducing

1The two facets f and f’ are said to be equivalent and denoted f ~ f’ if f can be transformed to f’ by permutation and
switching where the permutation 7 on V satisfies: (1) 7(X) = X and (2) 7 either fixes two sets {A1,...,An, } and {B1,..., Bng}
setwise or (in the case ny = np) swaps these two sets.



Table 1: The number of inequivalent facets of CUTE and the number of inequivalent tight Bell inequalities
obtained as the triangular eliminations of the facets of CUTY. Asterisk (*) indicates the value is a lower
bound.

n | Facets of CUTE Tight Bell inegs. via triangular elimination
3 1 2

4 1 2

5 2 8

6 3 22

7 11 323

8 147%* 40,399*

9 164,506* 201,374,783*

inequalities are partially known (see [11, Chapters 27-30] for details). In this section, we apply triangular
elimination to two typical examples of such classes to obtain two general formulas for Bell inequalities. In
addition, we prove sufficient conditions for these formulas to give a tight Bell inequality.

In this section, terms of the left hand side of an inequality are arrayed in the format introduced by Collins
and Gisin [7]; each row corresponds to coefficients of each observable of party A and each column corresponds
to that of party B. Because of switching equivalence, we can assume that the right hand side of inequality are
always zero. The example of the CHSH —qa, — g, +qa,B, + qa,B, + q4,B, — G4.B, < 0 is arrayed in the

form as follows:
-1 0

3.1 Bell inequalities derived from hypermetric inequalities

Hypermetric inequalities are a fundamental class of inequalities valid for the cut polytope of the complete
graph. Here we derive a new family of Bell inequalities by applying triangular elimination to the hypermetric
inequalities. A special case of this family, namely the triangular eliminated pure hypermetric inequality,
contains four previously known Bell inequalities: the trivial inequalities like g4, < 1, the well known CHSH
inequality found by Clauser, Horne, Shimony and Holt [5], the inequality named I3320 by Collins and Gisin [7],
originally found by Pitowsky and Svozil [19], and the I3,5, inequality by Collins and Gisin [7].

Let s and ¢ be nonnegative integers and ba,, ..., ba_, bg,,...,bp, be integers. We define bx = 1—"7_, ba, —
Z;zl bg,. Then it is known that Zuv buby Ty, < 0, where the sum is taken over the (s+é+1) edges of the com-
plete graph on nodes X, Ay, ..., Ag, By, ..., By, is valid for CUTSD_HH. This inequality is called the hypermetric
inequality defined by the weight vector b = (bx,ba,,...,ba.,bB,,...,bB,)-

We apply triangular elimination to this hypermetric inequality. Let s; and ¢4 be the number of positive en-
tries of the form ba,; and of the form bg,, respectively. Without loss of generality, we assume that ba,,...,b Acyo
bp,, - . .,bBt+ > 0, and bAs++1, .. '7bAs7bBt++17"'7bBt < 0. By assigning a,, = byb, in the formula (4), the
Bell inequality obtained by triangular elimination is:

o 1-by, : 1—ba,
ZbAi< 5 - - Z bAi/)QAi + Z bAi( 7 - - Z bAi/)QAi
i=1

=1 ims 41 =il
t ~1 ¢ i1
ks 1—bg, X 1— b, J
+ g by, 5 E bg, |aB, + E bp; g E bg, g8,
i=1 i=1 =ty +1 J=tet1
t4 t S+ s s t
+ E § bg; bs, qn; , + E E ba,ba, qm, — E E ba,bB,qa,;B;
j=1j'=t 41 ) i=11i'=s;+1 i=1 j=1
- E ba,ba,qa,B", + E |ba,ba,lqa, B, — E bg,bB ,qa’ B, + g |bB,bB , |gar B, < 0.
i iil i i/ 254 J J gl d J J Gi’ o
1<i<i’<s 1<i<i’<s 1<j<j'<t 1<j<j'<t

(5)



Though the formula (5) represents a Bell inequality for any choice of weight vector b, this Bell inequality
is not always tight. Many sufficient conditions for a hypermetric inequality to be facet-inducing are known
in study of cut polytopes. By Theorem 2.1, these sufficient conditions give sufficient conditions for the Bell
inequality (5) to be tight. The sufficient conditions stated in [11, Corollary 27.2.5] give the following theorem.

Theorem 3.1. The Bell inequality (5) is tight if one of the following conditions is satisfied.

(i) For somel > 1, the integers ba,,...,ba.,bp,,...,b, and bx contain l+1 entries equal to 1 and | entries
equal to —1, and the other entries (if any) are equal to 0.

(ii) At least 3 and at most n — 3 entries in ba,,...,ba,,bp,,...,bs, and bx are positive, and all the other

entries are equal to —1.

t

Now we consider some concrete cases when the formula (5) represents a tight Bell inequality. If we let
s+t=21,s<[,1>1,by, =---=ba,=0bp, =---=bp,_, =1 and bg,_,,, = --=bp, = —1, then bx =1
and by case (i) of Theorem 3.1, the Bell inequality (5) is tight. In this case, the Bell inequality (5) is in the
following form.

s l—s t l—s t
=Y (i=Daa,—> > an,—> (G—Dag,— Y (G~ ()

i=1 j=1j'=l—s+1 j=1 j=l—s+1

s l—s s t

- E E qa;B; T+ g E qA,B; — E qa;B, + g qa,B,
i=1j=1 i=1 j=l—s+1 1<i<i’<s 1<i<i’'<s
l—s t
- E qaar B; — E a8, + E E qaar,B; g an; B, < 0. (6)
1<j<j'<l—s l—s+1<j<j/ <t j=1j'=l—s+1 1<j<j/<t

Examples of tight Bell inequality in the form (6) are I3300 and 13,5, inequalities [7].

In case of [ = 1, Theorem 3.1 does not guarantee that the Bell inequality (6) is tight. However, in cases
of (I,s,t) = (1,1,1) and (1, 1,2), the Bell inequality (6) becomes trivial and CHSH inequalities, respectively,
both of which are tight.

Letting (I,s,t) = (2,2,2) in (6) gives:

—qA, — 4B, — 2B, + qA,B, T 4A,B> T GAsB; T dAsBy — 4A, B, T qA,B,, — 9A;,B, T qa;,B, < 0. (7)

Following the notation in [7], we write the inequality (7) by arraying its coeflicients:

(A2) (A1) (Alp)

-1 0 0
(By) -2 1 1 1 <0. (7")
(By) -1 1 1 -1
(Bfy) O 1 -1 0

Now it is clear that the Bell inequality (7) is I3322 inequality.
Letting (I, s,t) = (2,1,3) in (6) gives:

(B2) (Bs) (B1)
-1 -2 0
(A;) 0 1 1 -1
(A’llg) —1] 0 1 1 =0 ®
(Aly) -1 1 0 1
(Ah) 0| =1 1 0

After exchanging the two values 1 and 0 of the observable A;, and doing the same to the two values of the
observable Bj, the Bell inequality (8) becomes:

(B2) (Bs) (By)
0 1 -1
@A) -1 -1 1 1 /
(A’113) o o -1 1 =t &)
(Afy) -1 1 0 1
(A) 1] -1 -1 0



which is 13,5, inequality [7]. This means that the Bell inequality (8) is equivalent to 13,5, inequality.

3.2 Bell inequalities derived from pure clique-web inequalities

Clique-web inequalities [11, Chapter 29] are generalization of hypermetric inequalities. One of the important
subclasses of clique-web inequalities are the pure clique-web inequalities, which are always facet-inducing. Here
we introduce an example of Bell inequalities derived from some pure clique-web inequalities.

For nonnegative integers s, t and r with s > t > 2 and s —t = 2r, we consider the pure clique-web
inequality with parameters n = s+t+4+ 1, p=s+ 1, ¢ =t and r. After relabelling the n vertices of K,, by
Ay, A5, X, By,...,B; in this order, the Bell inequality (4) corresponding to the clique-web inequality is:

t

S r-Daa -2 S aa - 3G - ra,

i=r+1 i=s—r+1 j=1

s t
+ Z ZQAiBj + Z (—aam, taa,m,)+ Z (—aqar,B; +an; B,,) <0. (9)
i=1 j=1 1<i<i’<s 1<5<j'<¢t
r+1<j—i<s—r
The next theorem is a direct consequence of Theorem 2.1.

Theorem 3.2. For any nonnegative integers s, t and r with s >t > 2 and s —t = 2r, the Bell inequality (9)
is tight.
3.3 Inclusion relation

Collins and Gisin [7] pointed out that the following I3322 inequality becomes the CHSH inequality if we fix
two measurements Az and B to a deterministic measurement whose result is always 0.

(A1) (A2) (As)
-1 0 0
I3390: (By) -2 1 1 1 <0,
(By) -1 1 1 -1
(B3) 0 1 -1 0
(A1) (Ag)
CHSH: 1 0 <0
' (By) -1 1 1 =
(B3) 0 1 -1

As stated in [7], this fact implies the CHSH inequality is irrelevant if the I3305 inequality is given. In other
words, if a quantum state satisfies the I3320 inequality with every set of measurements, then it also satisfies
the CHSH inequality with every set of measurements.

We generalize this argument and define inclusion relation between two Bell inequalities: A Bell inequality
a"q < 0 includes another Bell inequality bTq < 0 if we can obtain the inequality bTq < 0 by fixing some
measurements in the inequality a¥q < 0 to deterministic ones.

We do not know whether all the Bell inequalities (except positive probability) include the CHSH inequality.
However, we can prove that many Bell inequalities represented by (5) or (9) include the CHSH inequality.

Theorem 3.3. If bao, = ba, =1 and 1)13t+Jr1 = —1, then the Bell inequality represented by (5) contains the
CHSH inequality.

Proof. The Bell inequality (5) contains s + (;) observables of Alice and t + (;) observables of Bob. By fixing
all but 4 observables A, Ag, By, 11 and B/, to the one whose value is always 0, we obtain the following CHSH

inequality: —qa, —¢B,, 11 +qAB,, 11 T qA2B,, 11 — GaiBy, +dazBy, <0 O
Theorem 3.4. All the Bell inequalities in the form (9) include the CHSH inequality.

Proof. By fixing all but 4 observables A,;1, A,12, Bry1 and B;+1,r+2 to the one whose value is always 0,
the Bell inequality (9) becomes the following CHSH inequality: —qa,., — ¢B,,, + ¢A,;1B,41 + A, 2B, 11 —

qAT‘+1B',r'+l,r+2 + qA'r+2B,r+1,r+2 S 0.
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3.4 Relationship between [,,,20 and triangular eliminated Bell inequality

Collins and Gisin [7] proposed a family of tight Bell inequalities obtained by the extension of CHSH and
Is390 as Imaoo family, and conjectured that I,,.,20 is always facet supporting (they also confirmed that for
m < 7, Lnma2so 1s actually facet supporting by computation). Therefore, whether their I,,,,,20 can be obtained
by triangular elimination of some facet class of cut® (K,,) is an interesting question.

The I,,m22 family has the structure as follows:

| -1 o 0 0 0

—(m-1) 1 1 1 1 1

—(m-2) 1 1 11 -1
~(m=-3)| 1 1 1 -1 0 |<o (10)

~1 1 1 -1 0 - 0

0 1 =1 0 0 - 0

From its structure, it is straightforward that if I,,,20 can be obtained by triangular elimination of some
facet class of CUTE, then only A,, and B,, are new vertices introduced by triangular elimination, since the
other vertices have degree more than 2. For m = 2,3,4, the I,,,22 inequality is the triangular elimination of
the triangle, pentagon and Grishukhin inequality Zl§i<j§4 Zij + Tse + Tsy — Ter — Ti6 — T36 — Ta7 — Tay —
2 Zl <i<qTis < 0, respectively. In general, I,;,;,20 inequality is the triangular elimination of a facet-inducing

inequality of CUTS., | and it is tight [1].

3.5 Known tight Bell inequalities other than the triangular elimination of CUTD(KH)

Since we have obtained a large number of tight Bell inequalities by triangular elimination of CUTD(Kn), the
next question is whether they are complete i.e., whether all families and their equivalents form the whole set
of facets of CUT" (K1 ma,ms)-

For the case ma = mp = 3, the answer is affirmative. Both Sliwa [21] and Collins and Gisin [7] showed that
there are only three kinds of inequivalent facets: positive probabilities, CHSH and I3322, corresponding to the
triangle facet, the triangular elimination of the triangle facet and the triangular elimination of the pentagonal
facet of CUTY(K,,), respectively.

On the other hand, in the case ma = 3 and mp = 4, the answer is negative. Collins and Gisin enumerated
all of the tight Bell inequalities and classified them into 6 families of equivalent inequalities [7]. While positive
probabilities, CHSH, I3322 and I35, inequalities are either facets of CUTY(K,,) or their triangular eliminations,
the other two are not:

[ 1 1 -2 [ 1 0 -1
1-1 -1 1 0 -2 1 1
Io=1 0 -1 1 1 <z 19?422 = 0 0 -1 1 <2 (11)
0 1 -1 1 -1 1 1 1
1(-1 -1 -1 2 -1 -1 -1
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