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Abstract— From a geometric viewpoint, quantum nonlocality
between two parties is represented as the difference of two
convex bodies, namely the sets of possible results of classical and
quantum correlation experiments, the latter of which is called the
quantum correlation set. Whereas little is known about the quan-
tum correlation set, Tsirelson’s theorem (1980) can be seen as the
exact characterization of possible pairwise quantum correlations,
where mean values of individual observables are discarded. In
this paper, we compare two previously shown bounds of the
quantum correlation set in the case where two parties have m
and n choices of dichotomic observables, respectively. One bound
comes from the direct application of Tsirelson’s theorem and the
no-signalling condition. The other bound, recently introduced by
Avis, Imai and Ito, refines the application of Tsirelson’s theorem
in the previous bound. We show that for any m, n ≥ 2, this new
bound is strictly tighter than the earlier bound. In other words,
there are correlations that satisfy Tsirelson’s theorem, but are
not realizable in a quantum setting.

I. PROBLEM AND RESULT

We consider (quantum) correlation experiments (see e.g. [1],
[2]) by two parties Alice and Bob, where Alice has m choices
of ±1-valued observables A1, . . . , Am and Bob has n choices
B1, . . . , Bn. Suppose that we are given mn real numbers
xAiBj (1 ≤ i ≤ m, 1 ≤ j ≤ n). Tsirelson’s theorem [3] (see
[4] for proof) gives a beautiful exact condition that there exists
a correlation experiment which satisfies 〈AiBj〉 = xAiBj ,
where 〈AiBj〉 denotes the expected value of the product of the
observables Ai and Bj : such a correlation experiment exists
if and only if there exist m + n unit vectors ui, vj ∈ Rm+n

such that xAiBj
= ui · vj .

In the study of combinatorial optimization, the set of mn-
dimensional vectors x satisfying this condition is referred
to as the elliptope E(Km,n) of the complete bipartite graph
Km,n = (Vm,n, Em,n) (see e.g. [5]). The m + n vertices of
this graph correspond to the m + n observables partitioned
in the obvious way into Alice’s and Bob’s observables. The
mn edges correspond to the mn possible correlations between
them. Generally, the elliptope of a graph G = (V,E) is the
set of |E|-dimensional vectors x which can be represented as
xij = ui · uj by using |V | unit vectors ui ∈ R|V |, each of
which is associated with each vertex i of G.

Next suppose we are additionally given m+n real numbers
xXAi (1 ≤ i ≤ m) and xXBj (1 ≤ j ≤ n), and we
would like to tell whether there exists a quantum correlation

experiment which satisfies 〈Ai〉 = xXAi , 〈Bj〉 = xXBj as
well as 〈AiBj〉 = xAiBj . We consider x as an (m+n+mn)-
dimensional vector and denote the set of the vectors x which
satisfies this condition by QCut(m,n), called the quantum
correlation set, following [6]. Here the appropriate graph is
∇Km,n = (∇Vm,n,∇Em,n) which is the suspension graph
of Km,n, that is obtained from Km,n by adding a new vertex
X and m + n edges XAi and XBj . These additional edges
correspond to the mean values of the m + n observables.
Two bounds of QCut(m,n) can be derived easily. First, if we
ignore xXAi and xXBj and only look at xAiBj , then we can
use Tsirelson’s theorem. This implies that π(QCut(m, n)) =
E(Km,n) and therefore QCut(m,n) ⊆ π−1(E(Km,n)), where
π : R∇Em,n → REm,n is the standard projection. Next, in
correlation experiments, the joint probability that Ai measures
to a ∈ {±1} and Bj measures to b ∈ {±1} is equal
to (1 + a〈Ai〉 + b〈Bj〉 + ab〈AiBj〉)/4. Therefore, if x ∈
QCut(m,n), then 1+axXAi +bxXBj +abxAiBj ≥ 0 for all i, j
and a, b ∈ {±1}. This is equivalent to consider the correlations
satisfying the nonnegativity, normalization, and no-signalling
conditions, see [1], [6].1 The set of vectors x satisfying these
4mn linear inequalities is referred to as the rooted semimetric
polytope RMet(∇Km,n) (again see [5]2). Therefore, we have
QCut(m,n) ⊆ RMet(∇Km,n). Combining these two bounds,
we have

QCut(m,n) ⊆ π−1(E(Km,n)) ∩ RMet(∇Km,n). (1)

In [6], Avis, Imai and Ito proved that

QCut(m,n) ⊆ E(∇Km,n) ∩ RMet(∇Km,n) (2)

as an application of Tsirelson’s theorem. Since

E(∇Km,n) ∩ RMet(∇Km,n)
⊆ π−1(E(Km,n)) ∩ RMet(∇Km,n), (3)

the bound (2) is not worse than the bound (1). But it remained
open whether the inclusion (3) is proper or not. In this paper,
we answer this question affirmatively:

1The inequalities directly correspond to the nonnegativity condition. The
normalization and no-signalling conditions are used to derive the fact that the
joint probability is equal to (1 + a〈Ai〉 + b〈Bj〉 + ab〈AiBj〉)/4.

2This is not the definition of the rooted semimetric polytope, but it is
equivalent as proved in [6].



Theorem 1: The inclusion (3) is proper for m, n ≥ 2.
A corollary follows from Theorem 1 and (2).

Corollary 1: The inclusion (1) is proper for m,n ≥ 2.
Corollary 1 implies that looking at the values xAiBj of

correlation functions is not enough to test whether a given
vector x is realizable in a quantum correlation experiment,
even if x is guaranteed to be no-signalling.

II. PROOF OF THEOREM 1

First we prove the case of (m,n) = (2, 2).
The vector x ∈ R∇E2,2 defined by

xXA1 = xXA2 = 0, xXB1 = xXB2 = 1 − 1/
√

2,

xA1B1 = xA1B2 = xA2B1 = 1/
√

2, xA2B2 = −1/
√

2

lies in π−1(E(K2,2)) ∩ RMet(∇K2,2). The membership to
RMet(∇K2,2) can be verified by straightforward calculation.
The membership to π−1(E(K2,2)) is proved by the fact that
the coordinates of π(x) are the inner products of the following
unit vectors in R2:

u1 =
(

1
0

)
,u2 =

(
0
1

)
, v1 =

1√
2

(
1
1

)
, v2 =

1√
2

(
1
−1

)
.

We prove that the vector x does not belong to E(∇K2,2).
Suppose the opposite. Then there exists unit vectors
u′

1, u
′
2,v

′
1, v

′
2, w

′ which correspond to A1, A2,B1, B2, X, re-
spectively, whose inner products give the coordinates of x.
However,

0 ≤ |u′
1 − (1/

√
2)(v′

1 + v′
2) + (

√
2 − 1)w′|2

+ |2(
√

2 − 1)u′
2 − (1/

√
2)(v′

1 − v′
2)|2

= |u′
1|2 + 4(3 − 2

√
2)|u′

2|2 + |v′
1|2 + |v′

2|2

+ (3 − 2
√

2)|w′|2 + 2(
√

2 − 1)u′
1 · w′

−
√

2(
√

2 − 1)(v′
1 · w′ + v′

2 · w′)

−
√

2(u′
1 · v′

1 + u′
1 · v′

2)

− 2
√

2(
√

2 − 1)(u′
2 · v′

1 − u′
2 · v′

2)

= (18 − 10
√

2) + 2(
√

2 − 1)xXA1

−
√

2(
√

2 − 1)(xXB1 + xXB2)

−
√

2(xA1B1 + xA1B2)

− 2
√

2(
√

2 − 1)(xA2B1 − xA2B2)

= 14 − 10
√

2 < 0,

which gives contradiction.
For larger values of m and n, we extend the vector x by

assigning zeros to additional coordinates. Then the new vector
x ∈ R∇Em,n lies in π−1(E(Km,n)) ∩RMet(∇Km,n) but not
in E(∇Km,n).

We note several facts about the relation between this vector
x and the Clauser–Horne–Shimony–Holt (CHSH) inequality
fCHSH ≤ 2 [7], where

fCHSH = xA1B1 + xA1B2 + xA2B1 − xA2B2 .

First, if we replace xXB1 and xXB2 by zero, then it becomes
realizable in a quantum experiment. This is the famous exam-
ple which violates the CHSH inequality maximally (the max-
imality comes from Tsirelson’s theorem). Second, the vector
x also maximizes fCHSH in π−1(E(K2,2)) ∩ RMet(∇K2,2),
which is obvious from the fact that fCHSH does not depend
on any of xXAi or xXBj . Third, the vector x maximizes
f = fCHSH − xXA1 + xXB1 + xXB2 in π−1(E(K2,2)) ∩
RMet(∇K2,2), attaining 2 +

√
2 ≈ 3.4142. On the other

hand, the maximum of f in E(∇K2,2) ∩ RMet(∇K2,2) is
9 − 4

√
2 ≈ 3.3431, achieved by

x′
XA1

= 3 − 2
√

2, x′
XA2

= 0, x′
XB1

= x′
XB2

=
√

2 − 1,

x′
A1B1

= x′
A1B2

= 5 − 3
√

2,

x′
A2B1

= 2 −
√

2, x′
A2B2

= −2 +
√

2.

Actually, the proof above of Theorem 1 was obtained by solv-
ing the optimization problem to maximize f in E(∇K2,2) ∩
RMet(∇K2,2), which is a semidefinite program, by using
SDPA (version 6.2.1) [8], and analyzing its dual optimal
solution.

III. CONCLUDING REMARKS

We showed that the expected values of the single observ-
ables Ai and Bj can be used to improve the bound of the
quantum correlation set implied by Tsirelson’s theorem and
the nonnegativity of the probabilities when the two parties
have an arbitrary number of ±1-valued observables.

Two implications of this are as follows. Firstly, Tsirelson’s
theorem gives a test for quantum theory itself: if pairwise
correlations are found in nature that are not permitted by
his theorem, then quantum theory is incomplete. Our result
gives a stronger test, since correlations are possible that satisfy
Tsirelson’s theorem but are not permitted by quantum theory.
For example, if the correlation used in the proof is realizable
in nature, the quantum theory will be proven to be incomplete.
Secondly, Tsirelson’s theorem allows the efficient computation
of the maximum violation of Bell inequalities, which have
many applications in quantum communication and complex-
ity [2], [9]. Our result allows for the computation of tighter
bounds for inequalities involving the means of individual
observables, as well as the observed pairwise correlations.
For example, Collins and Gisin [10] show that the I3322 Bell
inequality f3322 ≤ 4, where

f3322 = −xXA1 − xXA2 + xXB1 + xXB2

+ xA1B1 + xA1B2 + xA1B3

+ xA2B1 + xA2B2 − xA2B3

+ xA3B1 − xA3B2 ,

and one can achieve f3322 = 5 in QCut(3, 3). On the other
hand, the inclusion (1) gives an upper bound f3322 ≤ 8(

√
3−

1) ≈ 5.8564 in QCut(3, 3). The inclusion (2) gives a tighter
upper bound f3322 ≤ 2(

√
3 + 1) ≈ 5.4641 in QCut(3, 3).

This result motivates a search for a more ambitious example:
the pairwise correlation functions are realizable in a classical



correlation experiment, but if we take the mean values into
account, the entire result is not realizable even in quantum
correlation experiments. In this direction, we have the follow-
ing result, whose proof will be available in near future.

Theorem 2: (i) For m = n = 3, there exists a vector
x ∈ R∇Em,n which is no-signalling but not realizable
in quantum correlation experiments, such that if mean
values of individual observables are discarded, the pair-
wise correlation functions are realizable in a classical
correlation experiment. An example of such a vector is
as follows:

xXA1 = xXA2 = xXA3 = xXB1 = xXB2 = xXB3 = 1/3,

xA1B1 = xA2B2 = 1,

xA1B2 = xA1B3 = xA2B1 = xA2B3

= xA3B1 = xA3B2 = xA3B3 = −1/3.

(ii) There is no such vector if min{m,n} = 2.
Now that we know the inclusion (3) is proper, the next

question is: how much is the difference between the two sides
of the inequality (3)? Another, more challenging, problem is
whether equality holds in the inequality (2).

ACKNOWLEDGMENT

We would like to thank Hiroshi Imai for valuable comments
and helpful discussions. The first author is supported by
N.S.E.R.C. and F.Q.R.N.T research grants, and the second
author is supported by the Japan Society for the Promotion
of Science Fellowship and the Grant-In-Aid for JSPS Fellows
No. 17-50212.

REFERENCES

[1] B. S. Tsirelson, “Some results and problems on quantum Bell-type
inequalities,” Hadronic Journal Supplement, vol. 8, no. 4, pp. 329–345,
1993.

[2] R. F. Werner and M. M. Wolf, “Bell inequalities and entanglement,”
Quantum Information and Computation, vol. 1, no. 3, pp. 1–25, Oct.
2001, arXiv:quant-ph/0107093.

[3] B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Letters
in Mathematical Physics, vol. 4, no. 2, pp. 93–100, 1980.

[4] B. S. Tsirel’son, “Quantum analogues of the Bell inequalities: The case
of two spatially separated domains,” Journal of Soviet Mathematics,
vol. 36, pp. 557–570, 1987.

[5] M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, ser.
Algorithms and Combinatorics. Springer, May 1997, vol. 15.

[6] D. Avis, H. Imai, and T. Ito, “On the relationship between convex bodies
related to correlation experiments with dichotomic observables,” Journal
of Physics A: Mathematical and General, vol. 39, no. 36, pp. 11 283–
11 299, Sept. 2006, arXiv:quant-ph/0605148.

[7] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed
experiment to test local hidden-variable theories,” Physical Review
Letters, vol. 23, no. 15, pp. 880–884, Oct. 1969.

[8] K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita, “SDPA
(SemiDefinite Programming Algorithm) user’s manual: Version 6.2.0,”
Dept. Math. & Comp. Sciences, Tokyo Institute of Technology, Research
Report B-308, Dec. 1995, revised to version 6.2.1 in Sept. 2005, See
also http://grid.r.dendai.ac.jp/sdpa/.

[9] R. Cleve, P. Høyer, B. Toner, and J. Watrous, “Consequences and
limits of nonlocal strategies,” in Proceedings of 19th IEEE Annual
Conference on Computational Complexity (CCC’04), June 2004, pp.
236–249, arXiv:quant-ph/0404076.

[10] D. Collins and N. Gisin, “A relevant two qubit Bell inequality inequiv-
alent to the CHSH inequality,” Journal of Physics A: Mathematical
and General, vol. 37, no. 5, pp. 1775–1787, Feb. 2004, arXiv:quant-
ph/0306129.


