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Abstract. In this paper we explore further the connections between convex bodies related to quantum
correlation experiments with dichotomic variables and related bodies studied in combinatorial optimization,
especially cut polyhedra. Such a relationship was established in Avis, Imai, Ito and Sasaki (J. Phys. A:
Math. Gen. 38 10971-10987, 2005) with respect to Bell inequalities. We show that several well known
bodies related to cut polyhedra are equivalent to bodies such as those defined by Tsirelson (Hadronic
J. S. 8 329-345, 1993) to represent hidden deterministic behaviors, quantum behaviors, and no-signaling
behaviors. Among other things, our results allow a unique representation of these bodies, give a necessary
condition for vertices of the no-signaling polytope, and give a method for bounding the quantum violation
of Bell inequalities by means of a body that contains the set of quantum behaviors. Optimization over this
latter body may be performed efficiently by semidefinite programming.
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1 Introduction

Classical and quantum Bell inequalities play an im-
portant role in understanding the existence and the limit
of quantum nonlocality [12]. In [12], Tsirelson compares
and investigates the convex sets Xapp € Xqp € Xp: the
polytope Xupp consisting of local deterministic behav-
iors, the set Xqp of quantum behaviors, and the poly-
tope Xp consisting of all behaviors satisfying the non-
negativity, the normalization, and the no-signaling con-
diti%ls. We Elocus on behaviors over the behavior scheme
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(2,...,2;2,...,2), where two parties have m (> 2) and
n (> 2) +l-valued measurements. We let Xpypp =
XHDB(m, n), XQB = XQB(m,n), XB = XB(m,n). In
this case, a behavior is specified by 4mn nonnegative re-
als gqp|i; which represent the probability with which A;
measures to a and B; to b simultaneously for 1 <7 <'m,
1 <j <mn, ab e {£1}, which satisfy the normaliza-
tion condition }, e (11} dabi; = 1 and the no-signaling
conditions Zbe{il} Qablij = Zbe{il} Qab)ij’ for any a, i,
and ZaG{:I:l} Qablij = Zae{il} Gapj; for any a,j, j'.

A (classical) Bell inequality can be seen as a linear in-
equality valid for Xypg(m,n), whereas a quantum Bell
inequality can be seen as a linear inequality valid for
Xqe(m,n). However, classical and quantum Bell in-
equalities in this form are cumbersome for certain pur-
poses because, as is pointed out by Froissart [8], adding
any linear combination of the normalization and no-
signaling conditions to an inequality gives apparently dif-
ferent representations of essentially the same inequality.

The cut polytope is a convex polytope studied inten-
sively in combinatorial optimization. A book [7] by Deza
and Laurent is a definite reference on the cut polytope,
and readers are referred to it for its definition and prop-
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erties. Avis, Imai, Ito, Sasaki [2] point out that the
polytope Xupp(m,n) is isomorphic to the cut polytope
Cut(VK,, ) of a certain graph VK,, ,, via an affine map-
ping. In this paper, we apply the same mapping to
Xqe(m,n) and Xg(m,n), and show their relationships
to the rooted semimetric polytope RMet(VK,, ,,) and the
elliptope £(VK,y, ), which arise as linear and semidefi-
nite relaxations of the cut polytope, respectively.

The result presented in this extended abstract will be
described in more detail in an upcoming paper [3].

2 Affine isomorphism

We describe the affine isomorphism from Xupg(m,n)
to Cut(VK,, ). Here Kinpn = (Vinn,Emn) de-
notes the complete bipartite graph with the vertices
Vinn = {A1,..., Ay, Bq, ..., By} and the edges E,, , =
{AB; |1 <i<m, 1< j<n} and VK,,,, =
(VVin, VEp, ) denotes its suspension graph obtained
from K, , by adding a new vertex X and m + n edges
XA; and XB;. The affine isomorphism from Xypg(m,n)
to Cut(VK,,,) maps ¢ € R*™" to a vector = €
RYFmn defined by oxa; = 2.4 peqa1) 441,blij:" TXB; =
Za,be{il}aq%-i-llij’ TA;B; = Za,be{il}abq+1,+1\ij' We
denote the image of Xqg(m,n) under this isomorphism
by QCut(mvn)'

3 Correlation functions and Tsirelson’s
theorem

The correlation function Ta,;B; 18 the expected value of
the product ab of the outcomes of measurements by two
parties. Considering only the mn correlation functions is
equivalent to considering the projection of the vector x
from RVFmn to REmn via the standard projection 7.

IThe right hand side of this equation does not depend on j due
to the no-signaling condition. The same holds for the next equation
and i.



Tsirelson’s theorem (Theorem 1 in [5]) can be stated in
terms of the elliptope. The elliptope £(G) of a graph G =
(V, E) with n = |V| nodes is the convex body consisting
of vectors & € RE such that there exist a unit vector u;
in R™ for each node ¢ € V satisfying z;; = u; - u;, see
Section 28.4 of [7]. By using the notion of the elliptope,
Tsirelson’s theorem can be stated as 7(Qcut(m,n)) =
EKm,n)-

It is well-known that the elliptope can also be char-
acterized by using nonnegative definite matrices called
Gram matrices (see e.g. Section 28.4.1 of [7]). This allows
one to maximize an arbitrary linear function over the el-
liptope efficiently by using the interior-point method, and
therefore to compute the maximum quantum violation of
Bell inequalities involving only the correlation functions,
as is pointed out by [6].

Since m(Cut(VKy,n)) = Cut(K,, ), a vector y €
REmn represents the correlation functions in some hid-
den deterministic behavior if and only if y € Cut(Kyy,. ).

As is pointed out by Tsirelson [12], Grothendieck [9]
proves that for a vector y € REm.» to belong to £(K,, 1),
it is necessary that the vector z € RPm» defined
by za,B, = (2/m)arcsinya,s, belongs to Cut(K,, ).
Tsirelson asks in [12] whether this is also sufficient for
m = n = 2. This condition is known under the name cut
condition [7, Section 31.3.1] in combinatorial optimiza-
tion, and by Laurent’s result [10], the cut condition for
E(Km,n) is sufficient if and only if min{m,n} < 2. This
answers Tsirelson’s question affirmatively.

4 The no-signaling polytope and the
rooted semimetric polytope

The image of Xp under the isomorphism stated in Sec-
tion 1 is identical to the polytope referred to as the rooted
semimetric polytope RMet(VK,, ). It follows immedi-
ately from [11] that the coordinates of the vertices of
Xg(m,n) are in {0,1/2,1}.

If we only specify the mn correlation functions za,p ;€
[—1,1], there always exists & € RMet(VK,, ). The im-
plication of this is that all correlations between observ-
ables A;, B; are possible under the no-signaling condition
alone.

In a related work [4], Barrett, Linden, Massar, Pironio,
Popescu and Roberts investigate the vertices of the no-
signaling polytope with two k-outcome observables per

party.

5 Implication of Tsirelson’s theorem on
QCut(man)

As stated earlier, Tsirelson’s theorem can be stated
as m(Qcut(m,n)) = E(Kpm,n). A question arises what
Qcut(m,n) looks like. The following theorem partially
answers this question.

Theorem 1 Qcyi(m,n) C E(VK,y,.n) NRMet(VK,, 1).

Since linear functions can be optimized efficiently over
E(VK,,.») by the interior-point method, Theorem 1 can
be used to give an upper bound of the maximum quantum
violation of any Bell inequality.

Like Tsirelson’s theorem, Theorem 1 can be used to
test quantum mechanics itself. As Froissart pointed
out [8], finding violation of Bell inequalities does not
prove or disprove quantum mechanics. Theorem 1 pro-
vides a stronger test than Tsirelson’s theorem, since there
is * € RMet(VK,,n) \ E(VK,, ) such that n(x) €
EKpm,n) for all m,n > 2 [1].
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