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Abstract. In this paper we explore further the connections between convex bodies related to quantum
correlation experiments with dichotomic variables and related bodies studied in combinatorial optimization,
especially cut polyhedra. Such a relationship was established in Avis, Imai, Ito and Sasaki (J. Phys. A:
Math. Gen. 38 10971–10987, 2005) with respect to Bell inequalities. We show that several well known
bodies related to cut polyhedra are equivalent to bodies such as those defined by Tsirelson (Hadronic
J. S. 8 329–345, 1993) to represent hidden deterministic behaviors, quantum behaviors, and no-signaling
behaviors. Among other things, our results allow a unique representation of these bodies, give a necessary
condition for vertices of the no-signaling polytope, and give a method for bounding the quantum violation
of Bell inequalities by means of a body that contains the set of quantum behaviors. Optimization over this
latter body may be performed efficiently by semidefinite programming.
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1 Introduction

Classical and quantum Bell inequalities play an im-
portant role in understanding the existence and the limit
of quantum nonlocality [12]. In [12], Tsirelson compares
and investigates the convex sets XHDB ⊆ XQB ⊆ XB: the
polytope XHDB consisting of local deterministic behav-
iors, the set XQB of quantum behaviors, and the poly-
tope XB consisting of all behaviors satisfying the non-
negativity, the normalization, and the no-signaling con-
ditions. We focus on behaviors over the behavior scheme

(

m︷ ︸︸ ︷
2, . . . , 2;

n︷ ︸︸ ︷
2, . . . , 2), where two parties have m (≥ 2) and

n (≥ 2) ±1-valued measurements. We let XHDB =
XHDB(m, n), XQB = XQB(m, n), XB = XB(m,n). In
this case, a behavior is specified by 4mn nonnegative re-
als qab|ij which represent the probability with which Ai

measures to a and Bj to b simultaneously for 1 ≤ i ≤ m,
1 ≤ j ≤ n, a, b ∈ {±1}, which satisfy the normaliza-
tion condition

∑
a,b∈{±1} qab|ij = 1 and the no-signaling

conditions
∑

b∈{±1} qab|ij =
∑

b∈{±1} qab|ij′ for any a, i, i′

and
∑

a∈{±1} qab|ij =
∑

a∈{±1} qab|i′j for any a, j, j′.
A (classical) Bell inequality can be seen as a linear in-

equality valid for XHDB(m,n), whereas a quantum Bell
inequality can be seen as a linear inequality valid for
XQB(m,n). However, classical and quantum Bell in-
equalities in this form are cumbersome for certain pur-
poses because, as is pointed out by Froissart [8], adding
any linear combination of the normalization and no-
signaling conditions to an inequality gives apparently dif-
ferent representations of essentially the same inequality.

The cut polytope is a convex polytope studied inten-
sively in combinatorial optimization. A book [7] by Deza
and Laurent is a definite reference on the cut polytope,
and readers are referred to it for its definition and prop-
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erties. Avis, Imai, Ito, Sasaki [2] point out that the
polytope XHDB(m,n) is isomorphic to the cut polytope
Cut(∇Km,n) of a certain graph ∇Km,n via an affine map-
ping. In this paper, we apply the same mapping to
XQB(m,n) and XB(m,n), and show their relationships
to the rooted semimetric polytope RMet(∇Km,n) and the
elliptope E(∇Km,n), which arise as linear and semidefi-
nite relaxations of the cut polytope, respectively.

The result presented in this extended abstract will be
described in more detail in an upcoming paper [3].

2 Affine isomorphism

We describe the affine isomorphism from XHDB(m,n)
to Cut(∇Km,n). Here Km,n = (Vm,n, Em,n) de-
notes the complete bipartite graph with the vertices
Vm,n = {A1, . . . , Am, B1, . . . , Bn} and the edges Em,n =
{AiBj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and ∇Km,n =
(∇Vm,n,∇Em,n) denotes its suspension graph obtained
from Km,n by adding a new vertex X and m + n edges
XAi and XBj . The affine isomorphism from XHDB(m,n)
to Cut(∇Km,n) maps q ∈ R4mn to a vector x ∈
R∇Em,n defined by xXAi =

∑
a,b∈{±1} aq+1,b|ij ,1 xXBj =∑

a,b∈{±1} aqa,+1|ij , xAiBj =
∑

a,b∈{±1} abq+1,+1|ij . We
denote the image of XQB(m,n) under this isomorphism
by QCut(m,n).

3 Correlation functions and Tsirelson’s
theorem

The correlation function xAiBj is the expected value of
the product ab of the outcomes of measurements by two
parties. Considering only the mn correlation functions is
equivalent to considering the projection of the vector x
from R∇Em,n to REm,n via the standard projection π.

1The right hand side of this equation does not depend on j due
to the no-signaling condition. The same holds for the next equation
and i.



Tsirelson’s theorem (Theorem 1 in [5]) can be stated in
terms of the elliptope. The elliptope E(G) of a graph G =
(V,E) with n = |V | nodes is the convex body consisting
of vectors x ∈ RE such that there exist a unit vector ui

in Rn for each node i ∈ V satisfying xij = ui · uj , see
Section 28.4 of [7]. By using the notion of the elliptope,
Tsirelson’s theorem can be stated as π(QCut(m,n)) =
E(Km,n).

It is well-known that the elliptope can also be char-
acterized by using nonnegative definite matrices called
Gram matrices (see e.g. Section 28.4.1 of [7]). This allows
one to maximize an arbitrary linear function over the el-
liptope efficiently by using the interior-point method, and
therefore to compute the maximum quantum violation of
Bell inequalities involving only the correlation functions,
as is pointed out by [6].

Since π(Cut(∇Km,n)) = Cut(Km,n), a vector y ∈
REm,n represents the correlation functions in some hid-
den deterministic behavior if and only if y ∈ Cut(Km,n).

As is pointed out by Tsirelson [12], Grothendieck [9]
proves that for a vector y ∈ REm,n to belong to E(Km,n),
it is necessary that the vector z ∈ REm,n defined
by zAiBj = (2/π) arcsin yAiBj belongs to Cut(Km,n).
Tsirelson asks in [12] whether this is also sufficient for
m = n = 2. This condition is known under the name cut
condition [7, Section 31.3.1] in combinatorial optimiza-
tion, and by Laurent’s result [10], the cut condition for
E(Km,n) is sufficient if and only if min{m,n} ≤ 2. This
answers Tsirelson’s question affirmatively.

4 The no-signaling polytope and the
rooted semimetric polytope

The image of XB under the isomorphism stated in Sec-
tion 1 is identical to the polytope referred to as the rooted
semimetric polytope RMet(∇Km,n). It follows immedi-
ately from [11] that the coordinates of the vertices of
XB(m,n) are in {0, 1/2, 1}.

If we only specify the mn correlation functions xAiBj
∈

[−1, 1], there always exists x ∈ RMet(∇Km,n). The im-
plication of this is that all correlations between observ-
ables Ai, Bj are possible under the no-signaling condition
alone.

In a related work [4], Barrett, Linden, Massar, Pironio,
Popescu and Roberts investigate the vertices of the no-
signaling polytope with two k-outcome observables per
party.

5 Implication of Tsirelson’s theorem on
QCut(m,n)

As stated earlier, Tsirelson’s theorem can be stated
as π(QCut(m,n)) = E(Km,n). A question arises what
QCut(m,n) looks like. The following theorem partially
answers this question.

Theorem 1 QCut(m,n) ⊆ E(∇Km,n) ∩ RMet(∇Km,n).

Since linear functions can be optimized efficiently over
E(∇Km,n) by the interior-point method, Theorem 1 can
be used to give an upper bound of the maximum quantum
violation of any Bell inequality.

Like Tsirelson’s theorem, Theorem 1 can be used to
test quantum mechanics itself. As Froissart pointed
out [8], finding violation of Bell inequalities does not
prove or disprove quantum mechanics. Theorem 1 pro-
vides a stronger test than Tsirelson’s theorem, since there
is x ∈ RMet(∇Km,n) \ E(∇Km,n) such that π(x) ∈
E(Km,n) for all m,n ≥ 2 [1].
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