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Abstract—We study a protocol in which many parties use
quantum communication to transfer a shared state to a receiver
without communicating with each other. This protocol is a
multiparty version of the fully quantum Slepian-Wolf protocol
for two senders and arises through the repeated application of the
two-sender protocol. We describe bounds on the achievable rate
region for the distributed compression problem. The inner bound
arises by expressing the achievable rate region for our protocol
in terms of its vertices and extreme rays and, equivalently, in
terms of facet inequalities. We also prove an outer bound on all
possible rates for distributed compression based on multiparty
squashed entanglement.

I. I NTRODUCTION

Many of the protocols of information theory deal with
multiple senders or multiple receivers. As a whole, however,
network information theory, the field which studies general
multiparty communication scenarios, is not yet fully developed
even for classical systems [1]. Quantum network information
theory, which deals with quantum multipartite communication,
is also under active development [2], [3], [4] and, thanks to
the no-cloning properties of quantum information, sometimes
admits simple solutions [2]. On the other hand, a full un-
derstanding of quantum network theory will require a precise
characterization of multiparty entanglement, a task whichis far
from completed [5], [6], [7]. Nevertheless, we can hope that
in the future we will have a rigorous and complete theory of
multiparty information in the spirit of the resource framework
for two-party protocols [8], [9].

One step towards the development of multiparty information
theory would be to generalize the compression protocols
[10], [11] to situations where the information is “distributed”
to many spatially separated parties. This is the multiparty
distributed compression problem, where multiple parties use
quantum communication to faithfully transfer their sharesof a
quantum state to a common receiver. The two-sender classical
version of this problem was solved by Slepian and Wolf [12]
while the quantum version was studied in [13], [14], [15].
In this paper, we build a protocol for multiparty distributed
compression based on the fully quantum Slepian-Wolf protocol
[15] and prove both inner and outer bounds on the achievable
rate region. We relate our findings to previous results in
information theory and discuss some possible applications.

We will denote quantum systems asA,B and the corre-
sponding Hilbert spacesHA,HB with respective dimensions
dA, dB . We denote pure states of the systemA by a ket |ϕ〉A
and the corresponding density matrices asϕA = |ϕ〉〈ϕ|A.
We denote byH(A)ρ = −Tr

(
ρA log ρA

)
the von Neumann

entropy of the stateρA. For a bipartite stateσAB we define the

conditional entropyH(A|B)σ = H(AB)σ −H(B)σ and the
mutual informationI(A;B)σ = H(A)σ+H(B)σ−H(AB)σ.
The fidelity is defined to beF (σ, ρ) = Tr

(√√
ρσ

√
ρ
)2

.
Throughout this paper, logarithms are taken base two unless
otherwise specified.

II. M ULTIPARTY DISTRIBUTED COMPRESSION

Distributed compression of classical information in-
volves many parties collaboratively encoding their sources
X1,X2, . . . ,Xm and sending the information to a common
receiver [16]. In the quantum setting, the parties are givena
quantum stateψA1A2···Am ∈ HA1A2···Am and are asked to
individually compress their shares of the state and transfer
them to the receiver Charlie, while sending as few qubits
as possible [13]. No communication between the senders is
allowed and, unlike [14], in this paper there is no classical
communication between the senders and the receiver.

For our analysis, we work in the setting where the
input consists ofn copies of a state:|ψ〉A1A2···AmR =
(|ϕ〉A1A2···AmR)⊗n, where theAi’s denote them different
senders andR denotes the reference system, which does not
participate in the protocol. Note that we useAi to denote both
the individual system associated with stateϕ as well then-
copy version associated withψ; the meaning should be clear
from the context.

The objective of the distributed compression task is for
the participants to transfer theirR-entanglement to a third
party Charlie as illustrated in Figure 1. Note that any other
type of correlation theA systems could have with an external
subsystem is automatically preserved if entanglement is [17].
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Fig. 1. Pictorial representation of the quantum correlations between the
systems at three stages of the protocol. Originally the state|ψ〉 is shared
betweenA1A2 · · ·Am and R. The middle picture shows the protocol in
progress. Finally, all systems are received by Charlie and|ψ〉 is now shared
between Charlie’s systemŝA1Â2 · · · Âm andR.

An equivalent way of thinking about quantum distributed
compression is to say that the participants are attempting to



decouple their systems from the referenceR by sending quan-
tum information to Charlie. Indeed, assume that originallyR is
the purification ofA1A2 · · ·Am, and callW1 throughWm the
systems left behind at the end of the protocol with the holders
of the originalA1 throughAm. If there are no correlations
betweenW1W2 · · ·Wm andR, then the purification ofR must
have been transferred to Charlie’s laboratory.

To perform the distributed compression task, each of the
senders independently encodes her share before sending part
of it to Charlie. The encoding operations are modeled by quan-
tum operations, that is, completely positive trace-preserving
(CPTP) mapsEi with outputsCi of dimension2nQi . Once
Charlie receives the systems that were sent to him, he will
apply a decoding CPTP mapD with output systemÂ =
Â1Â2 . . . Âm isomorphic to the originalA = A1A2 . . . Am.

Definition 2.1 (The rate region):We say that a rate tuple
~Q ≡ (Q1, Q2, . . . , Qm) is achievable if for allǫ > 0 there
existsN(ǫ) such that for alln ≥ N(ǫ) there existn-dependent
maps(E1, E2, . . . , Em,D) with domains and ranges as in the
previous paragraph for which the fidelity between the original

state, |ψ〉A
nRn

=
(
|ϕ〉A1A2···AmR

)⊗n

, and the final state,

σÂ1Â2...ÂmR = σÂ
nRn

, satisfies

F
(
|ψ〉A

nRn

, σÂ
nRn

)
≥ 1 − ǫ. (1)

We call the closure of the set of achievable rates the rate
region.

III. PROTOCOLS

In this section we introduce the fully quantum Slepian-
Wolf (FQSW) protocol [15], which describes a procedure
for simultaneous quantum state transfer and entanglement
distillation. The two-party protocol is then used as a building
block for a multiparty distributed compression protocol.

A. The FQSW protocol

Consider a setup where the state|ψ〉ABR =
(
|ϕ〉ABR

)⊗n

is shared between Alice, Bob and a reference systemR. The
FQSW protocol describes a procedure for Alice to transfer
herR-entanglement to Bob while at the same time generating
ebits with him. Alice can accomplish this by encoding and
sending part of her system, denotedA1, to Bob. The state

after the protocol can be written as|Φ〉A2B̃ (|ϕ〉RB̂)⊗n, where
the systems̃B andB̂ are held in Bob’s lab whileA2 remains

with Alice. The state|Φ〉A2B̃ is a maximally entangled state
shared between Alice and Bob, a handy side-product which
can be used to build more advanced protocols [18], [19].
Figure 2 illustrates the entanglement structure before andafter
the protocol.

The protocol consists of the following steps:
1) Alice performs Schumacher compression on her system

A to obtain the output systemAS .
2) Next, she splits her system into two parts:A1A2 = AS

with dA1
= 2nQA and

QA >
1

2
I(A;R)ϕ. (2)
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Fig. 2. Diagram representing theABR correlations before and after the
FQSW protocol. Alice manages to decouple completely from the reference
R. The B̂ system is isomorphic toAB.

3) Alice then applies a random unitaryUA toAS , and sends
the systemA1 to Bob.

4) Bob, in turn, performs a decoding operationV A1B→B̂B̃
B

which splits his system into âB part purifyingR and a
B̃ part which is fully entangled with Alice.

In other words, in the limit of many copies of the state, the
FQSW protocol will succeed if the rate at which Alice sends
qubits to Bob is

QA =
1

2
I(A;R)ϕ + δ. (3)

for any δ > 0.

B. The multiparty FQSW protocol

The FQSW protocol provides a natural approach to the
two sender case of the multiparty distributed compression
problem illustrated in Figure 1: if the first sender transfers her
entire state to Charlie, then FQSW is sufficient to complete
the compression task. Like the two-party FQSW protocol,
the multiparty FQSW protocol demands that each sender
individually Schumacher compress her system and apply a
random unitary operation. The only additional ingredient is
an agreed upon permutation of the participants. The temporal
order in which the participants will perform their encodingis
of no importance. However, the permutation determines how
much information each participant is to send to Charlie.

For each permutationπ of the participants, the protocol de-
mands that Alice-i sends to Charlie a systemCi of dimension
2nQi where

Qi >
1

2
I(Ai;AKi

R)ϕ, (4)

whereKi = {π(j) : j > π-1(i)} is the set of participants who
come afteri in the permutation. Charlie applies a decoding
operationD consisting of the composition of the decoding
mapsDπ(m) ◦ · · · ◦ Dπ(2) ◦ Dπ(1) defined by the individual

FQSW steps in order to recoverσÂ1Â2...Âm nearly identical
to the originalψA1A2···Am and purifyingR.

IV. STATEMENT OF RESULTS

This subsection contains our two main theorems about
multiparty distributed compression. In Theorem 4.1 we give
the formula for the set of achievable rates using the multi-
party FQSW protocol (sufficient conditions). Then, in Theo-
rem 4.2 we specify another set of inequalities for the rates
(Q1, . . . , Qm) which must be hold for any distributed com-
pression protocol (necessary conditions).



Theorem 4.1:Let |ϕ〉A1A2···AmR be a pure state. If the
inequality

∑

k∈K

Qk ≥ 1

2

[
∑

k∈K

H(Ak)ϕ +H(R)ϕ −H(RAK)ϕ

]
(5)

holds for all K ⊆ {1, 2, . . . ,m}, then the rate tuple~Q ≡
(Q1, · · · , Qm) is achievable for distributed compression of the
Ai systems.

Because Theorem 4.1 expresses a set of sufficient conditions
for the protocol to succeed, we say that these rates are
contained in the rate region. In them-dimensional space of
rate tuples ~Q ∈ R

m, the inequalities (5) define a convex
polyhedron [20] whose facets are given by the corresponding
hyperplanes, as illustrated in Figure 3. More specifically,the
rate region is a supermodular polyhedron [21] with properties
that will aid us in the proof of Theorem 4.1.

Fig. 3. The rate region for the multiparty FQSW protocol for three senders.

In order to characterize the rate region further we also derive
an outer bound which all rate tuples must satisfy.

Theorem 4.2:Let |ϕ〉A1A2···AmR be a pure state input to a
distributed compression protocol which achieves the rate tuple
(Q1, . . . , Qm), then it must be true that

∑

k∈K

Qk ≥ 1

2

[
∑

k∈K

H(Ak)ϕ +H(R)ϕ −H(RAK)ϕ

]

− Esq(Ak1 ;Ak2 ; . . . ;Ak|K|
)ϕ, (6)

for all K ⊆ {1, 2, . . . ,m}, where Esq is the multiparty
squashed entanglement.

The multiparty squashed entanglement [22], [4] is a measure
of multipartite entanglement which generalizes the bipartite
squashed entanglement of [23]. It is defined analogously to
the bipartite version.

Definition 4.1 (Multiparty squashed entanglement):
Consider the stateρX1X2...Xm shared bym parties. We
define the multiparty squashed entanglement in the following
manner:

Esq(X1;. . .; Xm)ρ:=
1
2
inf
E

[
m∑

i=1

H(Xi|E)ρ̃ −H(X1· · ·Xm|E)ρ̃

]
(7)

where the infimum is taken over all statesρ̃X1X2...XmE such
that TrE

(
ρ̃X1X2...XmE

)
= ρX1X2...Xm . (We say ρ̃ is an

extensionof ρ.)

The dimension of the extension systemE is a priori
unbounded, which unfortunately makes calculations of the
squashed entanglement very difficult except for simple sys-
tems.

The motivation behind this definition is that we can include
a copy of all classical correlations inside the extensionE

and thereby eliminate them from the multiparty information
by conditioning. Since it is impossible to copy quantum
information, we know that taking the infimum over all possible
extensionsE we will be left with purely quantum correlations.
It is shown in [22], [4] thatEsq is continuous, monotonic under
local operations and classical communication, convex and
subadditive — a desirable and rare combination of properties
in the multiparty case.

Notice that Theorems 4.1 and 4.2 both provide bounds of
the same form and only differ by the presence of theEsq

term. The rate region is squeezed somewhere between these
two bounds as illustrated in Figure 4.

Qα

Qβ

Theorem 4.2

Theorem 4.1

The rate region boundary

Fig. 4. A two dimensional diagram showing the inner bound fromTheorem
4.1 and the outer bound from Theorem 4.2. The boundary of the rate region
must lie somewhere in between.

For states which have zero squashed entanglement, like
separable states for example, the inner and outer bounds on
the rate region coincide so that in those cases our protocol is
an optimal solution to the multiparty distributed compression
problem.

V. PROOF OF THEACHIEVABLE RATES

In this section we’ll explain how to achieve the rates
advertised in Theorem 4.1. Additional details and the proof
of Theorem 4.2 can be found in [4].

The multiparty fully quantum Slepian-Wolf protocol can be
constructed directly [24] or through the repeated application of
the two-party FQSW protocol [15], [4]. We choose the latter
approach here in order to illustrate the power of the FQSW
protocol as a building block for more complex protocols. To
complete the proof of Theorem 4.1 we will have to “stitch
together” the entire rate region from different achievablepoints
using some concepts from the theory of polyhedra [20]. The
multiparty rate region has a complicated but highly structured
geometry so it is important that we use the right language to
describe it.

For every permutationπ ∈ Sm of them senders, there is a
different rate tuple~qπ = (Q1, Q2, . . . , Qm)π ∈ R

m which is
achievable in the limit of many copies of the state. By time-
sharing we can achieve any rate that lies in theconvex hullof



these points. We will show that the rate region for an input
state|ϕ〉A1···AmR can equivalently be described by the set of
inequalities from Theorem 4.1, that is

∑

k∈K

Qk ≥ CK, (8)

whereK ⊆ {1, . . . ,m} ranges over all subsets of participants
andCK := 1

2

[∑
k∈KH(Ak)ϕ + H(R)ϕ − H(RAK)ϕ

]
. The

proof of Theorem 4.1 proceeds in two steps. First we show
the set of rate tuples{~qπ} is contained in the rate region and
then we prove that the set of inequalities (8) is an equivalent
description of the rates obtained by time sharing and resource
wasting of the rates{~qπ}.

Consider the m-dimensional space of rate tuples
(Q1, · · · , Qm) ∈ R

m. We begin by a formal definition
of a corner point~qπ.

Definition 5.1 (Corner point):Let π ∈ Sm be a permuta-
tions of the senders in the protocol. The corresponding rate
tuple qπ = (Q1, Q2, . . . , Qm) is a corner point if

Qπ(k) =
1

2
I(Aπ(k);Aπ(k+1) · · ·Aπ(m)R) (9)

where the setAπ(k+1) · · ·Aπ(m) denotes all the systems which
come afterk in the permutationπ.

We defineQ := {~qπ : π ∈ Sm}, the set of all corner points.
Clearly |Q| ≤ m!, but since some permutations might lead to
the same rate tuple, the inequality may be strict.

Lemma 5.2:The set of corner points,Q = {~qπ : π ∈ Sm},
is contained in the rate region.

Proof sketch for Lemma 5.2:We know from the FQSW
inequality (3) that in order for Alice to decouple from the some
reference systemR, she needs to send quantum information at
a rate ofQ > 1

2I(A;R). In each step of the multiparty FQSW
protocol, we are facing a similar situation but instead we are
trying to decouple from the referenceR as well as all the
remaining participants. The participants which have merged
their shares of the state earlier provide side information at the
decoder, which was the role of theB system in the FQSW
protocol.

Thus, for a given permutationπ, we should be able to
successfully transfer the state if each Alice-i sends at a rate
Qi >

1
2I(Ai;AKi

R)ϕ + δ for any δ > 0 andKi = {π(j) :
j > π-1(i)} and the receiver applies the decoding mapD
consisting of the composition of the decoding mapsDπ(m) ◦
· · ·◦Dπ(2)◦Dπ(1) defined by the individual FQSW steps. More

precisely, Charlie should be able to recover a stateσÂ1Â2···Âm

which will be such that the fidelity between|ψ〉A
nRn

and
σÂ

nRn

is high. The proof follows because we can make the
δs arbitrarily small, so the rate tuple(Q1, · · · , Qm)π, with

Qπ(k) =
1

2
I(Aπ(k);Aπ(k+1) · · ·Aπ(m)R) (10)

must be contained in the rate region. This argument holds for
all permutationsπ ∈ Sm, leading to the conclusion that the
full set Q is contained in the rate region.

Each one of the corner points~qπ can also be described by
an equivalent set of equations involving sums of the rates.

∑

m−l+1≤k≤m

Qπ(k) = Cπ[m−l+1,m] (11)

for all l such that1 ≤ l ≤ m, where

Cπ[m−l+1,m] =
1

2

[
∑

m−l<k≤m

H(Aπ(k)) + H(R) − H(Aπ[m−l+1,m]R)

]

andAπ[m−l+1,m] := Aπ(m−l+1)Aπ(m−l+2) · · ·Aπ(m) denotes
the lastl participants according to the permutationπ.

So far, we have shown that the set of corner points
Q is contained in the rate region of the multiparty
fully quantum Slepian-Wolf protocol. The convex hull
of a set of points Q is defined to be conv(Q) :=
{~x ∈ R

m : ~x =
∑
λi~qi, ~qi ∈ Q, λi ≥ 0,

∑
λi = 1}.

Because of the possibility of time-sharing between the
different corner points, the entire convex hullconv(Q)
must be achievable. Furthermore, by simply allowing any
one of the senders to waste resources, we know that if
a rate tuple~q is achievable, then so is~q + ~w for any
vector ~w with nonnegative coefficients. More formally, we
say that any~q + cone(~e1, ~e2, . . . , ~em) is also inside the
rate region, where{~ei} is the standard basis forRm and
cone(~e1, · · ·, ~em) := {~x ∈ R

m : ~x =
∑
λi~ei, λi ≥ 0}. Thus,

we have demonstrated that the set of rates

PV := conv(Q) + cone(~e1, · · · , ~em) (12)

is achievable. By the Minkowski-Weyl Theorem [20, p.30], we
know thatPV can also be written as the intersection of a finite
number of half-spaces. To complete the proof of Theorem 4.1,
we will in fact show thatPV has an equivalent description as

PH :=

{
~Q ∈ R

m :
∑

k∈K

Qk ≥ CK,∀K ⊆ {1, . . . ,m}
}
, (13)

where the constantsCK are as defined in equation (8).

Preliminaries Before we begin the equivalence proof in
earnest, we make two useful observations which will be
instrumental to our subsequent argument.

Lemma 5.3 (Superadditivity):Let K,L ⊆ {1, 2, . . . ,m} be
any two subsets of the senders. Then

CK∪L + CK∩L ≥ CK + CL. (14)

As a consequence of this lemma, we can derive an equiva-
lence property for the saturated inequalities.

Corollary 5.4: Suppose that the following two equations
hold for a given point ofPH:

∑

k∈K

Qk = CK and
∑

k∈L

Qk = CL. (15)

Then the following equations must also be true:
∑

k∈K∪L

Qk = CK∪L and
∑

k∈K∩L

Qk = CK∩L. (16)



An important consequence of Lemma 5.3 is that it implies
that the polyhedronPH is of a very special type, known as
a supermodular polyhedron or contra-polymatroid. The fact
that conv(Q) = PH was proved by Edmonds [21], whose
ingenious proof makes use of linear programming duality.
Below we give an elementary proof that does not use duality.

A vertexis a zero-dimensional face of a polyhedron. A point
Q̄ = (Q̄1, Q̄2, . . . , Q̄m) ∈ PH ⊂ R

m is a vertex ofPH if and
only if it is the unique solution of a set of linearly independent
equations

∑

k∈Li

Qk = CLi
, 1 ≤ i ≤ m (17)

for some subsetsLi ⊆ {1, 2, . . . ,m}. In the remainder of
the proof we require only a specific consequence of linear
independence, which we state in the following lemma.

Lemma 5.5 (No co-occurrence):Let Li ⊆ {1, 2, . . . ,m}
be a collection ofm sets such that the system (17) has a
unique solution. Then there is no pair of elementsj, k such
that j ∈ Li if and only if k ∈ Li for all i.

Proof: If there was such a pairj and k, then the
corresponding columns of the left hand side of (17) would
be linearly dependent.

Armed with the above tools, we will now show that there is
a one-to-one correspondence between the corner pointsQ and
the vertices of theH-polyhedronPH. We will then show that
the vectors that generate the cone part of theH-polyhedron
correspond to the resource wasting vectors{~ei}.

Step 1: Q ⊆ vertices(PH) We know from equation (11)
that every point~qπ ∈ Q satisfies them equations

∑

m−i+1≤k≤m

Qπ(k) = Cπ[m−i+1,m], 1 ≤i ≤ m. (18)

The equations (18) are very similar in form to the inequal-
ities in (13) that are used to definePH. Because the left hand
side is triangular, the equations have the unique solution:

Qπ(m) =Cπ(m) Qπ(i) =Cπ[i,m] − Cπ[i+1,m], (19)

where 1 ≤ i ≤ m−1. We need to show that this solution
satisfies all the inequalities used to definePH in (13). We
proceed by induction on|K|. The case|K| = 1 follows from
(19) and the superadditivity property (14). For|K| ≥ 2 we
can writeK = {π(i)} ∪ K′ for someK′ ⊆ {π(i + 1), π(i +
2), . . . , π(m)}. Then

∑

k∈K

Qk = Qπ(i) +
∑

k∈K′

Qk

≥ Cπ[i,m] − Cπ[i+1,m] +
∑

k∈K′

Qk

≥ Cπ[i,m] − Cπ[i+1,m] + CK′ (induction)

≥ CK

where we again used superadditivity to get the last inequality.

Step 2: vertices(PH) ⊆ Q In order to prove the opposite
inclusion, we will show that every vertex ofPH is of the

form of equation (11). More specifically, we want to prove
the following proposition.

Proposition 5.6 (Existence of a maximal chain):Every
vertex of PH, that is, the intersection ofm linearly
independent hyperplanes

∑

k∈Li

Qk = CLi
, 1 ≤i ≤ m, (20)

defined by the family of sets{Li; 1 ≤ i ≤ m} can be
described by an equivalent set of equations

∑

k∈Ki

Qk = CKi
, 1 ≤i ≤ m, (21)

for some family of sets distinctKi ⊆ {1, 2, . . . ,m} that form
a maximal chainin the sense of

∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km = {1, 2, . . . ,m}. (22)

Since there exists a permutationπ such that∀i, π[m −
i + 1,m] = Ki this implies that all the vertices ofPH are
in Q. The main tool we have have at our disposal in order
to prove this proposition is Corollary 5.4, which we will use
extensively.

Proof of Proposition 5.6: Let {Li}mi=1 be the subsets
of {1, 2, . . . ,m} for which the inequalities are saturated and
defineLS

i := Li ∩ S, the intersection ofLi with some set
S ⊆ {1, 2, . . . ,m}.
Construct the directed graphG = (V,E), where:

• V = {1, 2, . . . ,m}, i.e. the vertices are the numbers from
1 to m;

• E = {(j, k) : (∀i) j ∈ Li =⇒ k ∈ Li }, i.e. there is
an edge from vertexj to vertexk if whenever vertexj
occurs in the given subsets, then so does vertexk.

NowG has to be acyclic by Lemma 5.5, so it has a topological
sorted order. Let us call this orderν. Let K0 = ∅ and let

Kl = {νm−l+1, . . . , νm} (23)

for l ∈ {1, . . . ,m}. The setsKl, which consist of the lastl
vertices according to the orderingν, form a maximal chain
K0 ⊂ K1 ⊂ · · · ⊂ Km−1 ⊂ Km by construction.

We claim that all the setsKl can be constructed from the
sets{Li} by using unions and intersections as dictated by
Corollary 5.4. The statement is true forKm = {1, 2, . . . ,m}
because every variable must appear in some constraint equa-
tion, giving Km = ∪iLi. The statement is also true for
Km−1 = {ν2, ..., νm} since the vertexν1 has no in-edges
in G by the definition of a topological sort, which means that

Km−1 =
⋃

ν1 /∈LKm

i

LKm

i . (24)

For the induction statement, letl ∈ {m − 1, . . . , 2, 1} and
assume thatKl =

⋃
i LKl

i . Since the vertexνm−l has no in-
edges in the induced subgraph generated by the verticesKl
by the definition of the topological sort,Kl−1 can be obtained
from the union of all the sets not containingνm−l:

Kl−1 =
⋃

νm−l /∈L
Kl

i

LKl

i . (25)



In more detail, we claim that for allω 6= νm−l ∈ Kl−1 there
existsi such thatνm−l 6∈ LKl

i andω ∈ LKl

i . If it were not true,
that would imply the existence ofω 6= νm−l ∈ Kl−1 such that
for all i, νm−l ∈ LKl

i or ω 6∈ LKl

i . This last condition implies
that wheneverω ∈ LKl

i it is also true thatνm−l ∈ LKl

i , which
corresponds to an edge(ω, νn−l) in the induced subgraph.

We have shown that every vertex can be written in precisely
the same form as equation (11) and is therefore a point inQ.
This provesvertices(PH) ⊆ Q, which together with the result
of Step 1, impliesvertices(PH) = Q.

Step 3: Cone Part The generating vectors of the cone part
of PH are all vectors that satisfy the homogeneous versions
of the halfspace inequalities (13), which in our case are

∑

k∈K

Qk ≥ 0, K ⊆ {1, . . . ,m}. (26)

These inequalities are satisfied if and only ifQk ≥ 0 for all k.
The cone part ofPH, therefore, is given bycone(~e1, . . . , ~em).

This completes our demonstration thatPV is the V-
polyhedron description of theH-polyhedronPH and by ex-
tension the proof of Theorem 4.1.

VI. D ISCUSSION

We have shown how to build protocols for multiparty
distributed compression out of the two-party fully quantum
Slepian-Wolf protocol. The resulting achievable rates general-
ize those found in [15] for the two-party case and, for the most
part, the arguments required are direct generalizations ofthose
required for two parties. The most interesting divergence is to
be found in section V, where we characterize the multiparty
rates that can be achieved starting from sequential applications
of the two-party protocol. The proof we obtained uses a
sufficient level of mathematical abstraction so as to apply to
other problems in information theory involving multipartyrate
regions proved in terms of achievable points but expressed
instead in terms of facet inequalities like for example, therate
regions for the classical multiparty Slepian-Wolf problem[16]
and the multiparty state merging protocol [14].

Multiparty compression joins entanglement distillation,
entanglement-assisted communication, channel simulation,
communication over quantum broadcast channels, state redis-
tribution [19] and many other protocols in the list of protocols
that can be built out of the simpler nearly-universal two-party
FQSW protocol.

Multiparty FQSW can then itself be used as a building block
for other multiparty protocols. For example, when classical
communication between the senders and the receiver is free,
combining multiparty FQSW with teleportation reproduces
the multiparty state merging protocol of [14]. Running the
protocol backwards in time yields an optimal reverse Shannon
theorem for broadcast channels [3].

The multiparty fully quantum Slepian-Wolf protocol is an
optimal solution to the distributed compression problem for
separable states, i.e. states of the form

ϕX1···Xm =
∑

i

piϕ
X1

i ⊗ ϕX2

i ⊗· · · ⊗ ϕXm

i ,

becauseEsq = 0 for such states. For general states, we have
provided an outer bound on the set of achievable rates based
on the multiparty squashed entanglement.

We are thus left with some compelling open problems. The
most obvious is, of course, to close the gap between our inner
and outer bounds on distributed compression. While that may
prove to be difficult, some interesting related questions may
be easier. For example, can the gap between the rate region
we have presented here and the true distributed compression
region be characterized by an entanglement measure? That is,
while we have used the multiparty squashed entanglement as
a correction term, could it be that the true correction term is
an entanglement monotone?
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