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Abstract—We study a protocol in which many parties use conditional entropyH (A|B), = H(AB), — H(B), and the
guantum communication to transfer a shared state to a receiver mutual information/ (A; B), = H(A), + H(B), — H(AB),.

without communicating with each other. This protocol is a SPRTA . - 2
multiparty version of the fully quantum Slepian-Wolf protocol The fidelity is defined to bef'(o,p) = Tr( \/ﬁa\/ﬁ) ’

for two senders and arises through the repeated application of ta 1 Nroughout this paper, logarithms are taken base two unless
two-sender protocol. We describe bounds on the achievable rate otherwise specified.

region for the distributed compression problem. The inner bound

arises by expressing the achievable rate region for our protocol I
in terms of its vertices and extreme rays and, equivalently, in

terms of facet inequalities. We also prove an outer bound on all  pistriputed compression of classical information in-

possible rates for distributed compression based on multiparty volves man arties collaboratively encoding their sosrce
squashed entanglement. y P . ,y . 9

X1, X,,...,X,, and sending the information to a common

|. INTRODUCTION receiver [16]. In the quantum setting, the parties are gaen

Many of the protocols of information theory deal withquantum statey4:4z=4m e pArd24n and are asked to
multiple senders or multiple receivers. As a whole, howevdpdividually compress their shares of the state and transfe
network information theorythe field which studies generalthem to the receiver Charlie, while sending as few qubits
multiparty communication scenarios, is not yet fully depeid as possible [13]. No communication between the senders is
even for classical systems [1]. Quantum network infornmaticdllowed and, unlike [14], in this paper there is no classical
theory, which deals with quantum multipartite communioati communication between the senders and the receiver.
is also under active development [2], [3], [4] and, thanks to For our analysis, we work in the setting where the
the no-cloning properties of quantum information, somesminput consists ofn copies of a state]y)” 2 1
admits simple solutions [2]. On the other hand, a full undy)™ > )@ where theA;’s denote them different
derstanding of quantum network theory will require a precisenders andt denotes the reference system, which does not
characterization of multiparty entanglement, a task wisdar participate in the protocol. Note that we udeto denote both
from completed [5], [6], [7]. Nevertheless, we can hope th#e individual system associated with staieas well then-
in the future we will have a rigorous and complete theory @fopy version associated with; the meaning should be clear
multiparty information in the spirit of the resource franmw from the context.
for two-party protocols [8], [9]. The objective of the distributed compression task is for

One step towards the development of multiparty informatidhe participants to transfer theiR-entanglement to a third
theory would be to generalize the compression protocgisrty Charlie as illustrated in Figure 1. Note that any other
[10], [11] to situations where the information is “distriled” type of correlation thed systems could have with an external
to many spatially separated parties. This is the multiparspbsystem is automatically preserved if entanglementdg [1
distributed compression problem, where multiple partiss u

. MULTIPARTY DISTRIBUTED COMPRESSION

quantum communication to faithfully transfer their shavéa e chate o chae
quantum state to a common receiver. The two-sender classic W Ards W Ardz - Am
version of this problem was solved by Slepian and Wolf [12]

while the quantum version was studied in [13], [14], [15]. ** As W

In this paper, we build a protocol for multiparty distribdte . ¥)
compression based on the fully quantum Slepian-Wolf paidtoc A+ Ant Win

[15] and prove both inner and outer bounds on the achievable r R R

.rate reg.'on' We relate Pur findings to prewous resglts 'fﬂg. 1. Pictorial representation of the quantum correfatibetween the
information theory and discuss some possible applications systems at three stages of the protocol. Originally the Stajeis shared

We W|” denote quantum Systems asB and the corre- betWeenA1A2 A and R. The middle piCtUre shows the prOtOCOI in
ndina Hilbert B A HE with r tive dimension progress. Finally, all systems are received by Charlie |@ndis now shared
Spo 9 ert spac ’ espectve € 33 S between Charlie’s system4; Ay - - - A, and R.
da,dp. We denote pure states of the systdnby aket |o)
and the corresponding density matrices @$ = |¢)p|*.
We denote byH (A4), = —Tr (pA logpA) the von Neumann  An equivalent way of thinking about quantum distributed
entropy of the statp”. For a bipartite state*” we define the compression is to say that the participants are attempting t



decouple their systems from the referertéy sending quan-
tum information to Charlie. Indeed, assume that originallis

the purification ofd; A, - - - A,,,, and callW; throughW,, the |¥) ®)

systems left behind at the end of the protocol with the halder

of the original A, through A,,. If there are no correlations B FQSW BB

betweeniV; W5 - - - W,,, and R, then the purification o2 must

have been transferred to Charlie’s laboratory. Fig. 2. Diagram representing thé BR correlations before and after the

To perform the distributed compression task, each of tfj@SW protocol. Alice manages to decouple completely from dference
senders independently encodes her share before sending ]B'a?hEB system s isomorphic tol 5.
of it to Charlie. The encoding operations are modeled by guan
tum operations, that is, completely positive trace-préagr
(CPTP) mapsE; with outputsC; of dimension2"?:. Once
Charlie receives the systems that were sent to him, he will
apply a decoding CPTP map with output systemA =
Ay A5 . .. A, isomorphic to the original = A1 A5 ... A,,.
Definition 2.1 (The rate region)We say that a rate tuple

3) Alice then applies a random unitaliy, to A°, and sends
the systemA; to Bob.

4) Bob, in turn, performs a decoding operatiy
which splits his system into 8 part purifying R and a
B part which is fully entangled with Alice.

\B—BB

Q = (Q1,Q2,...,Q.) is achievable if for alle > 0 there In other words, in the limit of many copies of the state, the
existsNV (¢) such that for alh > N (¢) there exist-dependent FQSW protocql will succeed if the rate at which Alice sends
maps(E1, Es, . . ., B, D) with domains and ranges as in thelubits to Bob is

previous paragraph for which the fidelity between the o&din
A"R™ AL Ay Ay R\®™ '
state, |¢) = (|g0> ) , and the final state,
oAz AnR _ GA'R" gatisfies
F (|w>m/m’ aA"R") >1 e 1) B. The multiparty FQSW protocol
) The FQSW protocol provides a natural approach to the
We call the closure of the set of achievable rates the raigo sender case of the multiparty distributed compression
region. problem illustrated in Figure 1: if the first sender transfieer

I1l. PROTOCOLS entire state to Charlie, then FQSW is sufficient to complete

In this section we introduce the fully quantum Slepiant—he compression task. Like the two-party FQSW protocol,

Wolf (FQSW) protocol [15], which describes a procedur[ahe_ multiparty FQSW protocol demands that each sender
for simultaneous gquantum state transfer and entanglemilividually Schumacher compress her system and apply a

distillation. The two-party protocol is then used as a tinid random unitary operation. The only additional ingrediest i

block for a multiparty distributed compression protocol. an agreed upon permutation of the participants. The terhpora
order in which the participants will perform their encodiisg

A. The FQSW protocol of no importance. However, the permutation determines how
Consider a setup where the StaﬂeABR _ |S0>ABR “™ " much information ea_ch participant |s to send to Charlie.
For each permutation of the participants, the protocol de-

is shared between Alice, Bob and a reference sydierihe ds that Alice d Charli ¢ di :
FQSW protocol describes a procedure for Alice to transfggg: v?/r:e?é ice-sends to Charlie a syste@y of dimension

her R-entanglement to Bob while at the same time generatir?g 1
ebits with him. Alice can accomplish this by encoding and Qi > 51(Ai; A, R)y, “4)
sending part of her system, denoted, to Bob. The state

Qa= ST(A; R), +3 @

for any § > 0.

. A5 . \RB whereC; = {n(j) : j > 71(i)} is the set of participants who
after the protocol can be written &)™~ (|)™”)®", where come after; in the permutation. Charlie applies a decoding
the systems3 and B are held in Bob’s lab whilel; remains gperation D consisting of the composition of the decoding
with Alice. The state|<I>>A2B is a maximally entangled statemaps D(,,) o - -- o Dy9) o D1y defined by the individual
shared between Alice and Bob, a handy side-product whigkhysw steps in order to recover*: 4>--A= nearly identical
can be used to build more advanced protocols [18], [19b the originaliy4142A= and purifying R.

Figure 2 illustrates the entanglement structure beforezéied

the protocol. V. STATEMENT OF RESULTS
The protocol consists of the following steps: This subsection contains our two main theorems about
1) Alice performs Schumacher compression on her systemultiparty distributed compression. In Theorem 4.1 we give
A to obtain the output system?. the formula for the set of achievable rates using the multi-
2) Next, she splits her system into two parts;A, = A°  party FQSW protocol (sufficient conditions). Then, in Theo-
with d4, = 2794 and rem 4.2 we specify another set of inequalities for the rates

1 (Q1,...,Qmm) Which must be hold for any distributed com-
Qa > SI(A; R)y. (2)  pression protocol (necessary conditions).



Theorem 4.1:Let \<p>A1A2"'A’”R be a pure state. If the The dimension of the extension systef is a priori

inequality unbounded, which unfortunately makes calculations of the
1 squashed entanglement very difficult except for simple sys-
> Qezg | H(AW,+HR), — H(RAK),| (5 tems. o _
ek kek The motivation behind this definition is that we can include
a copy of all classical correlations inside the extension
and thereby eliminate them from the multiparty information
%y conditioning. Since it is impossible to copy quantum
...information, we know that taking the infimum over all possibl

2ensionsz we will be left with purely quantum correlations.

for tthe sr(.)totc;]ol tot succ-eed,l mesgy that. thelse ratesfzﬁr% shown in [22], [4] thatEsg is continuous, monotonic under
contained n the rge region. In the-dimensional space ot . operations and classical communication, convex and
rate tuples@ € R™, the inequalities (5) define a convex

polyhedron [20] whose facets are given by the correspondiﬁgbaddlwe — a desirable and rare combination of propertie
: o o the multiparty case.
hyperplanes, as illustrated in Figure 3. More specificdhg,

rate region is a supermodular polyhedron [21] with properti Notice that Theorems 4.1 and 4.2 both provide bounds of
that will aid us in the proof of Theorem 4.1, the same form and only differ by the presence of g

term. The rate region is squeezed somewhere between these
two bounds as illustrated in Figure 4.

Qs

holds for all K C {1,2,...,m}, then the rate tuple) =
(Q1,- -+, Q) is achievable for distributed compression of th
A; systems.

Theorem 4.1

The rate region boundary

Theorem 4.2

Ql Qa

Fig. 4. A two dimensional diagram showing the inner bound fibmeorem

Fig. 3. The rate region for the multiparty FQSW protocol foreth senders. 4.1 and the outer bound from Theorem 4.2. The boundary ofateeregion
must lie somewhere in between.

In order to characterize the rate region further we alsovderi
an outer bound which all rate tuples must satisfy.

Q2.

For states which have zero squashed entanglement, like
Theorem 4.2:Let |SD>A1A2~..AmR be a pure state input to aSeparable states for example, the inner and outer bounds on
distributed compression protocol which achieves the gt the rate region coincide so that in those cases our protscol i
(O Q.), then it must be true that an optimal solution to the multiparty distributed compress
) ) m /s
problem.

Z Qr > % ZH(Ak)w + H(R), — H(RAk), V. PROOF OF THEACHIEVABLE RATES

kex kek

In this section we’ll explain how to achieve the rates
— Esq(Aky; Akys -3 Ak ) (6)  advertised in Theorem 4.1. Additional details and the proof
of Theorem 4.2 can be found in [4].
The multiparty fully quantum Slepian-Wolf protocol can be
%nstructed directly [24] or through the repeated appbicadf
the two-party FQSW protocol [15], [4]. We choose the latter

squashed entanglement of [23]. It is defined analogously"i1 proach here n c_)rder (o illustrate the power of the FQSW
the bipartite version. protocol as a building block for more complex protocols. To

Definition 4.1 (Multiparty squashed entanglement): complete the proof of Theorem 4.1 we will have to “stitch
Consider the statepX1X2-Xm shared bym parties. We together”the entire rate region from different achievaients
define the multiparty squashed entanglement in the follgwiusing some concepts from the theory of polyhedra [20]. The
manner: multiparty rate region has a complicated but highly strreu

geometry so it is important that we use the right language to
(") describe it.

For every permutatiomr € S,, of the m senders, there is a
where the infimum is taken over all statg$:X2-X=F gsuch different rate tuplez, = (Q1,Q2,...,Qm)r € R™ which is
that Trg(pX1 X2 XmB) = pXaiXe.Xm (We sayp is an achievable in the limit of many copies of the state. By time-
extensionof p.) sharing we can achieve any rate that lies ine¢bavex hullof

for all K C {1,2,...,m}, where Egq is the multiparty
squashed entanglement.

The multiparty squashed entanglement [22], [4] is a meas
of multipartite entanglement which generalizes the bifeart

m
Bso( X135 Xom) =5 nf > H(Xi|E); —H (X1 X |E);

=1




these points. We will show that the rate region for an input Each one of the corner poing can also be described by
state\@Al'”AmR can equivalently be described by the set adin equivalent set of equations involving sums of the rates.
inequalities from Theorem 4.1, that is

Z Q‘fr(k) = Cﬂ'[m—l+1,m] (11)
> Qi =>Cr, ®) mlrisksm
keK for all [ such thatl <[ < m, where
where/C C {1,...,m} ranges over all subsets of participants 1
and Cic = 3 5,ex H(Ax), + H(R), — H(RAK)]. The Crim-tvim =5 | 3 H(Awe)) + HR) = i r1mF)
proof of Theorem 4.1 proceeds in two steps. First we show m=l<ksm

the set of rate tuple$g, } is contained in the rate region andand Ay, —141,m] = Axm—i+1)Anim—i+2) - Axm) denotes
then we prove that the set of inequalities (8) is an equivaleihe last! participants according to the permutation
description of the rates obtained by time sharing and resour

: - So far, we have shown that the set of corner points
wasting of the rate$q; }.

. . . Q is contained in the rate region of the multiparty
Consider  the m-T(nj|menS|0naI_ space of rate _t_u_plegu”y guantum Slepian-Wolf protocol. The convex hull

(@, Qm) € R™. We begin by a formal definition ¢ "5 get of points Q is defined to beconv(Q) :=

of a corner poini;. _ {TeR™: T="NG, G €Q, A >0, YA =1}

_ Definition 5.1 (Corner point):Let 7 € S, be a permuta- gecayse of the possibility of time-sharing between the

tions of the senders in the protocol. The corresponding r&igerent corner points, the entire convex hulbnv(Q)

tuple g = (Q1,Q2,...,Qm) is a corner point if must be achievable. Furthermore, by simply allowing any
1 one of the senders to waste resources, we know that if
Qnir) = §I(A7r(k)5Aﬂ(k+1)"‘Aﬂ(m)R) 9 a rate tupleq is achievable, then so ig + « for any

vector & with nonnegative coefficients. More formally, we

where the Sty 1) - - Axn) denotes all the systems whichsay that anyg + cone(éy, é, ..., &,) is also inside the
come afterk in the permutationr.

- L ) rate region, where{e;} is the standard basis fdR™ and
We defineQ := {¢, : # € S, }, the set of all corner points. cone(€r, - ) == {T €R™: &= \&,\ > 0}. Thus,

Clearly |Q| < m!, but since some permutations might lead tQ,e have demonstrated that the set of rates

the same rate tuple, the inequality may be strict.

Lemma 5.2:The set of corner points = {g, : 7 € S}, Py := conv(Q) + cone(€1, -+ ,€m) (12)

is contained in the rate region. is achievable. By the Minkowski-Weyl Theorem [20, p.30], we
~ Proof sketch for Lemma 5.2We know from the FQSW 6\ thatP,, can also be written as the intersection of a finite
inequality (3) that in order for Alice to decouple from the™® |,y mper of half-spaces. To complete the proof of Theorem 4.1,

reference systenk, she needs to send quantum information gfe \ill in fact show thatP,, has an equivalent description as
a rate ofQ > %I(A; R). In each step of the multiparty FQSW

protocol, we are facing a similar situation but instead we ap .
trying to decouple from the referende as well as all the e
remaining participants. The participants which have merge ) ) _
their shares of the state earlier provide side informaticihe Where the constaniSi. are as defined in equation (8).
decoder, which was the role of thg system in the FQSW preliminaries  Before we begin the equivalence proof in

protocol. earnest, we make two useful observations which will be
Thus, for a given permutatiom, we should be able to instrumental to our subsequent argument.

successfully transfer the state if each Aliceends at a rate  |Lemma 5.3 (Superadditivity)-et K, £ C {1,2,...,m} be

Qi > 3I(Ai; Ac,R), + 0 for any § > 0 andK; = {n{j) : any two subsets of the senders. Then
j > w1(i)} and the receiver applies the decoding map

consisting of the composition of the decoding mdpg,.,) o Cxuc + Crne 2 Cr +Cr. (14)

++-0Dr2)0 Drq) defined by the individual FQSW steps. More  as a consequence of this lemma, we can derive an equiva-
precisely, Charlie should be able to recover a s&é’ge“:“"“m lence property for the saturated inequalities.

which will be such that the fidelity betwee|m>A A and Corollary 5.4: Suppose that the following two equations
o4"E" is high. The proof follows because we can make theold for a given point ofP:

ds arbitrarily small, so the rate tupl&1, - , Q. ), With Z 0 c and Z 0 c (15)
k= UK k=UcC.

kex kel

QeRm:Zkac,c,vm{l,...7m}}, (13)

ke

Qutty = T (Aiy; Arien) = AwyB) (10) | |
Then the following equations must also be true:

must be contained in the rate region. This argument holds for

all permutationst € S,,, leading to the conclusion that the > Qe=Crue and > Qp=Cknc.  (16)

full set Q is contained in the rate region. [ ] kekuL keknc



An important consequence of Lemma 5.3 is that it implieerm of equation (11). More specifically, we want to prove
that the polyhedronPy is of a very special type, known asthe following proposition.
a supermodular polyhedron or contra-polymatroid. The factProposition 5.6 (Existence of a maximal chairgvery
that conv(Q) = Py was proved by Edmonds [21], whosevertex of P, that is, the intersection ofm linearly
ingenious proof makes use of linear programming dualitindependent hyperplanes
Below we give an elementary proof that does not use duality. Z On=C
_ A vertexis a zero-dimensional face of a polyhedron. A point = k Loy
Q= (Q1,Q2,...,Qm) € Py CR™ is avertex of P}, if and  gefined by the family of set{£;; 1 < i < m} can be
only if it is the unique solution of a set of linearly indepemd gescribed by an equivalent set of equations
equations

1 <i<m, (20)

> Qu=0g, 1<i<m @7) %; QO = Cie. trsme G
kL for some family of sets distindt; C {1,2,...,m} that form
for some subsets; C {1,2,...,m}. In the remainder of 3 maximal chainin the sense of
the proof we require only a specific consequence of linear
independence, which we state in the following lemma. I=KocKicKyC - CRn={12...,m} (22)
Lemma 5.5 (No co-occurrencelet £; C {1,2,...,m} Since there exists a permutation such thatvi, njm —
be a collection ofm sets such that the system (17) has a+ 1,m] = K, this implies that all the vertices aoP;; are
unique solution. Then there is no pair of elemepts such in Q. The main tool we have have at our disposal in order
thatj € £; if and only if & € £; for all 4. to prove this proposition is Corollary 5.4, which we will use
Proof: If there was such a paij and k, then the extensively.
corresponding columns of the left hand side of (17) would Proof of Proposition 5.6: Let {£;}*, be the subsets
be linearly dependent. m of {1,2,...,m} for which the inequalities are saturated and
Armed with the above tools, we will now show that there igefine £ := £; N’ S, the intersection ofZ; with some set
a one-to-one correspondence between the corner p@iarsd S C {1,2,...,m}.
the vertices of thé{-polyhedronP;,. We will then show that Construct the directed graphi = (V, E), where:
the vectors that generate the cone part of Hwpolyhedron « V={1,2,...,m}, i.e. the vertices are the numbers from
correspond to the resource wasting vectgrs. 1tom;
Step 1: Q C wvertices(Py) We know from equation (11) ° E={Gk) : (vijjeLi = k€L } ie. there is
that every poiniz, € Q satisfies then, equations an edgg from \(ertezg to vertexk if whenever vertex;
occurs in the given subsets, then so does vertex
Z Qi) = Crfm—i+1,m)» 1<i<m. (18) Now G has to be acyclic by Lemma 5.5, so it has a topological
m—i+1<k<m sorted order. Let us call this order Let Ky = () and let

The equations (18) are very similar in form to the inequal- Ki={vm-i41,---svm} (23)
ities in (13) that are used to defiri®,. Because the left hand for I € {1 m}. The setsk;;, which consist of the last

side is triangular, the equations have the unique solution: vertices according to the ordering form a maximal chain
(19) KoCKiC:--CKp1 CK, by construction.

We claim that all the set&’; can be constructed from the
wherel < i < m—1. We need to show that this solutionsets {£;} by using unions and intersections as dictated by
satisfies all the inequalities used to defiffy in (13). We Corollary 5.4. The statement is true fii,, = {1,2,...,m}
proceed by induction offC|. The casg/C| = 1 follows from because every variable must appear in some constraint equa-
(19) and the superadditivity property (14). Fg¢| > 2 we tion, giving K,, = U;£;. The statement is also true for
can write K = {n (i)} UK’ for someK’ C {n(i +1),7(i + K,,_1 = {vo,...,vm} Since the vertex,; has no in-edges

Qﬂ(m) :C‘n-(m) Qﬂ(7) :Cfr[v',,m] - Cfr[i—i-l,m]a

2),...,m(m)}. Then in G by the definition of a topological sort, which means that
Z Qr = Qs+ Z Qk Km-1 = U L. (24)
kek keK’ g Lhm

Z Cofim) = Crfirm] + k%;, Qr For the induction statement, létc {m — 1,...,2,1} and
> Chim] — Cofis1.m] + Cir (induction) assumg thalCl. =, ﬁfl. Since the vertex,,,_; has no in-
> © ’ ’ edges in the induced subgraph generated by the vertiges
> Ck

by the definition of the topological sot;;_; can be obtained
where we again used superadditivity to get the last inetyualiffom the union of all the sets not containing, _;:

Step 2: vertices(Py) C Q In order to prove the opposite Kia= |J £ (25)
inclusion, we will show that every vertex aPy is of the Um 1 €L



In more detail, we claim that for alb # v,,_; € K;—; there becauseFsq = 0 for such states. For general states, we have
existsi such that,,, ; ¢ £§Cl andw € Ef". If it were not true, provided an outer bound on the set of achievable rates based
that would imply the existence af # v,,_; € K;_1 such that on the multiparty squashed entanglement.

for all 4, v,—; € Lf’ orw ¢ L;.C’. This last condition implies  We are thus left with some compelling open problems. The
that whenevew & LZ;C’ it is also true that,,,_; € /.’,fl, which most obvious is, of course, to close the gap between our inner
corresponds to an edde, v,,_;) in the induced subgrapt® and outer bounds on distributed compression. While that may

We have shown that every vertex can be written in precisglyove to be difficult, some interesting related questiony ma

the same form as equation (11) and is therefore a poidl.in be easier. For example, can the gap between the rate region
This provesvertices(Py) C Q, which together with the result we have presented here and the true distributed compression
of Step 1, implievertices(Py) = Q. region be characterized by an entanglement measure? That is
Step 3: Cone Part hile we have used the multiparty squashed entanglement as

The generating vectors of the cone par\fv tion t Id it be that the t tion t .
of Py are all vectors that satisfy the homogeneous versiofigcorrection term, could it be that the true correction tesm |

; " " 2
of the halfspace inequalities (13), which in our case are an entanglement monotone:

Z Qi >0, KC{1,...,m}. (26) ACKNOWLEDGMENTS
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VI. DISCUSSION

We have shown how to build protocols for multiparty
distributed compression out of the two-party fully quantumm
Slepian-Wolf protocol. The resulting achievable ratesegah
ize those found in [15] for the two-party case and, for thetmod?]
part, the arguments required are direct generalizatiotisosie 3]
required for two parties. The most interesting divergesce® i
be found in section V, where we characterize the multiparty#
rates that can be achieved starting from sequential apiplsa [5]
of the two-party protocol. The proof we obtained uses a
sufficient level of mathematical abstraction so as to apply t
other problems in information theory involving multipargte 6
regions proved in terms of achievable points but expressed]
instead in terms of facet inequalities like for example, e [7]
regions for the classical multiparty Slepian-Wolf problgi6]
and the multiparty state merging protocol [14].

Multiparty compression joins entanglement distillation,[8]
entanglement-assisted communication, channel simalatio
communication over quantum broadcast channels, stats-redjg
tribution [19] and many other protocols in the list of pradts
that can be built out of the simpler nearly-universal twotpa (10]
FQSW protocol. [11]

Multiparty FQSW can then itself be used as a building block
for other multiparty protocols. For example, when cladsic&?!
communication between the senders and the receiver is free,
combining multiparty FQSW with teleportation reproduces
the multiparty state merging protocol of [14]. Running th&-!
protocol backwards in time yields an optimal reverse Shanno
theorem for broadcast channels [3]. [14]

The multiparty fully quantum Slepian-Wolf protocol is an
optimal solution to the distributed compression problem f615]
separable states, i.e. states of the form

[16]
QOXINXm — Zpﬁp;Xl ® (plxz R ® QO;-X"L,
i
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