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tEvery 
onvex polyhedron in the Eu
lidean spa
e Rd admits both H-representation and V-representation. When working with 
onvex polyhedra, in parti
ular large-s
ale ones in highdimensions, it is useful to have a 
anoni
al representation that is minimal and unique up tosome elementary operations. Su
h a representation allows one to 
ompare two H-polyhedra ortwo V-polyhedra eÆ
iently. In this paper, we de�ne su
h representations that are simple and
an be 
omputed in polynomial time. The key ingredients are redundan
y removal for linearinequality systems and aÆne transformations of polyhedra.1 Introdu
tionA 
onvex polyhedron or simply polyhedron in Rd is the set of solutions to a �nite system of inequal-ities with real 
oeÆ
ients in d real variables. For a matrix A 2 Rm�d and a ve
tor b 2 Rm , a pair(b;A) is said to be an H-representation of a 
onvex polyhedron P if P = fx 2 Rd j b + Ax � 0g.Motzkin's de
omposition theorem (see, e.g. [3, 4℄) states that every polyhedron has another rep-resentation 
alled a V-representation. For matri
es V 2 Rp�d and R 2 Rq�d , a pair (V;R) is saidto be a V-representation of a polyhedron P if P = 
onv(V ) + 
one(R), where 
onv(M) (
one(M),respe
tively) denotes the 
onvex hull (the nonnegative hull) of the row ve
tors of the matrix M .In ea
h of representations, there are trivial transformations that preserve the represented poly-hedron. For an H-representation, ea
h inequality 
an be multiplied with any positive numbers.For a V-representation, ea
h row of R 
an be s
aled by any positive number. Also, any permu-tation of inequalities and the row ve
tors within V and R does not modify the polyhedron. Tworepresentations are 
onsidered equal if they are the same up to these transformations.One 
an easily see that neither V- nor H-representations are unique for a given polyhedron.First of all both V- and H-representations 
an have an unlimited number of redundant ve
torsor inequalities. Furthermore, even without redundan
y, representations are not unique. Namelythere are in�nite many nonredundant V-representations of polyhedra without extreme points, andin�nite many nonredundant H-representation of polyhedra that are not full-dimensional.The main obje
tive of the present paper is to de�ne a unique V-representation (H-representation,respe
tively) of a polyhedron that 
an be 
omputed in polynomial time from any V-representation(H-representation). We shall review the unique polyhedral representations dis
ussed in the book ofS
hrijver [3℄, and propose a variation that is 
omputationally simpler and guaranteed to have 
ertainsparsity property. The key ingredients are eÆ
ient redundan
y removal by linear programming and
ertain aÆne mappings of 
onvex polyhedra to an appropriate spa
e. As a 
onsequen
e, it is possibleto 
he
k in polynomial time whether two H-representations (or two V-representations) de�ne thesame polyhedron or not. We also show that redundan
y removal is polynomially equivalent tothe linear programming. This justi�es the use of linear programming algorithms for redundan
yremoval. 1



Our main motivation arises from the 
ontinuing e�ort by the �rst two authors to developpolyhedral 
omputation 
odes, su
h as 
ddlib [2℄ and lrslib [1℄, that perform basi
 transformationsof polyhedral representations. While the main transformation of these 
odes is the 
onversionbetween H- and V-representations, it is in
reasing important to make an eÆ
ient implementationof algorithms to 
ompute 
anoni
al representations. This would allow users to 
ompare two H-polyhedra (or two V-polyhedra) qui
kly without applying the (often too) expensive 
onversion. Inaddition, the 
omputation of a 
anoni
al representation 
an be 
onsidered as a prepro
essing stepfor the main transformation, whi
h in some 
ases results in a drasti
 speed up.Due to spa
e limitations, many of the proofs are omitted, and will be in
luded in the full versionof the paper.2 Representations of Convex PolyhedraIn this se
tion, we present basi
 results on representations of 
onvex polyhedra. Most of the resultsare 
lassi
al and not very hard to prove. However there is no thorough treatment of this subje
tfor both V- and H-representations and in parti
ular no study with 
omputational 
onsiderations.Throughout this se
tion, P is a non-empty polyhedron in Rd.The notation for H-representation and V-representation given in the last se
tion, althoughstandard, hides the underlying duality of polyhedral 
ones. A natural way to unify the two repre-sentations is through homogenization. We en
ode a V-representation (V;R) as a pair of a ve
torand a matrix ��e0� ; �VR��, where e is the 
olumn ve
tor of all 1's. In this representation writtenas (b; A), ea
h row index i with bi = 1 indi
ates that the 
orresponding ith row ve
tor Ai of A is a
onvex hull generator, and ea
h bi = 0 indi
ates Ai is a 
one generator. This way, both represen-tations are of the same form. A
tually we must go even further to de�ne a unique representationof any given polyhedron, in both V and H formats.Let A be an m � d matrix, b an m-dimensional ve
tor and fI; Lg be a partition of [m℄ :=f1; : : : ;mg. We de�ne a quadruple (b; A; I; L) to be an H-representation of the polyhedronPH = fx 2 Rd j bI +AIx � 0; bL +ALx = 0g:(2.1)We de�ne a quadruple (b; A; I; L) to be a V-representation of the polyhedronPV = fx 2 Rd j x = AT y; yI � 0g;(2.2)if b = 0, and a V-representation of the polyhedronPV = fx 2 Rd j x = AT y; yI � 0; bT y = 1g;(2.3)otherwise.The set L is 
alled the linearity of the representation. Two H-representations (or two V-representations) (b; A; I; L) and (b0; A0; I 0; L0) are said to be equivalent if the represented polyhedraare equal. Ea
h row index i 2 [m℄ is 
alled redundant in a representation (b; A; I; L) if the rep-resented polyhedron stays un
hanged after deleting the ith data, namely removing bi, Ai, i fromI or L whi
hever 
ontains i, and shifting the rest of the data a

ordingly. A representation isnonredundant if it has no redundant row index. For te
hni
al reasons, if the zero ve
tor appearsin a V-representation it will be 
onsidered non redundant.A V-representation (b; A; I; L) is 
alled standard if b is binary (i.e. bi 2 f0; 1g) and bL = 0. AV-representation 
an be transformed to an equivalent standard V-representation in quadrati
 time.For this reason, we assume for the rest of the paper that any V-representation is standard. Ea
h2



ve
tor Ai in a representation is 
alled a generator . It is a point generator if bi = 1, a ray generatorif bi = 0 and i 62 L, and a line generator if bi = 0 and i 2 L.We say two representations (b; A; I; L) and (b0; A0; I 0; L0) equal if bL+ALx = 0, bL0 +AL0x = 0and if there is a permutation � of I su
h that �(I) = I 0 and ea
h (b0i; A0i) is a positive multipleof (b�(i); A�(i)) for any i 2 I. Clearly, if two representations of the same type are equal, they areequivalent and thus de�ne the same polyhedron. In parti
ular for V-representation, bL = 0 andthen the �rst equivalen
e 
oin
ides with the statement fx 2 Rd j x = (AL)T yg = fx 2 Rd j x =(AL0)T yg.While the equivalen
e of two representations is nontrivial to 
he
k, the equality is easy to
he
k using Gaussian elimination. Our main goal is to dis
uss an eÆ
ient pro
edure to redu
eany representation to a uniquely de�ned equivalent representation so that the equivalen
e of tworepresentations of the same type 
an be 
he
ked qui
kly.In parti
ular, we want to extend the de�nition of the 
anoni
al representation dis
ussed in thebook of S
hrijver [3℄ in order to get a 
anoni
al representation guaranteeing a 
ertain sparsity prop-erty. Extending this de�nition uses the notion of 
ompatible and 
omplementary linear subspa
esof Rd . De�nitions and basi
 properties of these subspa
es are des
ribed in the next se
tion.2.1 Compatible and Complementary linear subspa
esWe say two linear subspa
es S1 and S2 of Rd having same dimension are 
ompatible if the orthogonalproje
tion of S1 onto S2 is S2 itself, or, equivalently, if the orthogonal proje
tion of S2 onto S1 is S1itself. We say two linear subspa
es S1 and S2 of Rd are 
omplementary if any basis of S1 and anybasis of S2 form, together, a basis of Rd . It follows from elementary linear algebra that S1 and S2are 
omplementary if and only if dim(S1) + dim(S2) = d and S1 \ S2 = f0g. Similarly any r 2 Rd
an be written uniquely as r = r1 + r2, where r1 2 S1 and r2 2 S2 For any two 
omplementarylinear subspa
es S1 and S2 of Rd , we let PS1S2 denote the proje
tor onto S1 along S2 de�ned asPS1S2 : Rd �! S1r 7�! PS1S2(r) = r1;and r1 is 
alled the proje
tion of r onto S1 along S2. It is easy to see that PS1S2 is a proje
tor inthe sense of the linear algebra. By linearity, this de�nition 
an be extended to any subset of Rd .For any set W � Rd , and for any i = 1; 2 and j = 1; 2, i 6= j, we 
all the set Wi = PSiSj (W ) theproje
tion of W onto Si along Sj . We would point out that the relation W = W1 +W2 does nothold in general.2.2 Canoni
al V-RepresentationTo de�ne a unique V-representation of a general (non-pointed) polyhedron we need a few morede�nitions. The linearity spa
e lin:spa
e(P ) of P is de�ned aslin:spa
e(P ) = fz 2 Rd j x+ �z 2 P for all x 2 P and � 2 Rg:(2.4)The 
hara
teristi
 
one 
har :
one(P ) of P is
har :
one(P ) = fz 2 Rd j x+ �z 2 P for all x 2 P and � � 0g:(2.5)Using these de�nitions, the V-representation dis
ussed in the book of Shrijver may be summa-rized as the following lemma :Lemma 2.1. A nonredundant V-representation (b; A; I; L) of polyhedron P satisfying the followingexists and is unique: 3



(1) lin:spa
e(P ) = fz 2 Rd j z = (AL)T yLg, and(2) all row ve
tors Ai (i 2 I) are orthogonal to lin:spa
e(P ).This lemma gives a theoreti
ally satisfa
tory de�nition of the 
anoni
al representation. Theweakness of this de�nition is that asking the generators to be orthogonal to the linearity spa
etends to make the resulting representation dense. The next theorem gives more general 
riteriawhi
h allows one to look for unique V-representations satisfying 
ertain sparsity properties.Theorem 2.2. A nonredundant V-representation (b; A; I; L) of polyhedron P satisfying the follow-ing exists and is unique:(1) lin:spa
e(P ) = fz 2 Rd j z = (AL)T yLg, and(2) all row ve
tors Ai (i 2 I) are orthogonal to S,where S is any �xed subspa
e of Rd 
ompatible with lin:spa
e(P ).The V-representation dis
ussed in the book of Shrijver is the spe
ial 
ase of Theorem 2.2 whenS is 
hosen to be lin:spa
e(P ) itself.2.3 Canoni
al H-RepresentationIn this se
tion, we use the notion of 
ompatible spa
es to �nd a general 
anoni
al H-representation.We denote by a� (P ) the aÆne hull of P .Here is the H-representation dis
ussed in the book of Shrijver:Lemma 2.3. A nonredundant H-representation (b; A; I; L) of a nonempty polyhedron satisfying thefollowing exists and is unique:(1) a� (P ) = fx 2 Rd j bL +ALx = 0g, and(2) ea
h row of AI is the linear spa
e parallel to a� (P ).Again this representation might be 
omputationally in
onvenient. The next theorem gives more
exible notion of 
anoni
al H-representations whi
h allows one to look for those satisfying additionalfavorable properties su
h as sparsity.Theorem 2.4. A nonredundant H-representation (b; A; I; L) of polyhedron P satisfying the follow-ing exists and is unique:(1) a� (P ) = fx 2 Rd j bL +ALx = 0g, and(2) ea
h row of AI is in S,where S is any linear subspa
e 
ompatible with the linear spa
e parallel to a� (P ).3 Computing Canoni
al RepresentationsGiven any V- (resp. H-) representation (b; A; I; L) of a polyhedron P in Rd , our goal is to 
omputeeÆ
iently the unique equivalent representation (b0; A0; I 0; L0) satisfying the following :(1) it is nonredundant;(2) lin:spa
e(P ) = fx 2 Rd j x = (A0L0)T yg (resp. of a� (P ) = fx 2 Rd j x = b0L0 +A0L0x = 0g);4



(3) the rows of A0I0 are orthogonal to a subspa
e S 
ompatible with lin:spa
e(P ) (resp. are
ontained in a subspa
e S 
ompatible with P0).One has the freedom to 
hoose S as any linear subspa
e 
ompatible with lin:spa
e(P ) or witha� (P ), a

ordingly to the 
onsidered format. Condition (3) 
an be expressed in the same form forboth V- and H- formats letting �P0 denote lin:spa
e(P ) in V-format (and a� (P ) in H-format), andletting �S denote S? in V-format (and S in H-format). Condition (3) is equivalent to(3') the rows of A0I0 are the proje
tions onto �S along �P0 of any equivalent set of generators of P .We now dis
uss two spe
ial 
hoi
es for the linear subspa
e S, whi
h lead to 
omputationally inter-esting representations of polyhedron P .Any linear subspa
e is 
ompatible with itself. Choosing S as lin:spa
e(P ) itself (resp. asa� (P ) itself) leads to the orthogonal representation dis
ussed in the book of Shrijver [3℄. In this
ase, the proje
tor P �S �P0 onto �S along �P0 
oin
ides with the orthogonal proje
tor P �S onto �S. Thisrepresentation is perhaps mathemati
ally the most natural but it tends to lead to a very denserepresentation, as you will see in Se
tion 6Let us 
onsider another natural 
hoi
e for S. A 
oordinate subspa
e is any ve
tor subspa
e of Rdgenerated by some unit ve
tors ej (j = 1; : : : ; d). Sele
ting �S as a 
oordinate subspa
e guaranteesa 
ertain sparsity of the proje
ted ve
tors. Moreover, sele
ting �S as the lexi
ographi
ally smallestsubspa
e 
omplementary with with ( �P0) guarantees that the nonzero 
oordinates are indexed byindi
es as small as possible. The resulting representation will be 
alled the lexi
ographi
ally smallest
oordinate subspa
e or lexi
o-smallest representation.Computationally, the orthogonal representation requires the 
omputation of orthogonal basisof a linear subspa
e, whi
h amounts to doing the Gram-S
hmidt orthogonalization pro
edure. Thelexi
o-smallest representation needs only to 
he
k whether a unit ej is linearly independent of agiven set of 
hosen ve
tors, whi
h amounts to applying Gaussian eliminations.4 Redundan
y RemovalIn this se
tion, we show how redundan
ies may be removed eÆ
iently from any given representation(b; A; I; L) of a nonempty polyhedron P . By de�nition, any row index k 2 [m℄ = I [L is redundantin (b; A; I; L) if and only if the represented polyhedron stays un
hanged after deleting the kth row.4.1 Redundan
y Removal in V-representationFor any given V-representation (b; A; I; L) of a polyhedron P , we let I0 = fi 2 I j bi = 0g andI1 = fi 2 I j bi = 1g. It follows from the de�nitions, that P = 
onv(AI1) + 
one(R), whereR := � AI0A�L � and A�L := � +AL�AL �. And we denote by IR the set of the row indi
es of matrix RFor any k 2 I1, we say that the row ve
tor Ak is redundant in 
onv(AI1) if 
onv (AI1) =
onv(AI1 n fAkg). Similarly, for any k 2 I0 [ L, we say that the row ve
tor Rk is redundant in
one(R) if 
one(R) = 
one(R n fRkg).Let (b; A; I; L) be any V-representation of polyhedron P . The following 
hara
terization of theredundan
ies (b; A; I; L) dire
tly follows from the de
omposition of P as P = 
onv (AI1)+ 
one(R),and from the de�nition of point, ray and line generators of P .(1) k 2 I0 is redundant in (b; A; I; L) if and only if Ak is redundant in 
one(R);(2) k 2 L is redundant in (b; A; I; L) if and only if Ak and �Ak are redundant in 
one(R).5



(3) k 2 I1 is redundant in (b; A; I; L) if and only if Ak is redundant in 
onv(V ) + 
one(R).And, for any row index k 2 I [ L, we de�ne the linear program R.LPV(bk; Ak) asmax 0s.t. (Ak)T = bkPi 6=k(Ai)Txi +Pl 6=k(Rl)T yl i 2 I1; l 2 IRbk = bkPi 6=k xi; i 2 I1xi � 0; yl � 0 8i 2 I; 8l 2 IRwhere IR is the index set or the rows of matrix R. This linear program is either infeasible or it hasoptimal solution zero.Theorem 4.1. Let (b; A; I; L) be any V-representation of polyhedron P . Then,(1) any row index k 2 I is redundant in (b; A; I; L) if and only if R.LPV(bk; Ak) has optimalvalue zero, and(2) any row index k 2 L is redundant in (b; A; I; L) if and only if both R.LPV(0; Ak) andR.LPV(0;�Ak) have optimal value zero.Removing sequentially the redundan
ies from any representation (b; A; I; L) of a polyhedron Pusing this theorem leads to a nonredundant representation (b0; A0; I 0; L0) in O(m�LP(m; d)) time,where m = jI [ Lj.4.2 Redundan
y Removal in H-representationBy de�nition, any row index k 2 I (resp. k 2 L) is redundant in an H-representation (b; A; I; L) ofpolyhedron P = fx 2 Rd j bI + AIx � 0; ALx+ bL = 0g if and only if P = fx 2 Rd j b�I +A�Ix �0; A�Lx+ b�L = 0g, where �I = I n fhg and �L = L (resp. �I = I and �L = L n fhg). In other words,k 2 I (resp. k 2 L) is redundant in (b; A; I; L) if and only if the inequality fbk + Akx � 0g (resp.fbk + Akx = 0g) is redundant in the system of inequalities de�ning P . For any row Ak of A andfor any 
omponent bk of b, we let R.LPH(bk; Ak) denote the linear program de�ned asmin bk +Akxs.t. bi +Aix � 0 8i 2 I; i 6= kbl +Alx = 0 8l 2 I; i 6= k0 � bk +Akx � �1Theorem 4.2. Let (b; A; I; L) be any H-representation of a polyhedron P . Then,(1) any row index k 2 I is redundant in (b; A; I; L) if and only if R.LPH(bk; Ak) has optimalvalue zero, and(2) any row index k 2 L is redundant in (b; A; I; L) if and only both R.LPH(bk; Ak) and R.LPH(�bk;�Ak)have optimal value zero.4.3 Computing lin:spa
e(P ) and a� (P )The 
anoni
al V- (resp. H-) representation of polyhedron P is de�ned so that the rows of the matrixAL form a basis of S(AL). In this se
tion, we present how one 
an de
ide eÆ
iently whether anygiven row index k 2 I [ L from any nonredundant representation (b; A; I; L) of P belongs to thelinearity of the 
anoni
al representation of P . Solving this de
ision problem for every k 2 I[L leadsto a set of indi
es, say L00, su
h as (AL00)T yL 2 lin:spa
e(P ) (resp. su
h as bL00 + AL00x = 0). Thelinearity L0 of the 
anoni
al representation of P then arises from L00 by removing the redundan
ies.6



4.3.1 Computing lin:spa
e(P ) in V-representationGiven any V-representation (b; A; I; L) of polyhedron P , we let I0 := fi 2 I j bi = 0g. For any rowindex k 2 L [ I, we let L.LPV(Ak) denote the linear program de�ned asmax 0s.t. (Ak)T = �Pl 6=k(Rl)T yl; l 2 IRxi � 0; yl � 0 8i 2 I; 8l 2 IRwhere the matrix R is the matrix de�ned in Se
tion 4.1, and IR is the index set of the rows of R.Theorem 4.3. Let (b; A; I; L) be any V-representation of polyhedron P . Then, any row Ak ofmatrix A belongs to lin:spa
e(P ) if and only if k 2 L [ LI , where LI = fi 2 I0 j L.LPV(Ai) hasoptimal value 0g.We would point out that, in general, using this theorem to repartition the indi
es of any givenrepresentation tends to introdu
e new redundan
ies in the linearity of the representation, whi
hone has to remove by applying redundan
y removal. Nevertheless, it is possible to dire
tly 
omputea nonredundant set using the following instead of Theorem 4.3.Theorem 4.4. Let (b; A; I; L) be any V-representation of polyhedron P = 
onv(AI1) + 
one(R),where I0 and R are de�ned as in Se
tion 4.2. Then, any row Ak of matrix A belongs to lin:spa
e(P )if and only if k 2 L [ LI , where LI = fi 2 I0 j Ak is redundant in 
one(�R)g.4.3.2 Computing a� (P ) in H-representationAny 
anoni
al H-representation (b; A; I; L) of a nonempty polyhedron P has to satisfy a� (P ) =fx 2 Rd j bL + ALx = 0g, and the rows of bL + ALx � 0 form a nonredundant set of inequalities.Let (b; A; I; L) be any V-representation of P .For any row index k 2 I[L, I and L from any �xed V-representation of P , we let L.LPH(bk; Ak)denote the linear program de�ned as maxx2P bi +Aixs.t. bi +Aix � 1:Theorem 4.5. Let (b; A; I; L) be any H-representation of polyhedron P . Then, any row Ak ofmatrix A is su
h as fx 2 Rd j bk + Akx = 0g � a� (P ) if and only if k 2 L [ LI , whereLI = fi 2 I j L.LPH(bk; Ak) has optimal value 0g.As was the 
ase for V-representations, the set L0 obtained using this theorem may 
ontainredundan
ies. A nonredundant set may be obtained by applying redundan
y removal on L0 or one
an dire
tly 
ompute a nonredundant set L0 using the following theorem.Theorem 4.6. Let (b; A; I; L) be any H-representation of polyhedron P . Then, any row Ak ofmatrix A is su
h as fx 2 Rd j bk + Akx = 0g � a� (P ) if and only if k 2 L [ LI , whereLI = fi 2 I j � bi �Aix � 0 is redundant with fbI +AIx � 0g [ fbL +ALx = 0gg.5 Computational Equivalen
e of ProblemsGiven any representation (b; A; I; L) of a nonempty polyhedron P , the results of last Se
tion showhow a 
anoni
al representation (b0; A0; I 0; L0) of P may be 
omputed eÆ
iently. The three ba-si
 operations to perform are :1) redundan
y removal, 2) 
omputation of the linearity L0 of therepresentation 3) 
omputation of matrix A0I0 using the 
ompatible spa
e S.7



Theorem 5.1. Redundan
y removal and the 
omputation of a 
anoni
al representation are poly-nomially equivalent problems.Proof. It is 
lear that one may remove the redundan
ies from any given representation of a poly-hedron P by 
omputing the 
anoni
al representation of P . On the other hand, as stated in Se
tion3, lin:spa
e(P ) (resp. a� (P )) may be solved by removing redundan
ies. It follows that, when
omputing a 
anoni
al representation, the unique operation that does not 
onsist in removing re-dundan
ies is the 
omputation of the rows of AI , whi
h we prove to be a polynomial time operation.Thus, one may 
ompute eÆ
iently a 
anoni
al representation just by removing redundan
ies.As we saw in Se
tion 4, redundan
y removal has 
omplexity O(m�LP(m; d)), wherem = jI[Lj.Solving these linear programs is expensive in time and the natural question that arises from thisresult 
on
erns the ne
essity of solving linear programs to remove redundan
ies. In other words,are linear programming and redundan
y removal (and therefore, the 
omputation of a 
anoni
alrepresentation) polynomially equivalent problems? In the following we prove that this is the 
ase;inparti
ular, we prove that the redundan
y removal problem is as hard as solving an LP, whi
h justi�esthe method used in Se
tion 4 for redundan
y removal.It is well known that 
he
king feasibility of a linear system is polynomially equivalent to linearprogramming. In order to prove that redundan
y removal is as hard as the linear programming,we may prove that it is as hard as 
he
king the feasibility of a given system of inequalities, sayb+Ax � 0. This may be easily proved 
onsidering the homogenized (feasible) system bx0+Ax � 0,x0 2 R.Lemma 5.2. Let Ax + b � 0, where A 2 Rm�d and b 2 Rd , be any linear system of inequalities.Then, Ax+b � 0 is feasible if and only if the inequality fx0 � 1g is not redundant with Ax+bx0 � 0.Proof. Consider the homogenized system Ax+bx0 � 0. Clearly, Ax+b � 0 is feasible if and only ifit exist a ve
tor �x 2 Rd su
h that the pair (x0 = 1;x = �x) forms a feasible solution of bx0+Ax � 0.And this last 
ondition is satis�ed if and only if (x = ��x;x0 = �) forms a feasible solution ofbx0 + Ax � 0 for any �xed nonnegative real �. In parti
ular, b + Ax � 0 is feasible if and onlyif it exist a ve
tor x 2 Rd su
h that the pair (x;x0 > 1) is a feasible solution of bx0 + Ax � 0.On the other hand, the system bx0 + Ax � 0; x0 � 1 is feasible. Then, one may apply themethod of Se
tion 4.2 to 
he
k whether the inequality fx0 � 1g is redundant with bx0 + Ax � 0or not. In parti
ular regarding to the linear program R.LPH((0; Ak)) (see Se
tion 4.2), it is nothard to see that the system � bx0 +Ax � 0x0 > 1 is feasible if and only if fx0 � 1g is redundant withbx0 +Ax � 0.It follows from the above results that we may 
he
k the feasibility of any linear system Ax � bin polynomial time by performing redundan
y removal. As a dire
t 
onsequen
e we has the arguedresult that,Theorem 5.3. Redundan
y removal, the 
omputation of a 
anoni
al representation and linearprogramming are polynomially equivalent problems.6 Some ExamplesWe start by illustrating the di�eren
e between the two 
anoni
al representations des
ribed inSe
tion 6. Consider the following (b; A; I; L) V-representation:b = 2411135 ; A = 240 1 1 1 1 01 0 1 1 0 11 1 0 0 1 135 ; I = f1; 2; 3g; L = ;:8



(This 
orresponds to the three hamiltonian 
ir
uits for the 
omplete graph on four verti
es.) Anorthogonal H-representation in this 
ase is given by:
b = 2666666664

�2�2�2�21=31=31=3
3777777775 ; A = 2666666664

1 1 1 0 0 01 0 0 1 1 00 1 0 1 0 10 0 1 0 1 1�1=3 1=6 1=6 1=6 1=6 �1=31=6 �1=3 1=6 1=6 �1=3 1=61=6 1=6 �1=3 �1=3 1=6 1=6
3777777775 ; I = f5; 6; 7g; L = f1; 2; 3; 4g:

Note that apart from the linearity spa
e, the matrix is 
ompletely dense. An H-representation withlexi
ographi
ally smallest 
oordinate subspa
e is given by:
b = 2666666664

�2�2�2�211�1
3777777775 ; A = 2666666664

1 1 1 0 0 01 0 0 1 1 00 1 0 1 0 10 0 1 0 1 1�1 0 0 0 0 00 �1 0 0 0 01 1 0 0 0 0
3777777775 ; I = f5; 6; 7g; L = f1; 2; 3; 4g:

This polytope is two dimensional, and so the se
ond representation is quite sparse and 
ontains asquare 3 by 4 submatrix of zeroes in the rows indexed by I. (These inequalities have the naturalinterpretation x12 � 1; x13 � 1; x12 + x13 � 1 for the travelling salesman problem).Redundan
y removal 
an have 
an have a signi�
ant e�e
t in speeding up the running time ofvertex enumeration algorithms. This is parti
ularly pronoun
ed on algorithms whi
h enumeratebases, su
h as pivot based algorithms, and other algorithms that use symboli
 perturbation toresolve degenera
y. However improvement is also noti
able for double des
ription algorithms. Herewe give a few examples, using lrs [1℄ as an example of a pivot based method, and 
dd [2℄ as anexample of a double des
ription based method.Consider the metri
 
one whi
h for any integer n � 3 is a polyhedron in Rn(n�1)=2 de�ned by thetriangle inequalities xij�xik�xjk � 0 for all distin
t 1 � i; j; k � n, where x = (xij) 1 � i < j � n.The metri
 
one is extremely degenerate. Ve
tors x satsfying these inequalities are known assemimetri
s: they are nonnegative and satisfy all triangle inequalities. Often the nonnegativity
ondition xij � 0 is expli
itly spe
i�ed although these inequalities are in fa
t redundant. Theprogram lrs has a nonnegative option for spe
ifying these additional inequalities, but using it here
auses a big in
rease in the running time. For example, with n = 6 and without the redundant
onstraints, lrs generates 203,956 bases to �nd the 296 extreme rays. With the nonnegative option,it generates 1,960,411 bases and so the running time is nearly 10 times longer. The e�e
t on 
ddis not so pronoun
ed but still noti
eable: in
luding the redundant inequalities nearly doubles the
omputation time.Another way redundan
y o

urs is when the programs are used to generate rays lying on lowerdimensional fa
es. This is easily performed in both lrs and 
dd by in
luding a linearity optionwhi
h spe
i�es that 
ertain inequalities should be treated as equations. This normally results insome of the original inequalities be
oming redundant. Taking one su
h linearity 
auses all rays on afa
et to be generated. For the metri
 
one with n = 6, a fa
et 
ontains 113 extreme rays. Withoutremoving redundant inequalities, lrs generates 121,215 bases. There are 14 redundant inequalities,and after there removal lrs generates 38,119 bases, a speed up of a fa
tor of about 4. Choosing twolinearities 
auses ray enumeration on a ridge. Here the e�e
t of redundan
y removal is mu
h morepronoun
ed, as 30 of the original 
onstraints are redundant. lrs runs more than 50 times faster9



after redundan
y removal. The e�e
t of redundan
y removal on 
dd is also noti
eable, with speedups of the order of about 3 1/2 and 6 times respe
tively.Referen
es[1℄ D. Avis. lrs Homepage, 2001. S
hool of Computer S
ien
e, M
Gill University, Canada.http://
gm.
s.m
gill.
a/~avis/C/lrs.html.[2℄ K. Fukuda. 
ddlib referen
e manual, 
ddlib Version 092a. Swiss Federal Institute of Te
hnology,Switzerland, 2001. http://www.ifor.math.ethz.
h/~fukuda/
dd home/
dd.html.[3℄ A. S
hrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York, 1986.[4℄ G.M. Ziegler. Le
tures on polytopes. Graduate Texts in Mathemati
s 152. Springer-Verlag,1994.
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