
On anonial representations of onvex polyhedraDavid Avis Komei Fukuda Stefano PiozziFebruary 14, 2002AbstratEvery onvex polyhedron in the Eulidean spae Rd admits both H-representation and V-representation. When working with onvex polyhedra, in partiular large-sale ones in highdimensions, it is useful to have a anonial representation that is minimal and unique up tosome elementary operations. Suh a representation allows one to ompare two H-polyhedra ortwo V-polyhedra eÆiently. In this paper, we de�ne suh representations that are simple andan be omputed in polynomial time. The key ingredients are redundany removal for linearinequality systems and aÆne transformations of polyhedra.1 IntrodutionA onvex polyhedron or simply polyhedron in Rd is the set of solutions to a �nite system of inequal-ities with real oeÆients in d real variables. For a matrix A 2 Rm�d and a vetor b 2 Rm , a pair(b;A) is said to be an H-representation of a onvex polyhedron P if P = fx 2 Rd j b + Ax � 0g.Motzkin's deomposition theorem (see, e.g. [3, 4℄) states that every polyhedron has another rep-resentation alled a V-representation. For matries V 2 Rp�d and R 2 Rq�d , a pair (V;R) is saidto be a V-representation of a polyhedron P if P = onv(V ) + one(R), where onv(M) (one(M),respetively) denotes the onvex hull (the nonnegative hull) of the row vetors of the matrix M .In eah of representations, there are trivial transformations that preserve the represented poly-hedron. For an H-representation, eah inequality an be multiplied with any positive numbers.For a V-representation, eah row of R an be saled by any positive number. Also, any permu-tation of inequalities and the row vetors within V and R does not modify the polyhedron. Tworepresentations are onsidered equal if they are the same up to these transformations.One an easily see that neither V- nor H-representations are unique for a given polyhedron.First of all both V- and H-representations an have an unlimited number of redundant vetorsor inequalities. Furthermore, even without redundany, representations are not unique. Namelythere are in�nite many nonredundant V-representations of polyhedra without extreme points, andin�nite many nonredundant H-representation of polyhedra that are not full-dimensional.The main objetive of the present paper is to de�ne a unique V-representation (H-representation,respetively) of a polyhedron that an be omputed in polynomial time from any V-representation(H-representation). We shall review the unique polyhedral representations disussed in the book ofShrijver [3℄, and propose a variation that is omputationally simpler and guaranteed to have ertainsparsity property. The key ingredients are eÆient redundany removal by linear programming andertain aÆne mappings of onvex polyhedra to an appropriate spae. As a onsequene, it is possibleto hek in polynomial time whether two H-representations (or two V-representations) de�ne thesame polyhedron or not. We also show that redundany removal is polynomially equivalent tothe linear programming. This justi�es the use of linear programming algorithms for redundanyremoval. 1



Our main motivation arises from the ontinuing e�ort by the �rst two authors to developpolyhedral omputation odes, suh as ddlib [2℄ and lrslib [1℄, that perform basi transformationsof polyhedral representations. While the main transformation of these odes is the onversionbetween H- and V-representations, it is inreasing important to make an eÆient implementationof algorithms to ompute anonial representations. This would allow users to ompare two H-polyhedra (or two V-polyhedra) quikly without applying the (often too) expensive onversion. Inaddition, the omputation of a anonial representation an be onsidered as a preproessing stepfor the main transformation, whih in some ases results in a drasti speed up.Due to spae limitations, many of the proofs are omitted, and will be inluded in the full versionof the paper.2 Representations of Convex PolyhedraIn this setion, we present basi results on representations of onvex polyhedra. Most of the resultsare lassial and not very hard to prove. However there is no thorough treatment of this subjetfor both V- and H-representations and in partiular no study with omputational onsiderations.Throughout this setion, P is a non-empty polyhedron in Rd.The notation for H-representation and V-representation given in the last setion, althoughstandard, hides the underlying duality of polyhedral ones. A natural way to unify the two repre-sentations is through homogenization. We enode a V-representation (V;R) as a pair of a vetorand a matrix ��e0� ; �VR��, where e is the olumn vetor of all 1's. In this representation writtenas (b; A), eah row index i with bi = 1 indiates that the orresponding ith row vetor Ai of A is aonvex hull generator, and eah bi = 0 indiates Ai is a one generator. This way, both represen-tations are of the same form. Atually we must go even further to de�ne a unique representationof any given polyhedron, in both V and H formats.Let A be an m � d matrix, b an m-dimensional vetor and fI; Lg be a partition of [m℄ :=f1; : : : ;mg. We de�ne a quadruple (b; A; I; L) to be an H-representation of the polyhedronPH = fx 2 Rd j bI +AIx � 0; bL +ALx = 0g:(2.1)We de�ne a quadruple (b; A; I; L) to be a V-representation of the polyhedronPV = fx 2 Rd j x = AT y; yI � 0g;(2.2)if b = 0, and a V-representation of the polyhedronPV = fx 2 Rd j x = AT y; yI � 0; bT y = 1g;(2.3)otherwise.The set L is alled the linearity of the representation. Two H-representations (or two V-representations) (b; A; I; L) and (b0; A0; I 0; L0) are said to be equivalent if the represented polyhedraare equal. Eah row index i 2 [m℄ is alled redundant in a representation (b; A; I; L) if the rep-resented polyhedron stays unhanged after deleting the ith data, namely removing bi, Ai, i fromI or L whihever ontains i, and shifting the rest of the data aordingly. A representation isnonredundant if it has no redundant row index. For tehnial reasons, if the zero vetor appearsin a V-representation it will be onsidered non redundant.A V-representation (b; A; I; L) is alled standard if b is binary (i.e. bi 2 f0; 1g) and bL = 0. AV-representation an be transformed to an equivalent standard V-representation in quadrati time.For this reason, we assume for the rest of the paper that any V-representation is standard. Eah2



vetor Ai in a representation is alled a generator . It is a point generator if bi = 1, a ray generatorif bi = 0 and i 62 L, and a line generator if bi = 0 and i 2 L.We say two representations (b; A; I; L) and (b0; A0; I 0; L0) equal if bL+ALx = 0, bL0 +AL0x = 0and if there is a permutation � of I suh that �(I) = I 0 and eah (b0i; A0i) is a positive multipleof (b�(i); A�(i)) for any i 2 I. Clearly, if two representations of the same type are equal, they areequivalent and thus de�ne the same polyhedron. In partiular for V-representation, bL = 0 andthen the �rst equivalene oinides with the statement fx 2 Rd j x = (AL)T yg = fx 2 Rd j x =(AL0)T yg.While the equivalene of two representations is nontrivial to hek, the equality is easy tohek using Gaussian elimination. Our main goal is to disuss an eÆient proedure to redueany representation to a uniquely de�ned equivalent representation so that the equivalene of tworepresentations of the same type an be heked quikly.In partiular, we want to extend the de�nition of the anonial representation disussed in thebook of Shrijver [3℄ in order to get a anonial representation guaranteeing a ertain sparsity prop-erty. Extending this de�nition uses the notion of ompatible and omplementary linear subspaesof Rd . De�nitions and basi properties of these subspaes are desribed in the next setion.2.1 Compatible and Complementary linear subspaesWe say two linear subspaes S1 and S2 of Rd having same dimension are ompatible if the orthogonalprojetion of S1 onto S2 is S2 itself, or, equivalently, if the orthogonal projetion of S2 onto S1 is S1itself. We say two linear subspaes S1 and S2 of Rd are omplementary if any basis of S1 and anybasis of S2 form, together, a basis of Rd . It follows from elementary linear algebra that S1 and S2are omplementary if and only if dim(S1) + dim(S2) = d and S1 \ S2 = f0g. Similarly any r 2 Rdan be written uniquely as r = r1 + r2, where r1 2 S1 and r2 2 S2 For any two omplementarylinear subspaes S1 and S2 of Rd , we let PS1S2 denote the projetor onto S1 along S2 de�ned asPS1S2 : Rd �! S1r 7�! PS1S2(r) = r1;and r1 is alled the projetion of r onto S1 along S2. It is easy to see that PS1S2 is a projetor inthe sense of the linear algebra. By linearity, this de�nition an be extended to any subset of Rd .For any set W � Rd , and for any i = 1; 2 and j = 1; 2, i 6= j, we all the set Wi = PSiSj (W ) theprojetion of W onto Si along Sj . We would point out that the relation W = W1 +W2 does nothold in general.2.2 Canonial V-RepresentationTo de�ne a unique V-representation of a general (non-pointed) polyhedron we need a few morede�nitions. The linearity spae lin:spae(P ) of P is de�ned aslin:spae(P ) = fz 2 Rd j x+ �z 2 P for all x 2 P and � 2 Rg:(2.4)The harateristi one har :one(P ) of P ishar :one(P ) = fz 2 Rd j x+ �z 2 P for all x 2 P and � � 0g:(2.5)Using these de�nitions, the V-representation disussed in the book of Shrijver may be summa-rized as the following lemma :Lemma 2.1. A nonredundant V-representation (b; A; I; L) of polyhedron P satisfying the followingexists and is unique: 3



(1) lin:spae(P ) = fz 2 Rd j z = (AL)T yLg, and(2) all row vetors Ai (i 2 I) are orthogonal to lin:spae(P ).This lemma gives a theoretially satisfatory de�nition of the anonial representation. Theweakness of this de�nition is that asking the generators to be orthogonal to the linearity spaetends to make the resulting representation dense. The next theorem gives more general riteriawhih allows one to look for unique V-representations satisfying ertain sparsity properties.Theorem 2.2. A nonredundant V-representation (b; A; I; L) of polyhedron P satisfying the follow-ing exists and is unique:(1) lin:spae(P ) = fz 2 Rd j z = (AL)T yLg, and(2) all row vetors Ai (i 2 I) are orthogonal to S,where S is any �xed subspae of Rd ompatible with lin:spae(P ).The V-representation disussed in the book of Shrijver is the speial ase of Theorem 2.2 whenS is hosen to be lin:spae(P ) itself.2.3 Canonial H-RepresentationIn this setion, we use the notion of ompatible spaes to �nd a general anonial H-representation.We denote by a� (P ) the aÆne hull of P .Here is the H-representation disussed in the book of Shrijver:Lemma 2.3. A nonredundant H-representation (b; A; I; L) of a nonempty polyhedron satisfying thefollowing exists and is unique:(1) a� (P ) = fx 2 Rd j bL +ALx = 0g, and(2) eah row of AI is the linear spae parallel to a� (P ).Again this representation might be omputationally inonvenient. The next theorem gives moreexible notion of anonial H-representations whih allows one to look for those satisfying additionalfavorable properties suh as sparsity.Theorem 2.4. A nonredundant H-representation (b; A; I; L) of polyhedron P satisfying the follow-ing exists and is unique:(1) a� (P ) = fx 2 Rd j bL +ALx = 0g, and(2) eah row of AI is in S,where S is any linear subspae ompatible with the linear spae parallel to a� (P ).3 Computing Canonial RepresentationsGiven any V- (resp. H-) representation (b; A; I; L) of a polyhedron P in Rd , our goal is to omputeeÆiently the unique equivalent representation (b0; A0; I 0; L0) satisfying the following :(1) it is nonredundant;(2) lin:spae(P ) = fx 2 Rd j x = (A0L0)T yg (resp. of a� (P ) = fx 2 Rd j x = b0L0 +A0L0x = 0g);4



(3) the rows of A0I0 are orthogonal to a subspae S ompatible with lin:spae(P ) (resp. areontained in a subspae S ompatible with P0).One has the freedom to hoose S as any linear subspae ompatible with lin:spae(P ) or witha� (P ), aordingly to the onsidered format. Condition (3) an be expressed in the same form forboth V- and H- formats letting �P0 denote lin:spae(P ) in V-format (and a� (P ) in H-format), andletting �S denote S? in V-format (and S in H-format). Condition (3) is equivalent to(3') the rows of A0I0 are the projetions onto �S along �P0 of any equivalent set of generators of P .We now disuss two speial hoies for the linear subspae S, whih lead to omputationally inter-esting representations of polyhedron P .Any linear subspae is ompatible with itself. Choosing S as lin:spae(P ) itself (resp. asa� (P ) itself) leads to the orthogonal representation disussed in the book of Shrijver [3℄. In thisase, the projetor P �S �P0 onto �S along �P0 oinides with the orthogonal projetor P �S onto �S. Thisrepresentation is perhaps mathematially the most natural but it tends to lead to a very denserepresentation, as you will see in Setion 6Let us onsider another natural hoie for S. A oordinate subspae is any vetor subspae of Rdgenerated by some unit vetors ej (j = 1; : : : ; d). Seleting �S as a oordinate subspae guaranteesa ertain sparsity of the projeted vetors. Moreover, seleting �S as the lexiographially smallestsubspae omplementary with with ( �P0) guarantees that the nonzero oordinates are indexed byindies as small as possible. The resulting representation will be alled the lexiographially smallestoordinate subspae or lexio-smallest representation.Computationally, the orthogonal representation requires the omputation of orthogonal basisof a linear subspae, whih amounts to doing the Gram-Shmidt orthogonalization proedure. Thelexio-smallest representation needs only to hek whether a unit ej is linearly independent of agiven set of hosen vetors, whih amounts to applying Gaussian eliminations.4 Redundany RemovalIn this setion, we show how redundanies may be removed eÆiently from any given representation(b; A; I; L) of a nonempty polyhedron P . By de�nition, any row index k 2 [m℄ = I [L is redundantin (b; A; I; L) if and only if the represented polyhedron stays unhanged after deleting the kth row.4.1 Redundany Removal in V-representationFor any given V-representation (b; A; I; L) of a polyhedron P , we let I0 = fi 2 I j bi = 0g andI1 = fi 2 I j bi = 1g. It follows from the de�nitions, that P = onv(AI1) + one(R), whereR := � AI0A�L � and A�L := � +AL�AL �. And we denote by IR the set of the row indies of matrix RFor any k 2 I1, we say that the row vetor Ak is redundant in onv(AI1) if onv (AI1) =onv(AI1 n fAkg). Similarly, for any k 2 I0 [ L, we say that the row vetor Rk is redundant inone(R) if one(R) = one(R n fRkg).Let (b; A; I; L) be any V-representation of polyhedron P . The following haraterization of theredundanies (b; A; I; L) diretly follows from the deomposition of P as P = onv (AI1)+ one(R),and from the de�nition of point, ray and line generators of P .(1) k 2 I0 is redundant in (b; A; I; L) if and only if Ak is redundant in one(R);(2) k 2 L is redundant in (b; A; I; L) if and only if Ak and �Ak are redundant in one(R).5



(3) k 2 I1 is redundant in (b; A; I; L) if and only if Ak is redundant in onv(V ) + one(R).And, for any row index k 2 I [ L, we de�ne the linear program R.LPV(bk; Ak) asmax 0s.t. (Ak)T = bkPi 6=k(Ai)Txi +Pl 6=k(Rl)T yl i 2 I1; l 2 IRbk = bkPi 6=k xi; i 2 I1xi � 0; yl � 0 8i 2 I; 8l 2 IRwhere IR is the index set or the rows of matrix R. This linear program is either infeasible or it hasoptimal solution zero.Theorem 4.1. Let (b; A; I; L) be any V-representation of polyhedron P . Then,(1) any row index k 2 I is redundant in (b; A; I; L) if and only if R.LPV(bk; Ak) has optimalvalue zero, and(2) any row index k 2 L is redundant in (b; A; I; L) if and only if both R.LPV(0; Ak) andR.LPV(0;�Ak) have optimal value zero.Removing sequentially the redundanies from any representation (b; A; I; L) of a polyhedron Pusing this theorem leads to a nonredundant representation (b0; A0; I 0; L0) in O(m�LP(m; d)) time,where m = jI [ Lj.4.2 Redundany Removal in H-representationBy de�nition, any row index k 2 I (resp. k 2 L) is redundant in an H-representation (b; A; I; L) ofpolyhedron P = fx 2 Rd j bI + AIx � 0; ALx+ bL = 0g if and only if P = fx 2 Rd j b�I +A�Ix �0; A�Lx+ b�L = 0g, where �I = I n fhg and �L = L (resp. �I = I and �L = L n fhg). In other words,k 2 I (resp. k 2 L) is redundant in (b; A; I; L) if and only if the inequality fbk + Akx � 0g (resp.fbk + Akx = 0g) is redundant in the system of inequalities de�ning P . For any row Ak of A andfor any omponent bk of b, we let R.LPH(bk; Ak) denote the linear program de�ned asmin bk +Akxs.t. bi +Aix � 0 8i 2 I; i 6= kbl +Alx = 0 8l 2 I; i 6= k0 � bk +Akx � �1Theorem 4.2. Let (b; A; I; L) be any H-representation of a polyhedron P . Then,(1) any row index k 2 I is redundant in (b; A; I; L) if and only if R.LPH(bk; Ak) has optimalvalue zero, and(2) any row index k 2 L is redundant in (b; A; I; L) if and only both R.LPH(bk; Ak) and R.LPH(�bk;�Ak)have optimal value zero.4.3 Computing lin:spae(P ) and a� (P )The anonial V- (resp. H-) representation of polyhedron P is de�ned so that the rows of the matrixAL form a basis of S(AL). In this setion, we present how one an deide eÆiently whether anygiven row index k 2 I [ L from any nonredundant representation (b; A; I; L) of P belongs to thelinearity of the anonial representation of P . Solving this deision problem for every k 2 I[L leadsto a set of indies, say L00, suh as (AL00)T yL 2 lin:spae(P ) (resp. suh as bL00 + AL00x = 0). Thelinearity L0 of the anonial representation of P then arises from L00 by removing the redundanies.6



4.3.1 Computing lin:spae(P ) in V-representationGiven any V-representation (b; A; I; L) of polyhedron P , we let I0 := fi 2 I j bi = 0g. For any rowindex k 2 L [ I, we let L.LPV(Ak) denote the linear program de�ned asmax 0s.t. (Ak)T = �Pl 6=k(Rl)T yl; l 2 IRxi � 0; yl � 0 8i 2 I; 8l 2 IRwhere the matrix R is the matrix de�ned in Setion 4.1, and IR is the index set of the rows of R.Theorem 4.3. Let (b; A; I; L) be any V-representation of polyhedron P . Then, any row Ak ofmatrix A belongs to lin:spae(P ) if and only if k 2 L [ LI , where LI = fi 2 I0 j L.LPV(Ai) hasoptimal value 0g.We would point out that, in general, using this theorem to repartition the indies of any givenrepresentation tends to introdue new redundanies in the linearity of the representation, whihone has to remove by applying redundany removal. Nevertheless, it is possible to diretly omputea nonredundant set using the following instead of Theorem 4.3.Theorem 4.4. Let (b; A; I; L) be any V-representation of polyhedron P = onv(AI1) + one(R),where I0 and R are de�ned as in Setion 4.2. Then, any row Ak of matrix A belongs to lin:spae(P )if and only if k 2 L [ LI , where LI = fi 2 I0 j Ak is redundant in one(�R)g.4.3.2 Computing a� (P ) in H-representationAny anonial H-representation (b; A; I; L) of a nonempty polyhedron P has to satisfy a� (P ) =fx 2 Rd j bL + ALx = 0g, and the rows of bL + ALx � 0 form a nonredundant set of inequalities.Let (b; A; I; L) be any V-representation of P .For any row index k 2 I[L, I and L from any �xed V-representation of P , we let L.LPH(bk; Ak)denote the linear program de�ned as maxx2P bi +Aixs.t. bi +Aix � 1:Theorem 4.5. Let (b; A; I; L) be any H-representation of polyhedron P . Then, any row Ak ofmatrix A is suh as fx 2 Rd j bk + Akx = 0g � a� (P ) if and only if k 2 L [ LI , whereLI = fi 2 I j L.LPH(bk; Ak) has optimal value 0g.As was the ase for V-representations, the set L0 obtained using this theorem may ontainredundanies. A nonredundant set may be obtained by applying redundany removal on L0 or onean diretly ompute a nonredundant set L0 using the following theorem.Theorem 4.6. Let (b; A; I; L) be any H-representation of polyhedron P . Then, any row Ak ofmatrix A is suh as fx 2 Rd j bk + Akx = 0g � a� (P ) if and only if k 2 L [ LI , whereLI = fi 2 I j � bi �Aix � 0 is redundant with fbI +AIx � 0g [ fbL +ALx = 0gg.5 Computational Equivalene of ProblemsGiven any representation (b; A; I; L) of a nonempty polyhedron P , the results of last Setion showhow a anonial representation (b0; A0; I 0; L0) of P may be omputed eÆiently. The three ba-si operations to perform are :1) redundany removal, 2) omputation of the linearity L0 of therepresentation 3) omputation of matrix A0I0 using the ompatible spae S.7



Theorem 5.1. Redundany removal and the omputation of a anonial representation are poly-nomially equivalent problems.Proof. It is lear that one may remove the redundanies from any given representation of a poly-hedron P by omputing the anonial representation of P . On the other hand, as stated in Setion3, lin:spae(P ) (resp. a� (P )) may be solved by removing redundanies. It follows that, whenomputing a anonial representation, the unique operation that does not onsist in removing re-dundanies is the omputation of the rows of AI , whih we prove to be a polynomial time operation.Thus, one may ompute eÆiently a anonial representation just by removing redundanies.As we saw in Setion 4, redundany removal has omplexity O(m�LP(m; d)), wherem = jI[Lj.Solving these linear programs is expensive in time and the natural question that arises from thisresult onerns the neessity of solving linear programs to remove redundanies. In other words,are linear programming and redundany removal (and therefore, the omputation of a anonialrepresentation) polynomially equivalent problems? In the following we prove that this is the ase;inpartiular, we prove that the redundany removal problem is as hard as solving an LP, whih justi�esthe method used in Setion 4 for redundany removal.It is well known that heking feasibility of a linear system is polynomially equivalent to linearprogramming. In order to prove that redundany removal is as hard as the linear programming,we may prove that it is as hard as heking the feasibility of a given system of inequalities, sayb+Ax � 0. This may be easily proved onsidering the homogenized (feasible) system bx0+Ax � 0,x0 2 R.Lemma 5.2. Let Ax + b � 0, where A 2 Rm�d and b 2 Rd , be any linear system of inequalities.Then, Ax+b � 0 is feasible if and only if the inequality fx0 � 1g is not redundant with Ax+bx0 � 0.Proof. Consider the homogenized system Ax+bx0 � 0. Clearly, Ax+b � 0 is feasible if and only ifit exist a vetor �x 2 Rd suh that the pair (x0 = 1;x = �x) forms a feasible solution of bx0+Ax � 0.And this last ondition is satis�ed if and only if (x = ��x;x0 = �) forms a feasible solution ofbx0 + Ax � 0 for any �xed nonnegative real �. In partiular, b + Ax � 0 is feasible if and onlyif it exist a vetor x 2 Rd suh that the pair (x;x0 > 1) is a feasible solution of bx0 + Ax � 0.On the other hand, the system bx0 + Ax � 0; x0 � 1 is feasible. Then, one may apply themethod of Setion 4.2 to hek whether the inequality fx0 � 1g is redundant with bx0 + Ax � 0or not. In partiular regarding to the linear program R.LPH((0; Ak)) (see Setion 4.2), it is nothard to see that the system � bx0 +Ax � 0x0 > 1 is feasible if and only if fx0 � 1g is redundant withbx0 +Ax � 0.It follows from the above results that we may hek the feasibility of any linear system Ax � bin polynomial time by performing redundany removal. As a diret onsequene we has the arguedresult that,Theorem 5.3. Redundany removal, the omputation of a anonial representation and linearprogramming are polynomially equivalent problems.6 Some ExamplesWe start by illustrating the di�erene between the two anonial representations desribed inSetion 6. Consider the following (b; A; I; L) V-representation:b = 2411135 ; A = 240 1 1 1 1 01 0 1 1 0 11 1 0 0 1 135 ; I = f1; 2; 3g; L = ;:8



(This orresponds to the three hamiltonian iruits for the omplete graph on four verties.) Anorthogonal H-representation in this ase is given by:
b = 2666666664

�2�2�2�21=31=31=3
3777777775 ; A = 2666666664

1 1 1 0 0 01 0 0 1 1 00 1 0 1 0 10 0 1 0 1 1�1=3 1=6 1=6 1=6 1=6 �1=31=6 �1=3 1=6 1=6 �1=3 1=61=6 1=6 �1=3 �1=3 1=6 1=6
3777777775 ; I = f5; 6; 7g; L = f1; 2; 3; 4g:

Note that apart from the linearity spae, the matrix is ompletely dense. An H-representation withlexiographially smallest oordinate subspae is given by:
b = 2666666664

�2�2�2�211�1
3777777775 ; A = 2666666664

1 1 1 0 0 01 0 0 1 1 00 1 0 1 0 10 0 1 0 1 1�1 0 0 0 0 00 �1 0 0 0 01 1 0 0 0 0
3777777775 ; I = f5; 6; 7g; L = f1; 2; 3; 4g:

This polytope is two dimensional, and so the seond representation is quite sparse and ontains asquare 3 by 4 submatrix of zeroes in the rows indexed by I. (These inequalities have the naturalinterpretation x12 � 1; x13 � 1; x12 + x13 � 1 for the travelling salesman problem).Redundany removal an have an have a signi�ant e�et in speeding up the running time ofvertex enumeration algorithms. This is partiularly pronouned on algorithms whih enumeratebases, suh as pivot based algorithms, and other algorithms that use symboli perturbation toresolve degeneray. However improvement is also notiable for double desription algorithms. Herewe give a few examples, using lrs [1℄ as an example of a pivot based method, and dd [2℄ as anexample of a double desription based method.Consider the metri one whih for any integer n � 3 is a polyhedron in Rn(n�1)=2 de�ned by thetriangle inequalities xij�xik�xjk � 0 for all distint 1 � i; j; k � n, where x = (xij) 1 � i < j � n.The metri one is extremely degenerate. Vetors x satsfying these inequalities are known assemimetris: they are nonnegative and satisfy all triangle inequalities. Often the nonnegativityondition xij � 0 is expliitly spei�ed although these inequalities are in fat redundant. Theprogram lrs has a nonnegative option for speifying these additional inequalities, but using it hereauses a big inrease in the running time. For example, with n = 6 and without the redundantonstraints, lrs generates 203,956 bases to �nd the 296 extreme rays. With the nonnegative option,it generates 1,960,411 bases and so the running time is nearly 10 times longer. The e�et on ddis not so pronouned but still notieable: inluding the redundant inequalities nearly doubles theomputation time.Another way redundany ours is when the programs are used to generate rays lying on lowerdimensional faes. This is easily performed in both lrs and dd by inluding a linearity optionwhih spei�es that ertain inequalities should be treated as equations. This normally results insome of the original inequalities beoming redundant. Taking one suh linearity auses all rays on afaet to be generated. For the metri one with n = 6, a faet ontains 113 extreme rays. Withoutremoving redundant inequalities, lrs generates 121,215 bases. There are 14 redundant inequalities,and after there removal lrs generates 38,119 bases, a speed up of a fator of about 4. Choosing twolinearities auses ray enumeration on a ridge. Here the e�et of redundany removal is muh morepronouned, as 30 of the original onstraints are redundant. lrs runs more than 50 times faster9



after redundany removal. The e�et of redundany removal on dd is also notieable, with speedups of the order of about 3 1/2 and 6 times respetively.Referenes[1℄ D. Avis. lrs Homepage, 2001. Shool of Computer Siene, MGill University, Canada.http://gm.s.mgill.a/~avis/C/lrs.html.[2℄ K. Fukuda. ddlib referene manual, ddlib Version 092a. Swiss Federal Institute of Tehnology,Switzerland, 2001. http://www.ifor.math.ethz.h/~fukuda/dd home/dd.html.[3℄ A. Shrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York, 1986.[4℄ G.M. Ziegler. Letures on polytopes. Graduate Texts in Mathematis 152. Springer-Verlag,1994.
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