A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of
Arrangements and Polyhedra

David Avis

School of Computer Science
McGill University
3480 Unversity, Montreal, Quebec H3A 2A7

Komei Fukuda

Graduate School of Systems Management
The Uniersity of Tsukuba
Otsuka, Bunkyo-ku, Tokyo 112

Research Report B-23Tokyo Institute of TechnologyDept. of Information Science

November 1990

ABSTRACT

We present a ng pivot-based algorithm which can be used with minor modifica-
tion for the enumeration of the facets of thewveontull of a set of points, or for the enu-
meration of the vertices of an arrangement or of aveonmlyhedron, in arbitrary
dimension. Thealgorithm has the following properties:

(a) No additional storage is required beyond the input data;

(b) The output list produced is free of duplicates;

(c) The algorithm is extremely simple, requires no data structures, and handles all
degenerate cases;

(d) The running time is output sengdifor non-degenerate inputs;

(e) The algorithm is easy to efficiently parallelize.

For example, the algorithm finds thevertices of a polyhedron iR? defined by a non-
degenerate system ofinequalities (or duallythe v facets of the corex hull of n points
in RY, where eachdcet contains>actly d given points) in timeO(ndv) and O(nd)
space. The vertices in a simple arrangement mhyperplanes irR? can be found in
O(n?dv) time andO(nd) space compbeity. The algorithm is based onvierting finite
pivot algorithms for linear programming.

1. Introduction

In this paper we ge an dgorithm, which with minor variations can be used to edhree basic
enumeration problems in computational geometry: facets of theexdnll of a set of points, vertices of
a ornvex lyhedron gien by a ystem of linear inequalities, and vertices of an arrangemengparh
planes. The algorithm is based omgbing and has mannice properties. Among these are that no addi-
tional space is required apart from that required to store the input, and that the algorithm produces a list
that is free of duplicatesven for degenerate inputs. The algorithm is based oretting” finite pivoting
algorithms for linear programming. No special Whedge of linear programming or arrangements is
assumed, and necessary terminology is defined fereadditional information the reader is referred to
Chvatal[3] for linear programming and Edelsbrunner[6] for arrangements. In the the rest of this section
we gie an informal description of the algorithm diening with the ertex enumeration problem for con-
vex plyhedra.

Suppose we ha a ystem of linear inequalities defining a polyhedrorRfhand a ertex of that
polyhedron. Avertex is ecified by giving the indices af inequalities whose bounding/perplanes
intersect at theeartex. For aty given linear objectie function, the simpbemethod generates a path along
edges of the polyhedron until arex maximizing this objectie function is found.For simplicity, let us
assume for the moment that the optimuentex is contained on xactly d bounding lyperplanes. The
path is found by pioting, which irvolves interchanging one of the equations defining drevwith one
not currently used. The path chosen from an initiedrgivertex depends on the yot rule used. Indct,
care must be taken because sometpules generate cycles and do not lead to the optinartexv How-
eve, a particularly simple rule, known as Blasdule or the least subscript rule[1], guarantees a unique
path from amg starting \ertex to the optimum ertex. If we look at the set of all such paths from ai-v
tices of the polyhedron, we get a spanning tree of the edge graph of the polyhedron rooted at the optimum
vertex. Our algorithm simply starts at an "optimurerex" and traces out the tree in depth first order by
"reversing” Blands rule.

A remarkable feature is that no additional storage is needed at intermediate nodes in the tree. Going
down the tree wexplore all valid "reverse" pivots in lexicographical order from nmgiven intermediate
node. Going back up the tree, we simply use BRndé to return us to the parent node along with the
current pvot indices. From there it is simple to continue by considering the nesbdgaphic "reerse"
pivot, etc. The algorithm is therefore non-recuesind requires no stack or other data structure. One pos-
sible dificulty arises at so-called degenerate vertices, vertices which lie on more lloamding lyper-
planes. It is desirable to report eadrtex once only and this can be achied without storing the output
and searching. By using dualitye an also use this algorithm for enumerating theefs of the comx
hull of a set of points ifRY. It can also be used for enumerating all of the vertices of the Voronoi Dia-
gram of a set of points iRY, since this can be reformulated as aw@ntull problem inR%*! (see [6]).

A variant of this method can be used fertex enumeration of arrangements. Again consider the
linear programming problem discussedabhoEach inequality defining the polyhedron is bounded by a
hyperplane. Theorresponding arrangement of hyperplanes containy weatices, some of which are
vertices of the polyhedron, known dsasible vertices. The others are kwa asinfeasible vertices. A
recent deelopment in linear programming is avpi rule that starts at grvertex of this arrangement, fea-
sible or infeasible, and finds a unique path to the optimum solution of the linear program. Thigns kno
as the criss-cross method, and wagldged independently byeflaky[15], [16] and Ving[18]. Reers-
ing this algorithm along the lines described \&bgields our algorithm for enumerating vertices of
arrangements.

The problems discussed in this papereha bng historywhich we briefly mention here. The prob-
lem of enumerating all of theertices of a polyhedron is s@yed by Mattheiss and Rubin in[11] and by
Dyer in[4]. There are essentially tvelasses of method€One class is based orvgiing and is discussed
in detail in[4] and[3]. In this method a depth first search is initiated fronedex by trying all possible
simplex pivots. The dificulty is in determining whether or not arex has already been visitedror this

-3-

all vertices must be stored in a balancad_Aree. Animplementation that tass O(nd?v) time and
O(dv) space for a polyhedron with vertices defined by a non-degenerate system inBqualities inR®
is given in[4]. A dual version that computes a@x hulls was disceered by Chand and Kapur[2], and
has similar compbdty. Using sophisticated data structures, Seidel[13] was able torachinning time
of O(d3vlogn + nf(d — 1, n- 1)) for sets ofn points inRY, when each facet containgaetly d given
points. Heref (d, n) is the time to sole a inear program witm constraints ind variables, andv is the

number of facets of the ceex hull. The space required for this algorithmGign®?5. Thealgorithm pre-

sented in this paper fits into this class. It asks€®(dvn) time andO(dn) space compbety for facet enu-
meration of the carex hull of n points in RY, when each facet containsagtly d given points. the
authors’ knowledge, it is the only algorithm known that has non-exponential space requirements in the
worst case.

A second class of methods for computing the vertices of aezomlyhedron is the "double
description" method of Motzkin et al.[12] that dates back to 1953adnthe origin of these methods is
even earlier, as he double description method is in fact dual to therierMotzkin method for the solu-
tion of linear inequality systemsn the double description method, the polyhedron is constructed sequen-
tially by adding a constraint at a time. Allmeertices produced must lie on the hyperplane bounding the
constraint currently being inserted. A dual version for constructingezdmills is known as the "beneath
and bgond" method. Assuming the dimensidnis fixed, the fastest algorithm of this class again uses

sophisticated data structures and is due to Seidel [14] (also see [6]).edtO@k®¥?*!y time and
O(n"2 space.

With d fixed, the complete facial structure of a hyperplane arrangement can be constructed by an
algorithm due to Edelsbrunné&Rourke and Seidel [5] in optimal time and spa®én®). Thealgorithm
works by inserting the hyperplanes one at a time and can handle degeneratédgasewith d fixed, a
method for enumerating just the edges aerices (with repetitions) i(n%) time andO(n) space is
given by Edelsbrunner et al.[7]. Houle et al.[10vgi®veaal applications in data approximation where it
is required to enumerate all vertices of an arrangement.

In the next section we b by introducing the notion of a dictionary for a system of equations.
Next we shav how the problems mentioned in the title can be transformed into the enumeration of certain
types of dictionaries. In the third section weeghe algorithm for enumeration of dictionaries. Finally in
the last section we discuss complexity issues, and other properties of the algorithm proposed.

2. Dictionaries

Let A be amxn matrix, with columns inded by the setE ={1, 2, ..., n}. Fix distinct indicesf
andg of E. Consider the system of equations:
Ax=0, Xxg=1. (2.1)

For any J 0 E, x; denotes the swactor of x indexed by J, and A; denotes the submatrix éf consisting
of columns indeed by J. A basis B for (2.1) is a subset d& of cardinalitym containingf but not g, for
which Ag is nonsingularWe will only be concerned with systems (2.1) thatéha least one basis, and
will assume this for the rest of the pap@iven any basisB, we an transform (2.1) into thdictionary:

Xg =~ A_BlAN XN = A XN (22)

whereN = E - B is theco - basis, and A denotes-Ag' Ay. Alis called thecoefficient matrix of the dic-
tionary, with rows indeced by B and columns inded by N, so hat A= (g; : i0B, jUN). Notethat the
co-basis aliays contains the indeg.

-4-

A variablex; is primal feasibleif i0B - f anda; > 0. A variable x; is dual feasbleif jIIN —g
anday < 0. Adictionary isprimal feasible if x; is primal feasible for aliClB - f anddual feasible if
X; is dual feasible for all DN — g. A dictionary isoptimal if it is both primal and dual feasibleAn opti-
mal dictionary is shown schematically in Figure 2.1.

g N-g

f © 060 0 60 06

w
|
DPDDPDPD
Il
b

Figure2.1: An Optimal Dictionary (® = non-n@aive entry, © = hon-positive entry)

A basic solution to (2.1) is obtained from a dictionary by setting 4 = 0, x4 = 1. If ary basic \ariable

has alue zero, we call the basic solution and corresponding dictialegenerate. In section 2 of the

paper we gie an dgorithm for enumerating all distinct basic solutions of the system (2.1) without repeti-
tion, using only the space required to store the input. The algorithm is initiated with an optimal dictionary
A variant of the algorithm enumerates all primal feasible dictionaries reporting the corresponding basic
feasible solutions without repetition.

In the following subsections, wehav how the problems mentioned in the title can be transformed
into the problem of enumerating basic (feasible) solutions of a system of equations in the form (2.1).

2.1. Vertex enumeration in hyper plane arrangements

A hyperplanein RY, d = 0, is denoted by the paib,(c), whereb is a vector of lengtld andc is a
scalar and is the solution set of the equation=c, y=(y; : j =1, ..., d). A hyperplane arrangement
is a collection ofng hyperplaneslg;, ¢;), for some intgern,. A vertex of the arrangement is the unique
solution to the system af equations corresponding tbintersecting hyperplanes. Thertex enumera-
tion problem for hyperplane arrangements is to list all of the vertices of an arrangement. It is a simple
matter to find a ertex of an arangement, or shwthat none ®ists, since vertices correspond to subsets of
d hyperplanes whose normakstorsh; are linearly independentWe aly consider arrangements that
contain at least one vertex.

We may assume by relabeling if necessary that #@ors{b, _q.1, ..., by} are linearly indepen-
dent. Considethe system of equations

Xi = CiXpe1 — by, 1=1,...,n.
By assumption, the last equations are linearly independent, and so #mablesys, ..., yq4 can be
expressed in terms of, _g41, .- ., X,,, and eliminated from the firgt, —d equations. Thisesults in a
system of the form:
Xg = AXN,

for a suitable 1f, — d) x(d + 1) matrix A, whereB={1, ...,np—d} andN ={ng—-d+1, ..., ng+1}.
Furthermore, by a change of variables if necessayray assume that eael,, ;1 is non-ngaive. We
augmentA by adding a rv of of all -1 ’s. We augmentB by adding index, + 2. Setting

-5-
f=ng+2, g=ng+1, m=ny—-d+1,n=ngy+2,

we hare constructed an optimal dictionaryhis dictionary is obtained from the following system which
has the form of (2.1):

Ixg = Axy =0, Xg=1. (2.3)

It is easy to she that for eery co-basisN of (2.3), the set ofl hyperplanes indeed by N — g
intersect at some ver®f the arrangement. The vextean be computed by setting

Xi:éig |DB—f, Xj:O JDN—g

and solving fory , which was expressed in terms»f_g.1, ..., X,,. Similarly every index set ofd inter-
secting hyperplanes augmented by indegives a m-basis for (2.3).We sy that a ertex is degenerate

if it is contained in more thad hyperplanes. For suclestices, there may be manorresponding bases
of (2.3), each giving rise to a degenerate diction&mny essential part of our enumeration algorithm will
be to only output a degenerate vermace.

2.2. Vertex enumeration for Polyhedra

A (corvex) polyhedronP is the solution set to a systemmf inequalities ind non-ngaive \ari-
ables:

P={yORY|A'ly<b, yz=0} (2.4)

where A’ is anng x d matrix andb is ang-vector A vertex of the polyhedron is aectory [P that satis-

fies a linearly independent set@bf the inequalities as equation§he vertex enumeration problem for

P is to enumerate all of its vertices. In fact to findrea sngle vertex of P is computationally equalent

to linear programming. As we wish to separate this from the enumeration problem, we will assume we
are gien an hitial vertex. By transforming the problem as necessarg may assume that the origin is

the gven vertex. This implies that theactorb is non-ngative. We dso note that the assumption of non-
negaive \ariables is not essential: a system of inequalities in unrestricted variables with feasible

point can be transformed into a system such as (2.4) along the lines described in the previous subsection.

Letn=ny+d+2,f=n-1,g=n,B={1,...,ng,n=1}andN ={ny+1, ..., ng +d, n}. Con-
sider the following system of equations in the form of (2.1):

IXN-g + X =0
IXg-t + A'XN-g —bxg =0 (2.5)
Xg=1

Herel is an identity matrix and is a \ector of all ones, of appropriate dimensions. 18etn, + 1 and

let A be themxn matrix corresponding to the cdiefents in the firsim equations of (2.5). Then (2.2) is

an optimal dictionary for the system (2.3).can be shown that eaghimal feasible dictionary for (2.5)

has a basic solution whichvgs a \ertexy of P: sety; = xn+j, j =1, ..., d. A vertex of P is degenerate

if it satisfies more thaml inequalities of (2.4) as equations. Again, degenerate vertices correspond to
degenerate dictionaries. In order to enumerateatices ofP, it is sufficient to enumerate all primal fea-
sible dictionaries for (2.5), outputting a degenerate basic solution once only.

-6-

2.3. Facet enumeration of the convex hull of a set of points

LetQ={0,, ..., q,} denote a set dfiy points in RY. A facet of the corwex tull of Q is a typer-
plane containingl affinely independent points @. There is no loss of generality in assuming that the
origin is contained in the cwex hull of Q. By employing a standard duality between points aggdr-
planes, we may transform this problem into a westeimeration problem for a ceex plyhedron.

3. Enumeration of Dictionaries

Suppose we arevg@n a ystem of equations of the form (2.1), for som&n matrix A. Thelin-
ear programming problem (LP) for (2.1) is to maximizex; over (2.1) subject to the additional con-
straint that each variable@ptx; and x4 is non-ngative. Each optimal dictionary is a solution td°.
To begn with, we will assume that there is a unique optimal dictianAnpivot (r, s) on a kasisB, and
corresponding dictionaryg = Axg, is an nterchange of somedB — f with some inde sCOON — g giving
a rew hasisB’. The nev coefficient matrixA’' = (a}j) is given by
& = & - @

1 o _ s C_ Gy
- = 5 !
ars arS ars

s =~ is
s

. (iOB-r, jON-s). (3.1)

The piot is primal feasible (respectiely, dual feasible) if both of the dictionaries corresponding Bo
andB' are primal (respeatély, dual) feasible. The simptemethod is a method of solvingP by begin-
ning with an initial dictionary and yoting until an optimal dictionary is foundNe cnsider tvo rules
for choosing a piot.

The first rule, knen as Blands rule, performs primal feasibleyaits. LetB be a basis such that the
dictionary (2.2) is primal feasible.

Bland’'sRule.
(1) Letsbe the smallest inaesuch thatxs is dual infeasible, that ig > O.

a.
(2) Seth =min{- =2 :i0B- f, a5 < 0}. Letr be the smallest inaebtaining this minimum.
is

The pvot (r, s) maintains the primal feasibility of the dictionatiystep (1) does not applthe dictionary
is also dual feasible and hence optimal.

The second rule, known as the criss-cross rule, starts withears.
Criss-Cross Rule
(1) Leti # f, g be the smallest inaesuch thatx; is (primal or dual)infeasible.

(2) IfidB, letr =i and lets be the minimum indesuch thata, > 0, otherwise lets =i and letr be
the minimum inde such thata,s < 0.

The criss-cross pot (r, s) interchanges, andXx,, and may not preseevdther primal or dual feasibility
If step (1) does not apply then the dictionary is optimal.

The validity of these rules is\gin by the following proposition.Pat (a) is praed in[1] and part
(b) in[15] for linear programs, and in[16] [18] in the more general setting of oriented matfosiivple
proof of part (b) also appears in [9].

Proposition 3.1. Let (2.1) be a system that admits an optimal dictionary arii et ary basis.

(a) If B is primal feasible, then successigplication of Blands rule leads to an optimal dictionagnd
each basis generated is primal feasible.

(b) Successe gplication of the criss-cross rule starting with ba&igads to an optimal dictionary

3.1. Unique Optimal Dictionaries

In this subsection we g a dctionary enumeration algorithm for systems (2.1) that admit a unique
optimal dictionary Consider a graph whereestices are dictionaries anddwertices are adjacent if the
corresponding ta dictionaries differ in only one basi@wsiable. Therpart (b) of the proposition tells us
that there is a unique path consisting of criss-croggpirom ary dictionary to the optimal dictionary
The set of all such pathsvgs us a panning tree in this graph. Consider a non-optimal dictioDawjith
basisB. Let (, s), r OB - f, sCON — g, be te piot obtained by applying the criss-cross ruldXgiving a
dictionaryD'. We all (s, r) areverse criss— cross pivot for D'. Suppose we start at the optimal dictio-
nary and explore verse criss-cross yots in lexicographic ordefhis corresponds to a depth first search
of the spanning tree defined &koWhen moving down the tree, each dictionary is encountet@ctig
once.

A similar analysis applies to part (a) of the propositiore f¥dfm a similar graph,xeept that er-
tices are just the primal feasible dictionari®de define areverse Bland pivot in the analogous ay. A
depth first search of this graph provides all primal feasible dictionaries.

Our enumeration algorithrsearch for dictionaries is gien in Hgure 3.1. For a gen system (2.1)
we hae an initial basisB ={1, ..., m}, co-basisN ={m+1, ..., n} and optimal dictionarykg = Axy.
We further assume thdt = 1, g = n, and thatm andn are global constants. Thefiefengy of the proce-
dure depends greatly on the procedaxerse. The simplest way to check ifi(, s), rOOB - f, sCON — g, is
a revase pvot is to actually perform the piot, then use proceduselect — pivot on the ne dictionary. If
this produces the same pair @friables, thenr(s) is a \alid reverse pvot. Since a piot invdves O(mn)
operations, a faster method is desirableabt fo determine the it by the criss-cross or Blangliules,
the entire dictionary is not required by procedsalect — pivot. To test whetherA arises from a coéif
cient matrixA' by a criss-cross (resp., Bland ygiinterchangingB[i] with N[j], it is only necessary to
examine rovs f,i and columnsj, g of A. These can be computed frodin O(m+ n) time, and
checled to see if B[i], N[]]) is a criss-cross (resp., Blandyqt. Further savings are possible, as certain
potential reerse pvots can be eliminated without yapivoting. For the criss-cross rule wevieathe fol-
lowing necessary condition for aveese pvot.

Proposition 3.2 If (s,r), sUB-f andrN -g, is a \alid reverse criss-cross yot for a dictionary
Xg = AXy, then either

(@ agx>0, ag >0, ag=0forjON-g, j<sor

(b) af <0, ag <0, a,<O0foriB-f,i<r.

Proof: Let A" = (a'j;), with basisB’ and co-basis\’, be a dctionary that yieldsA after the walid cross
pivot (r, s), withr OB’ — f, and sUN' — g. One of the indices, s must be the smallest infeasible inde
A'. Suppose first that it is. By the criss-cross rule we must thereforgena,; < 0, a's >0, anda’,; <0
for all JON' - g, j <s. Now gplying the piot formula (3.1) to the pot row of A" we obtain the signs

indicated in part (a) of the proposition M A similar analysis applies to the case wheiie the smallest
infeasible inde in A', giving the sign pattern of part (b) of the propositian.

For revesing Blands rule, we canxploit the fact that the werse piot must maintain primal feasi-
bility.

— a
Proposition 3.3 Let xg = Axy be a dictionaryletr ON — g and setA = min{ - —2 :i0B - f, a, < 0}.
ir
If (s,r), sB - f, is a\alid reverse Blands rule pvot thens must be an indethat obtains this minimum.

Proof: Under the conditions of the propositionsifs not an inde realizing the minimum, then the dic-
tionary obtained after thewait (s, r) is not primal feasible. In the next section, we seewthis simple
observation reduces the complexityseérch in non-degenerate situations.

The proceduréex — min is used to ensure that each basic solution is ouxautlg once, when the
lexicographically minimum basis for that basic solution is reached. The correctness of the procedure is

procedure search B, N, A);

FB={1,...,m}, N={m+1,...,n}, f =1,9=n, Xg = AXy is a unique optimal dictionary for a sys-
tem (2.1) */
begin
i:=2;j:=1;
repeat
while(i <m and not reverse B, N, A, i, j)) incrementi(j);
if (i <m)then [* reverse pvot found */
begin

pivot (B, N, A/ i, j);
if lex-min (B, N, A) then print (B);

i=2;j:=1;

end;

else /* go back to previous dictionary */

begin
select-piot (A, i, j);
pivot (B, N, A/ i, j);
incrementi, j);

end;

until (i >m and B[m] = m)
end; [* search */

function reverse @B, N, A, i, j):boolean;)
[* trueif (s, r), with s= BJi], r = N[j], is a valid reerse cross-piot (resp., Bland-piot) for A, other-
wisefalse */

procedure pivot (B, N, A, i, j);
[* pivot Aon rav i and columnj, updateB andN. Reorder as necessary andisand | to be the indices
of the interchange®[i] and N[j]. */

function Iqx—min (B, N, A):boolean;
[* trueif Ais non-degenerate, or degenerate Bns the lexicographically minimum basis for this basic
solution, elsdalse */

procedure select-piot (A, i, j); B
/* Find criss-cross (resp., Bland)vpt for coefficient matrixA. Return the inde i of the pvot row and
index j of the pvot column*/

procedureincrementy j);
begin
j:=j+1;if (j =n—-m)then begin j:=1;i:=i+1; end;
end; [* increment */

Figure3.1

based on the following proposition.

Proposition 3.4 Let B be a basis for a degenerate dictionagy= Axy. B is not lexicographically mini-
mum for the corresponding basic solution if and only if thedieter OB — f and sON — g such that
r>s agy=0andas#0.

Proof: For the suficiency of the condition, ler and s have the aboe poperties. LetB'=B-r +s.
Sincea,s # 0, B' is a basis, and it is lexicographically smaller tigan

On the other hand, suppoBeis a basis lexicographically smaller thBrwith the same basic solu-
tion. Lets be the smallest inaten B but not in B. Since both bases ki@ the same basic solutioag; = 0.
If we augmentB by s, there must exist some inde such thatB = B —r + sis a basis. N@ r > s for
otherwiser (B and there is a linear dependence. Adso# 0, otherwiseB would not be a basisFinally
sinceag = 0, we hae a,4 = 0 and B has the same basic solutionBast

3.2. Degenerate Optimal Dictionaries

Proceduresearch as gven in the previous subsection will only generate all (feasible) dictionaries if
the system (2.1) has a unique optimal diction@yppose there are manptimal dictionaries. This situ-
ation arises when one of the basic variables hhgewzero, ie. the dictionary is degenerate. Then instead
of a spanning tree in the graph described after Proposition 3.1, we obtain a spanning forest. Each of the
two pivot agorithms terminates when yoptimal solution is found. Therefore, procedsearch must be
applied to each optimal dictionarfrortunately from ary optimal dictionary we can generate all optimal
dictionaries by a procedure very similar to search.& and will assume that there is a unique optimal
basic solution. This corresponds to the condition that all of thdideatsay, j[IN — g are non-zero in
the optimal dictionaryWe ae free to assume this since in our applications we are free to choosevthis ro
which corresponds to the "objeaifunction” of the linear program.

Let xg = Axy be a dgenerate optimal dictionaryLet B'l] B denote the indices of theanables
with value zero in the corresponding basic solution and thexifidéNe augmentA by a column with
index g =n+1, consisting of all ones. This column temporarily replaces column Let
N'=N-g+ g'. This augmented dictionary is shown schematically in Figure 3.2.

g 9 N'-g
f _ - = = = =
+ 10
B - f + 10
+ 10
= A

+ | +
B-B-f | + |+
+ |+

Figure 3.2 : An Augmented Degenerate Optimal Dictionary

We row consider the sub-dictionary consisting ofveindexed by B' and columns byN'. This is a non-
degenerate optimum dictionarylo obtain all optimal dictionaries for the original problem, we apply a
variant of procedure search to the sub-dictionary using a dual form of Blael'in procedures verse
and lex-min. This form takes wruual feasible dictionary andgs a dial feasible piot.

Dual Bland’sRule
(1) LetrOB' - f be the smallest inaethat is primal infeasible, that &y < O.

-10-

a .
(2) Setd=min{- a—f‘ - JON"-g', &; > 0}. Letr be the smallest indeattaining this minimum.
Tj
The pvot (r, s) maintains the dual feasibility of the dictionany step (1) does not applthe dictionary is
optimal. Proposition 3.1(a) applies with "primal” replaced by "dual".

We initiate the procedure search on the augmented dictionary with Basied co-basisN'.
Although only rows indeed by B' are considered for yits, we manipulate the entire coefficient matrix
Ain procedure piot, and update theeetorsB andN. Now each reerse pvot found by search applied to
the modified problem yields aweptimal dictionary for the original problem. After the call to procedure
pivot in search, we nw insert a call to the original procedure search, with the dictioAaand the
updated vectorB andN.

The validity of this approach is based on the following olz@ms. Agin let xg = Axy be a
degenerate optimal dictionary for a system (2.1) with a unique optimum basic solutid?l.dret N' be
defined as abh@. Each optimal basis for (2.1) contains the indiBes B' augmented by a linearly inde-
pendent set fronN — g+ B'. Such bases will alays be primal feasible foA, if they are also dual feasi-
ble then thg correspond to an optimal dictionary for the original systéising the dual form of Bland’
rule, this latter condition is ahys satisfied. Since the modified problem is has a unique optimal dictio-
nary, each dual feasible dictionary for the modified problem must be connected by a unique path by dual
Bland pivots to this optimum dictionanRevesing the piots allovs us to visit each optimal dictionary
for the original problem.

4. Complexity

In this section we discuss the complexity of the dictionary enumeration algorithm, and apply the
results to the geometric applications described in Section 2. Supposesava lgatem (2.1) for some
mxn matrix A. Let f(A) denote the number of dictionaries that can represent ((4).is just the num-
ber of linearly independent subsetsntolumns ofA, with the condition that the column with indé is

-2

always included, and indeg is aways excluded. Thigs at mosﬁn_n_ 13 but may be much smallefFor
each dictionarywe may evaluate (n—1)(n— m-2) candidates for werse pvots, each candidate requir
ing O(m+n) time as shown in the previous section. Proceduvet requiresO(m(n—m)) time per
execution as does procedutex — min. These complexities are valid for the case of multiple optimal
solutions. Therefore theverall time-complexity ofsearch is

m-20
- 10

Apart from a fev indices, no additional space is required other than that required to represent the input.

We row consider the compigty of evaluating all feasible dictionaries. Lg{A) denote the number
of primal feasible dictionaries representing (2.1). Thevataalysis and (4.1) hold, witg(A) replacing
f(A). Inthe non-degenerate case we can do b&émalling Proposition 3.3, we see that we only need to
consider one candidateveese pvot per column of the dictionary: if there areadwsr more indices realiz-
ing the minimum then a yot would give a égenerate dictionaryFor each column, the candidate basic
variable can be found by computing the minimum radtim O(m) time. To check if a candidate is iraft
a revase piot, we need to construct the objeetiow o the dictionary after the wit, takingO(n —m)
time. Therefore since there ame- m— 2 candidate columns, all verse Bland piots from the gien dic-
tionary can be found i®((n — m)n) time, in the non-degenerate case. Thigan werall complexity of
O((n—m)ng(A)) for the non-degenerate case.

We row return to the geometric problems mentioned in Section 2. Supposev&va lmlection of
no hyperplanes irRY. For this problemm = ny—d + 1 and n = ny + 2. The time-complexity of enumerat-
ing all vertices of a hyperplane arrangement by this method becomes:

O((m+n)ym((n-m) f(A))=0((m+n)mn). (4.2)

-11-

Mo

o(n3d f(A))=O(n§dDdD

).

In the case of non-degenerate arrangemditi) is the number of the vertices, ie. the size of the output.
This method should be particularly useful for non-degenerate arrangementsmitrtiees.

Consider nav the enumeration of the vertices of a polyhedraergby a Ist of ny inequalities ind
variables. Sincenve assume the polyhedron has at least @arex, np=d. We ave m=ny+1 and
n=ngy+d+2. Thetime-complexity of enumerating all of the vertices is

Mo
Od O

Again the complexity is output senséifor non-degenerate polyhedra, for whigd) is just the number
of vertices. Ifthe polyhedron is simple (ie. all dictionaries are nogetierate) then we get an imped
complity bound. The algorithm producegntices at a cost dD(ng d) per vertex with no repetitions
and no additional space.

The compleities in the previous paragraph apply to theveartull problem, wherean, is the num-
ber of input points. In the non-degenerate case where no morel thaimts lie on ay facet (ie., the
facets are simplicial), we can enumerateligcets in timeO(nydv) and spaceé(nqyd).

O(njd g(A))=0(njd).

5. Example

In this section we ge an example of the operation of procedwsearch for the \ertex enumeration
of the set ohy = 5 lines shown in Figure 5.1. This arrangement is generated by the coefficients:

b; =(1,3), b=(5,1), by=(3,2), by=(-1,-3), bs=(-2,1),
cL =4, Cc, =5, C3 =2, Cp=1, Cs = 2.
Proceeding as described in Section 2.1, we add varigfles., x5 obtaining the system:
X1 =4 -y, =3y,
X2 =5-3y1~ Y2
X3=2-3y1 -2y,
Xg=1+y; +3y,

X5 =2+2y1 =Y,

Since the last tovequations are linearly independent, we may esdbr y, andy, in terms ofx, and xs,
getting:

X4 Xs
==1+ —+3=
Y1 7 7

X4 Xs
2— - .
7

Yo =

Eliminating variablesy/,, y, from the first three equations we obtain the system:

-12-

X1 = 5_X4
Xo =10 = X4 — 2X5

X3 = 5 — Xz — Xg

These are plotted witk,, X5 as aes in Figure 5.2. Adding the speciarticesx; and x4 and the addi-
tional row representing the "objegt function”, we obtain our initial optimal dictionary:

X1 =9Xg ~ X4

Xp = 10Xy = X4 = 2Xs5 (5.1)
X3 =9Xg ~ X4 = Xs

Xi = = X4 — X5

Starting at this dictionary we consider in turn each of the candideteseepvots: (1,4), (2,4),
(2,5), (3,4), (3,5). The candidatevpi (1,4) yields the dictionary:

X3 = BXg + Xq — 2Xs
X3 = X1 — Xs (5.2)
X4 = OXg —X;
Xf ==5Xg + X1~ Xs
Checking this dictionarywe dscover that the criss-cross rule does generate thet p4,1), so we con-
tinue from this dictionary Note that in determining this, we do not need the entire dictiorarshis

example we need only the column of coefficientsxXpr The possible candidates are: (2,1), (2,5), (3,1),
(3,5), (4,1). We dart with (2,1), which leads to the dictionary:

Xy = —9Xg * Xy +2Xg
Xz = =5Xg + Xy + X5 (5.3)
Xg= 10Xg —Xo = 2Xs
Xf ==10xg + X + X5

Again the criss-cross rule applied to this dictionary generates the reqwise(lL®). In this case we need
only check the coefficients of, andx, in the rav for x;.

Continuing from this dictionarythe first candidate pot is (1,2). This leads us back to (5.2), for
which the criss-cross rule generates thetpi4,1) which is not the same. Therefore (1,2) is noalav
reverse pvot from (5.3). Next we try the pot (1,5) on dictionary (5.3). Thisggs the dictionary:

13-

5 X1 Xo
= 2% 5T
_ 15 X1 Xp
XET X TS TS

The criss-cross rule applied to this dictionary yields thet§#,1), so (1,5) is not averse piot. Contin-
uing in this way we disa@r that no dictionaries lead to (5.3) by the criss-cross ruieth@fefore back-
track to the parent dictionary of (5.3), which we do by performing the criss-ckat$IpR) leading back
to (5.2). Note that no storage is required to determine the parent of a dictionary.

In Figure 5.3 we shm the complete tree enumerating all dictionaries from (5.3). Duegende-
ag in the original arrangement, the sangte in the arrangement may occur adafi€ént dictionaries in
the tree. Dictionaries with bases {1,2,4}, {2,3,4}, {2,4,5} correspond to @mtx We autput this ertex
when its lexicographically minimum basis {1,2,4} is reached.

6. Concluding Remarks

We havepresented a mealgorithm that can be used to selthree important geometric enumera-
tion problems without additional space. The simplicity of the algorithm rends it suitable for symbolic
computation in a language suchMaple or Mathematica. Using exact arithmetic, the problem of numer
ical accurag which occurs with most geometric algorithmsvsided. Another feature of the algorithm is
that it is easy to efficiently parallelize. Since in the enumeration no dictionargriseached by tw dif-
ferent paths and no additional storage is required, subproblems can be scheduled arbitrarily onto free pro-
Cessors.

The "reverse pvoting" approach can bexeended to the setting of oriented matroids, and in particu-
lar to pseudo line arrangement/hile the criss-cross method works correctly in the setting of oriented
matroids, Bland rule is not finite for oriented matroid programming [8pbdd[17] has found a finite rule
that can replace Blargliule in the oriented matroid setting.

The complexity analysis presented in this paper is quite rudiment#dlow a worst case time
of O(m + n) to determine whether a pair of indices is @aree pvot. This seems certain to be aresti-
mate. r theith basic ariable to interchange with thi¢h non-basic variable, at ledst j signs hae ©
be "correct". V& may compute these signs conseglyi and stop the first time an "incorrect” sign is
encountered. Amortizing this costap the complete enumeration of an arrangement, it is possible that
just a constant amount ofork has to be done on theesage to determine that a potentialemse pvot is
invalid.

7. Acknowledgements

The work of the first author as performed while visiting the laboratory of Professor Masakazu
Kojima of Tokyo Institute of Technologgupported by the JSPS/NSERC bilateral exchange program.

References

1. R.G. Bland, A Combinatorial Abstraction of Linear Programming, Combin. Theory B 23, pp.
33-57 (1977).

10.

11.

12.

13.

14.

15.

16.

17.

18.

-14-

D.R.Chand and S.S. Kapu®&n Algorithm for Comvex Rolytopes,”J. ACM 17, pp. 78-86 (1970).
V. Chvatal,Linear Programming, W.H. Freeman (1983).

M.E. Dyer, “The Complexity of ¥rtex Enumeration Methods,Math. Oper. Res. 8, pp. 381-402
(1983).

H. Edelsbrunnerd. ORourke, and R. Seidel, “Constructing Arrangements of Lines and Hyper
planes with Applications JAM J. Computer Science, pp. 341-363 (1986).

H.EdelsbrunnerAlgorithmsin Combinatorial Geometry, Springer-Verlag (1987).

H. Edelsbrunner and L. Guibas, “Topologically Sweeping an Arrangém&ntomp. Syst. <ci-
ences 38, pp. 165-194 (1989).

K. Fukuda, “Oriented Matroid Programmingph.D. Thesis, University of Waterloo (1982).

K. Fukuda and TMatsui, “On the Finiteness of the Criss-Cross MethBdropean J. O.R. 52, pp.
119-124 (1991).

M. E. Houle, H. Imai, K. Imai, J-M. Robert, and Yamamoto, “Orthogonal Weighted Linehi
andLqinity Approximation and Applicationsfhanuscript (September 1990).

TH. Matheiss and D. S. Rubim ‘Survey and Comparison of Methods for Finding all Vertices of
Corvex Polyhedral Sets,Math. Oper. Res. 5, pp. 167-185 (1980).

TS. Motzkin, H. Raila, G.L. Thompson, and R. M. Thrall, “The Double Description Method,
Annals of Math. Sudies 8, pp. 51-73, Princeton Uwersity Press (1953).

R.Seidel, “Constructing Higher-Dimensional (e Hulls at Logrithmic Cost per &ce,” Proc.
1986 ST.O.C., pp. 404-413.

R.Seidel, A Corvex Hull Algorithm Optimal for Point Sets in En Dimensions,Report 81-14,
University of British Columbia, Dept. of Computer Science (1981).

T Terlaky, “A Corvergent Criss-Cross MethddMath. Oper. und Sat. ser. Optimization 16, pp.
683-690 (1985).

T. Terlaky, “A Finite Criss-Cross Method for Oriented Matroidd, Combin. Theory B 42, pp.
319-327 (1987).

M. Todd, “Linear and Quadratic Programming in Oriented MatroidsComb. Theory B 39, pp.
105-133 (1985).

Z.Wang, "A Conformal Elimination Free Algorithm for Oriented Matroid Programnii@finese
Annals of Mathematics 8,B,1 (1987).

