
A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of
Arrangements and Polyhedra

David Avis

School of Computer Science
McGill University

3480 University, Montreal, Quebec H3A 2A7

Komei Fukuda

Graduate School of Systems Management
The University of Tsukuba

Otsuka, Bunkyo-ku, Tokyo 112

Research Report B-237Tokyo Institute of Technology, Dept. of Information Science

November 1990

ABSTRACT

We present a new piv ot-based algorithm which can be used with minor modifica-
tion for the enumeration of the facets of the convex hull of a set of points, or for the enu-
meration of the vertices of an arrangement or of a convex polyhedron, in arbitrary
dimension. Thealgorithm has the following properties:

(a) No additional storage is required beyond the input data;
(b) The output list produced is free of duplicates;
(c) The algorithm is extremely simple, requires no data structures, and handles all
degenerate cases;
(d) The running time is output sensitive for non-degenerate inputs;
(e) The algorithm is easy to efficiently parallelize.

For example, the algorithm finds thev vertices of a polyhedron inRd defined by a non-
degenerate system ofn inequalities (or dually, thev facets of the convex hull of n points
in Rd , where each facet contains exactly d given points) in timeO(ndv) and O(nd)
space. Thev vertices in a simple arrangement ofn hyperplanes inRd can be found in
O(n2dv) time andO(nd) space complexity. The algorithm is based on inverting finite
pivot algorithms for linear programming.

-2-

1. Introduction

In this paper we give an algorithm, which with minor variations can be used to solve three basic
enumeration problems in computational geometry: facets of the convex hull of a set of points, vertices of
a convex polyhedron given by a system of linear inequalities, and vertices of an arrangement of hyper-
planes. The algorithm is based on pivoting and has many nice properties. Among these are that no addi-
tional space is required apart from that required to store the input, and that the algorithm produces a list
that is free of duplicates even for degenerate inputs. The algorithm is based on "inverting" finite pivoting
algorithms for linear programming. No special knowledge of linear programming or arrangements is
assumed, and necessary terminology is defined here.For additional information the reader is referred to
Chv ́atal[3] for linear programming and Edelsbrunner[6] for arrangements. In the the rest of this section
we give an informal description of the algorithm beginning with the vertex enumeration problem for con-
vex polyhedra.

Suppose we have a system of linear inequalities defining a polyhedron inRd and a vertex of that
polyhedron. Avertex is specified by giving the indices ofd inequalities whose bounding hyperplanes
intersect at the vertex. For any giv en linear objective function, the simplex method generates a path along
edges of the polyhedron until a vertex maximizing this objective function is found.For simplicity, let us
assume for the moment that the optimum vertex is contained on exactly d bounding hyperplanes. The
path is found by pivoting, which involves interchanging one of the equations defining the vertex with one
not currently used. The path chosen from an initial given vertex depends on the pivot rule used. In fact,
care must be taken because some pivot rules generate cycles and do not lead to the optimum vertex. How-
ev er, a particularly simple rule, known as Bland’s rule or the least subscript rule[1], guarantees a unique
path from any starting vertex to the optimum vertex. If we look at the set of all such paths from all ver-
tices of the polyhedron, we get a spanning tree of the edge graph of the polyhedron rooted at the optimum
vertex. Our algorithm simply starts at an "optimum vertex" and traces out the tree in depth first order by
"reversing" Bland’s rule.

A remarkable feature is that no additional storage is needed at intermediate nodes in the tree. Going
down the tree we explore all valid "reverse" pivots in lexicographical order from any giv en intermediate
node. Going back up the tree, we simply use Bland’s rule to return us to the parent node along with the
current pivot indices. From there it is simple to continue by considering the next lexicographic "reverse"
pivot, etc. The algorithm is therefore non-recursive and requires no stack or other data structure. One pos-
sible difficulty arises at so-called degenerate vertices, vertices which lie on more thand bounding hyper-
planes. It is desirable to report each vertex once only, and this can be achieved without storing the output
and searching. By using duality, we can also use this algorithm for enumerating the facets of the convex
hull of a set of points inRd . It can also be used for enumerating all of the vertices of the Voronoi Dia-
gram of a set of points inRd , since this can be reformulated as a convex hull problem inRd+1 (see [6]).

A variant of this method can be used for vertex enumeration of arrangements. Again consider the
linear programming problem discussed above. Each inequality defining the polyhedron is bounded by a
hyperplane. Thecorresponding arrangement of hyperplanes contains many vertices, some of which are
vertices of the polyhedron, known asfeasible vertices. The others are known asinfeasible vertices. A
recent development in linear programming is a pivot rule that starts at any vertex of this arrangement, fea-
sible or infeasible, and finds a unique path to the optimum solution of the linear program. This is known
as the criss-cross method, and was developed independently by Terlaky[15], [16] and Wang[18]. Revers-
ing this algorithm along the lines described above yields our algorithm for enumerating vertices of
arrangements.

The problems discussed in this paper have a long history, which we briefly mention here. The prob-
lem of enumerating all of the vertices of a polyhedron is surveyed by Mattheiss and Rubin in[11] and by
Dyer in[4]. There are essentially two classes of methods.One class is based on pivoting and is discussed
in detail in[4] and[3]. In this method a depth first search is initiated from a vertex by trying all possible
simplex piv ots. The difficulty is in determining whether or not a vertex has already been visited.For this

-3-

all vertices must be stored in a balanced AVL-tree. An implementation that takes O(nd2v) time and
O(dv) space for a polyhedron withv vertices defined by a non-degenerate system ofn inequalities inRd

is given in[4]. A dual version that computes convex hulls was discovered by Chand and Kapur[2], and
has similar complexity. Using sophisticated data structures, Seidel[13] was able to achieve a running time
of O(d3v log n + nf (d − 1, n − 1)) for sets ofn points in Rd , when each facet contains exactly d given
points. Heref (d, n) is the time to solve a linear program withn constraints ind variables, andv is the

number of facets of the convex hull. The space required for this algorithm isO(nd/2). Thealgorithm pre-
sented in this paper fits into this class. It achieves O(dvn) time andO(dn) space complexity for facet enu-
meration of the convex hull of n points in Rd , when each facet contains exactly d given points. To the
authors’ knowledge, it is the only algorithm known that has non-exponential space requirements in the
worst case.

A second class of methods for computing the vertices of a convex polyhedron is the "double
description" method of Motzkin et al.[12] that dates back to 1953. In fact the origin of these methods is
ev en earlier, as the double description method is in fact dual to the Fourier-Motzkin method for the solu-
tion of linear inequality systems.In the double description method, the polyhedron is constructed sequen-
tially by adding a constraint at a time. All new vertices produced must lie on the hyperplane bounding the
constraint currently being inserted. A dual version for constructing convex hulls is known as the "beneath
and beyond" method. Assuming the dimensiond is fixed, the fastest algorithm of this class again uses

sophisticated data structures and is due to Seidel [14] (also see [6]). It takes O(nd/2+1) time and

O(nd/2) space.

With d fixed, the complete facial structure of a hyperplane arrangement can be constructed by an
algorithm due to Edelsbrunner, O’Rourke and Seidel [5] in optimal time and spaceO(nd). Thealgorithm
works by inserting the hyperplanes one at a time and can handle degenerate cases.Again with d fixed, a
method for enumerating just the edges and vertices (with repetitions) inO(nd) time andO(n) space is
given by Edelsbrunner et al.[7]. Houle et al.[10] give sev eral applications in data approximation where it
is required to enumerate all vertices of an arrangement.

In the next section we begin by introducing the notion of a dictionary for a system of equations.
Next we show how the problems mentioned in the title can be transformed into the enumeration of certain
types of dictionaries. In the third section we give the algorithm for enumeration of dictionaries. Finally in
the last section we discuss complexity issues, and other properties of the algorithm proposed.

2. Dictionaries

Let A be am×n matrix, with columns indexed by the setE = {1, 2, .. . , n}. Fix distinct indicesf
andg of E. Consider the system of equations:

A x = 0, xg = 1. (2.1)

For any J ⊆ E, xJ denotes the subvector of x indexed by J , and AJ denotes the submatrix ofA consisting
of columns indexed by J . A basis B for (2.1) is a subset ofE of cardinalitym containing f but not g, for
which AB is nonsingular. We will only be concerned with systems (2.1) that have at least one basis, and
will assume this for the rest of the paper. Giv en any basisB, we can transform (2.1) into thedictionary:

xB = − A−1
B AN xN = A xN , (2.2)

whereN = E − B is theco − basis, and A denotes−A−1
B AN . A is called thecoefficient matrix of the dic-

tionary, with rows indexed by B and columns indexed by N , so that A = (aij : i∈B, j ∈N). Notethat the
co-basis always contains the indexg.

-4-

A variablexi is primal feasible if i∈B − f andaig ≥ 0. A variable x j is dual feasible if j ∈N − g
anda fj ≤ 0. A dictionary isprimal feasible if xi is primal feasible for alli∈B − f anddual feasible if
x j is dual feasible for allj ∈N − g. A dictionary isoptimal if it is both primal and dual feasible.An opti-
mal dictionary is shown schematically in Figure 2.1.

g N − g

f O- O- O- O- O- O-
O+
O+

B − f O+ = A
O+
O+

Figure 2.1 : An Optimal Dictionary (O+ = non-negative entry, O− = non-positive entry)

A basic solution to (2.1) is obtained from a dictionary by settingxN−g = 0, xg = 1. If any basic variable
has value zero, we call the basic solution and corresponding dictionarydegenerate. In section 2 of the
paper we give an algorithm for enumerating all distinct basic solutions of the system (2.1) without repeti-
tion, using only the space required to store the input. The algorithm is initiated with an optimal dictionary.
A variant of the algorithm enumerates all primal feasible dictionaries reporting the corresponding basic
feasible solutions without repetition.

In the following subsections, weshow how the problems mentioned in the title can be transformed
into the problem of enumerating basic (feasible) solutions of a system of equations in the form (2.1).

2.1. Vertex enumeration in hyperplane arrangements

A hyperplane in Rd , d ≥ 0, is denoted by the pair (b, c), whereb is a vector of lengthd andc is a
scalar, and is the solution set of the equationby = c, y = (y j : j = 1, .. . , d). A hyperplane arrangement
is a collection ofn0 hyperplanes (bi, ci), for some integer n0. A vertex of the arrangement is the unique
solution to the system ofd equations corresponding tod intersecting hyperplanes. Thevertex enumera-
tion problem for hyperplane arrangements is to list all of the vertices of an arrangement. It is a simple
matter to find a vertex of an arrangement, or show that none exists, since vertices correspond to subsets of
d hyperplanes whose normal vectorsbi are linearly independent.We only consider arrangements that
contain at least one vertex.

We may assume by relabeling if necessary that the vectors{bn0−d+1, . . . , bn0
} are linearly indepen-

dent. Considerthe system of equations

xi = ci xn0+1 − bi y, i = 1, .. . , n0.

By assumption, the lastd equations are linearly independent, and so the variablesy1, . . . , yd can be
expressed in terms ofxn0−d+1, . . . , xn0

, and eliminated from the firstn0 − d equations. Thisresults in a
system of the form:

xB = AxN ,

for a suitable (n0 − d) ×(d + 1) matrix A, where B = {1, .. . , n0 − d} and N = {n0 − d + 1, .. . , n0 + 1}.
Furthermore, by a change of variables if necessary, we may assume that eachai,n0+1 is non-negative. We
augmentA by adding a row of of all -1 ’s. We augmentB by adding indexn0 + 2. Setting

-5-

f = n0 + 2, g = n0 + 1, m = n0 − d + 1, n = n0 + 2,

we have constructed an optimal dictionary. This dictionary is obtained from the following system which
has the form of (2.1):

IxB − AxN = 0, xg = 1. (2.3)

It is easy to show that for every co-basisN of (2.3), the set ofd hyperplanes indexed by N − g
intersect at some vertex of the arrangement. The vertex can be computed by setting

xi = aig i∈B − f , x j = 0 j ∈N − g

and solving fory , which was expressed in terms ofxn0−d+1, . . . , xn0
. Similarly every index set of d inter-

secting hyperplanes augmented by index f gives a co-basis for (2.3).We say that a vertex is degenerate
if it is contained in more thand hyperplanes. For such vertices, there may be many corresponding bases
of (2.3), each giving rise to a degenerate dictionary. An essential part of our enumeration algorithm will
be to only output a degenerate vertex once.

2.2. Vertex enumeration for Polyhedra

A (convex) polyhedronP is the solution set to a system ofn0 inequalities ind non-negative vari-
ables:

P = {y ∈Rd | A′y ≤ b, y ≥ 0}, (2.4)

whereA′ is ann0 × d matrix andb is an0-vector. A vertex of the polyhedron is a vectory∈P that satis-
fies a linearly independent set ofd of the inequalities as equations.The vertex enumeration problem for
P is to enumerate all of its vertices. In fact to find even a single vertex of P is computationally equivalent
to linear programming. As we wish to separate this from the enumeration problem, we will assume we
are given an initial vertex. By transforming the problem as necessary, we may assume that the origin is
the given vertex. This implies that the vectorb is non-negative. We also note that the assumption of non-
negative variables is not essential: a system of inequalities in unrestricted variables with known feasible
point can be transformed into a system such as (2.4) along the lines described in the previous subsection.

Let n = n0 + d + 2, f = n − 1, g = n, B = {1, .. . , n0, n − 1} and N = {n0 + 1, .. . , n0 + d, n}. Con-
sider the following system of equations in the form of (2.1):

1xN−g + x f = 0

IxB− f + A′xN−g − bxg = 0 (2.5)

xg = 1.

Here I is an identity matrix and1 is a vector of all ones, of appropriate dimensions. Setm = n0 + 1 and
let A be them×n matrix corresponding to the coefficients in the firstm equations of (2.5). Then (2.2) is
an optimal dictionary for the system (2.5).It can be shown that eachprimal feasible dictionary for (2.5)
has a basic solution which gives a vertexy of P: set y j = xn0+ j , j = 1, .. . , d. A vertex of P is degenerate
if it satisfies more thand inequalities of (2.4) as equations. Again, degenerate vertices correspond to
degenerate dictionaries. In order to enumerate all vertices ofP, it is sufficient to enumerate all primal fea-
sible dictionaries for (2.5), outputting a degenerate basic solution once only.

-6-

2.3. Facet enumeration of the convex hull of a set of points

Let Q = {q1, . . . , qn0
} denote a set ofn0 points inRd . A facet of the convex hull of Q is a hyper-

plane containingd affinely independent points ofQ. There is no loss of generality in assuming that the
origin is contained in the convex hull of Q. By employing a standard duality between points and hyper-
planes, we may transform this problem into a vertex enumeration problem for a convex polyhedron.

3. Enumeration of Dictionaries

Suppose we are given a system of equations of the form (2.1), for somem×n matrix A. The lin-
ear programming problem (LP) for (2.1) is to maximizex f over (2.1) subject to the additional con-
straint that each variable except x f and xg is non-negative. Each optimal dictionary is a solution toLP.
To begin with, we will assume that there is a unique optimal dictionary. A pivot (r, s) on a basisB, and
corresponding dictionaryxB = AxB, is an interchange of somer ∈B − f with some index s∈N − g giving
a new basisB′. The new coefficient matrixA′ = (a′

ij) is giv en by

a′
rs = −

1

ars
, a′

is =
ais

ars
, a′

rj =
arj

ars
, a′

ij = aij −
aisarj

ars
, (i∈B − r, j ∈N − s). (3.1)

The pivot is primal feasible (respectively, dual feasible) if both of the dictionaries corresponding toB
andB′ are primal (respectively, dual) feasible. The simplex method is a method of solvingLP by begin-
ning with an initial dictionary and pivoting until an optimal dictionary is found.We consider two rules
for choosing a pivot.

The first rule, known as Bland’s rule, performs primal feasible pivots. LetB be a basis such that the
dictionary (2.2) is primal feasible.

Bland’s Rule.

(1) Let s be the smallest index such thatxs is dual infeasible, that is,a fs > 0.

(2) Setλ = min{ −
aig

ais
: i∈B − f , ais < 0}. Let r be the smallest index obtaining this minimum.

The pivot (r, s) maintains the primal feasibility of the dictionary. If step (1) does not apply, the dictionary
is also dual feasible and hence optimal.

The second rule, known as the criss-cross rule, starts with any basis.

Criss-Cross Rule

(1) Let i ≠ f , g be the smallest index such thatxi is (primal or dual)infeasible.

(2) If i∈B, let r = i and lets be the minimum index such thatars > 0, otherwise lets = i and letr be
the minimum index such thatars < 0.

The criss-cross pivot (r, s) interchangesxr and xs, and may not preserve either primal or dual feasibility.
If step (1) does not apply then the dictionary is optimal.

The validity of these rules is given by the following proposition.Part (a) is proved in[1] and part
(b) in[15] for linear programs, and in[16] [18] in the more general setting of oriented matroids.A simple
proof of part (b) also appears in [9].

Proposition 3.1. Let (2.1) be a system that admits an optimal dictionary and letB be any basis.
(a) If B is primal feasible, then successive application of Bland’s rule leads to an optimal dictionary, and
each basis generated is primal feasible.
(b) Successive application of the criss-cross rule starting with basisB leads to an optimal dictionary.

-7-

3.1. Unique Optimal Dictionaries

In this subsection we give a dictionary enumeration algorithm for systems (2.1) that admit a unique
optimal dictionary. Consider a graph where vertices are dictionaries and two vertices are adjacent if the
corresponding two dictionaries differ in only one basic variable. Thenpart (b) of the proposition tells us
that there is a unique path consisting of criss-cross pivots from any dictionary to the optimal dictionary.
The set of all such paths gives us a spanning tree in this graph. Consider a non-optimal dictionaryD with
basisB. Let (r, s), r ∈B − f , s∈N − g, be the pivot obtained by applying the criss-cross rule toD giving a
dictionaryD′. We call (s, r) a reverse criss − cross pivot for D′. Suppose we start at the optimal dictio-
nary and explore reverse criss-cross pivots in lexicographic order. This corresponds to a depth first search
of the spanning tree defined above. When moving down the tree, each dictionary is encountered exactly
once.

A similar analysis applies to part (a) of the proposition. We form a similar graph, except that ver-
tices are just the primal feasible dictionaries.We define areverse Bland pivot in the analogous way. A
depth first search of this graph provides all primal feasible dictionaries.

Our enumeration algorithmsearch for dictionaries is given in Figure 3.1. For a given system (2.1)
we have an initial basisB = {1, .. . , m}, co-basisN = {m + 1, .. . , n} and optimal dictionaryxB = AxN .
We further assume thatf = 1, g = n, and thatm andn are global constants. The efficiency of the proce-
dure depends greatly on the procedurereverse. The simplest way to check if (r, s), r ∈B − f , s∈N − g, is
a rev erse pivot is to actually perform the pivot, then use procedureselect − pivot on the new dictionary. If
this produces the same pair of variables, then (r, s) is a valid reverse pivot. Since a pivot inv olvesO(mn)
operations, a faster method is desirable. In fact to determine the pivot by the criss-cross or Bland’s rules,
the entire dictionary is not required by procedureselect − pivot. To test whetherA arises from a coeffi-
cient matrixA′ by a criss-cross (resp., Bland) pivot interchangingB[i] with N [j], it is only necessary to
examine rows f , i and columnsj, g of A′. These can be computed fromA in O(m + n) time, and
checked to see if (B[i], N [j]) is a criss-cross (resp., Bland) pivot. Further savings are possible, as certain
potential reverse pivots can be eliminated without any piv oting. For the criss-cross rule we have the fol-
lowing necessary condition for a reverse pivot.

Proposition 3.2 If (s, r), s∈B − f and r ∈N − g, is a valid reverse criss-cross pivot for a dictionary
xB = AxN , then either

(a) asg > 0, asr > 0, asj ≥ 0 for j ∈N − g, j < s, or

(b) a fr < 0, asr < 0, air ≤ 0 for i∈B − f , i < r.

Proof: Let A′ = (a′ij), with basisB′ and co-basisN ′, be a dictionary that yieldsA after the valid cross
pivot (r, s), with r ∈B′ − f , and s∈N ′ − g. One of the indicesr, s must be the smallest infeasible index in
A′. Suppose first that it isr. By the criss-cross rule we must therefore have a′rg < 0, a′rs > 0, and a′rj ≤ 0
for all j ∈N ′ − g, j < s. Now applying the pivot formula (3.1) to the pivot row of A′ we obtain the signs
indicated in part (a) of the proposition inA. A similar analysis applies to the case wheres is the smallest
infeasible index in A′, giving the sign pattern of part (b) of the proposition.

For rev ersing Bland’s rule, we can exploit the fact that the reverse pivot must maintain primal feasi-
bility.

Proposition 3.3 Let xB = AxN be a dictionary, let r ∈N − g and setλ = min{ −
aig

air
: i∈B − f , air < 0}.

If (s, r), s∈B − f , is a valid reverse Bland’s rule pivot thens must be an index that obtains this minimum.

Proof: Under the conditions of the proposition, ifs is not an index realizing the minimum, then the dic-
tionary obtained after the pivot (s, r) is not primal feasible. In the next section, we see how this simple
observation reduces the complexity ofsearch in non-degenerate situations.

The procedurelex − min is used to ensure that each basic solution is output exactly once, when the
lexicographically minimum basis for that basic solution is reached. The correctness of the procedure is

-8-

__

procedure search (B, N , A);
/* B = {1, .. . , m}, N = {m + 1, .. . , n}, f = 1, g = n, xB = AxN is a unique optimal dictionary for a sys-
tem (2.1) */

begin
i: = 2; j: = 1;
repeat

while (i ≤ m and not reverse (B, N , A, i, j)) increment (i, j);
if (i ≤ m) then /* reverse pivot found */

begin
pivot (B, N , A, i, j);
if lex-min (B, N , A) then print (B);
i: = 2; j: = 1;

end;
else /* go back to previous dictionary */

begin
select-pivot (A, i, j);
pivot (B, N , A, i, j);
increment (i, j);

end;
until (i > m and B[m] = m)

end; /* search */

function reverse (B, N , A, i, j):boolean;
/* true if (s, r), with s = B[i], r = N [j], is a valid reverse cross-pivot (resp., Bland-pivot) for A, other-
wisefalse */

procedure pivot (B, N , A, i, j);
/* pivot A on row i and columnj, updateB andN . Reorder as necessary and seti and j to be the indices
of the interchangedB[i] and N [j]. */

function lex-min (B, N , A):boolean;
/* true if A is non-degenerate, or degenerate andB is the lexicographically minimum basis for this basic
solution, elsefalse */

procedure select-pivot (A, i, j);
/* Find criss-cross (resp., Bland) pivot for coefficient matrixA. Return the index i of the pivot row and
index j of the pivot column*/

procedure increment (i, j);
begin

j: = j + 1; if (j = n − m) then begin j: = 1; i: = i + 1; end;
end; /* i ncrement */

Figure 3.1

__

-9-

based on the following proposition.

Proposition 3.4 Let B be a basis for a degenerate dictionaryxB = AxN . B is not lexicographically mini-
mum for the corresponding basic solution if and only if there exists r ∈B − f and s∈N − g such that
r > s, arg = 0 and ars ≠ 0.

Proof: For the sufficiency of the condition, letr and s have the above properties. LetB′ = B − r + s.
Sincears ≠ 0, B′ is a basis, and it is lexicographically smaller thanB.

On the other hand, supposeB′ is a basis lexicographically smaller thanB with the same basic solu-
tion. Let s be the smallest index in B′ but not in B. Since both bases have the same basic solution,asg = 0.
If we augmentB by s, there must exist some index r such thatB = B − r + s is a basis. Now r > s for
otherwiser ∈B and there is a linear dependence. Alsoars ≠ 0, otherwiseB would not be a basis.Finally
sinceasg = 0, we have arg = 0 and B has the same basic solution asB.

3.2. Degenerate Optimal Dictionaries

Proceduresearch as given in the previous subsection will only generate all (feasible) dictionaries if
the system (2.1) has a unique optimal dictionary. Suppose there are many optimal dictionaries. This situ-
ation arises when one of the basic variables has value zero, ie. the dictionary is degenerate. Then instead
of a spanning tree in the graph described after Proposition 3.1, we obtain a spanning forest. Each of the
two piv ot algorithms terminates when any optimal solution is found. Therefore, proceduresearch must be
applied to each optimal dictionary. Fortunately, from any optimal dictionary we can generate all optimal
dictionaries by a procedure very similar to search. We can and will assume that there is a unique optimal
basic solution. This corresponds to the condition that all of the coefficientsa fj , j ∈N − g are non-zero in
the optimal dictionary. We are free to assume this since in our applications we are free to choose this row,
which corresponds to the "objective function" of the linear program.

Let xB = AxN be a degenerate optimal dictionary. Let B′⊆ B denote the indices of the variables
with value zero in the corresponding basic solution and the index f . We augmentA by a column with
index g′ = n + 1, consisting of all ones. This column temporarily replaces columng. Let
N ′ = N − g + g′. This augmented dictionary is shown schematically in Figure 3.2.

g′ g N ′ − g′

f − − − − − −
+ 0

B′ − f + 0
+ 0

= A
+ +

B − B′ − f + +
+ +

Figure 3.2 : An Augmented Degenerate Optimal Dictionary

We now consider the sub-dictionary consisting of rows indexed by B′ and columns byN ′. This is a non-
degenerate optimum dictionary. To obtain all optimal dictionaries for the original problem, we apply a
variant of procedure search to the sub-dictionary using a dual form of Bland’s rule in procedures reverse
and lex-min. This form takes any dual feasible dictionary and gives a dual feasible pivot.

Dual Bland’s Rule

(1) Letr ∈B′ − f be the smallest index that is primal infeasible, that isarg′ < 0.

-10-

(2) Setλ = min{ −
a fj

arj
: j ∈N ′ − g′, arj > 0}. Let r be the smallest index attaining this minimum.

The pivot (r, s) maintains the dual feasibility of the dictionary. If step (1) does not apply, the dictionary is
optimal. Proposition 3.1(a) applies with "primal" replaced by "dual".

We initiate the procedure search on the augmented dictionary with basisB′ and co-basisN ′.
Although only rows indexed by B′ are considered for pivots, we manipulate the entire coefficient matrix
A in procedure pivot, and update the vectorsB andN . Now each reverse pivot found by search applied to
the modified problem yields a new optimal dictionary for the original problem. After the call to procedure
pivot in search, we now insert a call to the original procedure search, with the dictionaryA and the
updated vectorsB andN .

The validity of this approach is based on the following observations. Again let xB = AxN be a
degenerate optimal dictionary for a system (2.1) with a unique optimum basic solution. LetB′ and N ′ be
defined as above. Each optimal basis for (2.1) contains the indicesB − B′ augmented by a linearly inde-
pendent set fromN − g + B′. Such bases will always be primal feasible forA, if they are also dual feasi-
ble then they correspond to an optimal dictionary for the original system.Using the dual form of Bland’s
rule, this latter condition is always satisfied. Since the modified problem is has a unique optimal dictio-
nary, each dual feasible dictionary for the modified problem must be connected by a unique path by dual
Bland pivots to this optimum dictionary. Rev ersing the pivots allows us to visit each optimal dictionary
for the original problem.

4. Complexity

In this section we discuss the complexity of the dictionary enumeration algorithm, and apply the
results to the geometric applications described in Section 2. Suppose we have a system (2.1) for some
m×n matrix A. Let f (A) denote the number of dictionaries that can represent (2.1).f (A) is just the num-
ber of linearly independent subsets ofm columns ofA, with the condition that the column with index f is

always included, and index g is always excluded. Thisis at most

n − 2

m − 1

, but may be much smaller. For

each dictionary, we may evaluate (m − 1)(n − m − 2) candidates for reverse pivots, each candidate requir-
ing O(m + n) time as shown in the previous section. Procedurepivot requiresO(m(n − m)) time per
execution as does procedurelex − min. These complexities are valid for the case of multiple optimal
solutions. Therefore the overall time-complexity ofsearch is

O((m + n) m (n − m) f (A)) = O((m + n) m n

n − 2

m − 1

). (4.1)

Apart from a few indices, no additional space is required other than that required to represent the input.

We now consider the complexity of evaluating all feasible dictionaries. Letg(A) denote the number
of primal feasible dictionaries representing (2.1). The above analysis and (4.1) hold, withg(A) replacing
f (A). In the non-degenerate case we can do better. Recalling Proposition 3.3, we see that we only need to
consider one candidate reverse pivot per column of the dictionary: if there are two or more indices realiz-
ing the minimum then a pivot would give a degenerate dictionary. For each column, the candidate basic
variable can be found by computing the minimum ratioλ in O(m) time. To check if a candidate is in fact
a rev erse pivot, we need to construct the objective row of the dictionary after the pivot, takingO(n − m)
time. Therefore since there aren − m − 2 candidate columns, all reverse Bland pivots from the given dic-
tionary can be found inO((n − m)n) time, in the non-degenerate case. This gives an overall complexity of
O((n − m)ng(A)) for the non-degenerate case.

We now return to the geometric problems mentioned in Section 2. Suppose we have a collection of
n0 hyperplanes inRd . For this problem,m = n0 − d + 1 and n = n0 + 2. The time-complexity of enumerat-
ing all vertices of a hyperplane arrangement by this method becomes:

-11-

O(n2
0 d f (A)) = O(n2

0 d

n0

d

).

In the case of non-degenerate arrangements,f (A) is the number of the vertices, ie. the size of the output.
This method should be particularly useful for non-degenerate arrangements with few vertices.

Consider now the enumeration of the vertices of a polyhedron given by a list of n0 inequalities ind
variables. Sincewe assume the polyhedron has at least one vertex, n0 ≥ d. We hav e m = n0 + 1 and
n = n0 + d + 2. Thetime-complexity of enumerating all of the vertices is

O(n2
0d g(A)) = O(n2

0 d

n0

d

).

Again the complexity is output sensitive for non-degenerate polyhedra, for whichg(A) is just the number
of vertices. Ifthe polyhedron is simple (ie. all dictionaries are non-degenerate) then we get an improved
complexity bound. The algorithm produces vertices at a cost ofO(n0 d) per vertex with no repetitions
and no additional space.

The complexities in the previous paragraph apply to the convex hull problem, wheren0 is the num-
ber of input points. In the non-degenerate case where no more thand points lie on any facet (ie., the
facets are simplicial), we can enumerate thev facets in timeO(n0dv) and spaceO(n0d).

5. Example

In this section we give an example of the operation of proceduresearch for the vertex enumeration
of the set ofn0 = 5 lines shown in Figure 5.1. This arrangement is generated by the coefficients:

b1 = (1, 3), b2 = (5, 1), b3 = (3, 2), b4 = (−1, − 3), b5 = (−2, 1),

c1 = 4, c2 = 5, c3 = 2, c4 = 1, c5 = 2.

Proceeding as described in Section 2.1, we add variablesx1, . . . , x5 obtaining the system:

x1 = 4 − y1 − 3y2

x2 = 5 − 5y1 − y2

x3 = 2 − 3y1 − 2y2

x4 = 1 + y1 + 3y2

x5 = 2 + 2y1 − y2

Since the last two equations are linearly independent, we may solve for y1 and y2 in terms ofx4 and x5,
getting:

y1 = − 1 +
x4

7
+ 3

x5

7

y2 = 2
x4

7
−

x5

7
.

Eliminating variablesy1, y2 from the first three equations we obtain the system:

-12-

x1 = 5 − x4

x2 = 10 − x4 − 2x5

x3 = 5 − x4 − x5

These are plotted withx4, x5 as axes in Figure 5.2. Adding the special verticesx f and xg and the addi-
tional row representing the "objective function", we obtain our initial optimal dictionary:

x1 = 5xg − x4

x2 = 10xg − x4 − 2x5 (5.1)

x3 = 5xg − x4 − x5

x f = − x4 − x5

Starting at this dictionary we consider in turn each of the candidate reverse pivots: (1,4), (2,4),
(2,5), (3,4), (3,5). The candidate pivot (1,4) yields the dictionary:

x2 = 5xg + x1 − 2x5

x3 = x1 − x5 (5.2)

x4 = 5xg − x1

x f = − 5xg + x1 − x5

Checking this dictionary, we discover that the criss-cross rule does generate the pivot (4,1), so we con-
tinue from this dictionary. Note that in determining this, we do not need the entire dictionary. In this
example we need only the column of coefficients forx1. The possible candidates are: (2,1), (2,5), (3,1),
(3,5), (4,1).We start with (2,1), which leads to the dictionary:

x1 = − 5xg + x2 + 2x5

x3 = − 5xg + x2 + x5 (5.3)

x4 = 10xg − x2 − 2x5

x f = − 10xg + x2 + x5

Again the criss-cross rule applied to this dictionary generates the required pivot (1,2). In this case we need
only check the coefficients ofxg andx2 in the row for x1.

Continuing from this dictionary, the first candidate pivot is (1,2). This leads us back to (5.2), for
which the criss-cross rule generates the pivot (4,1) which is not the same. Therefore (1,2) is not a valid
reverse pivot from (5.3). Next we try the pivot (1,5) on dictionary (5.3). This gives the dictionary:

-13-

x3 = −
5

2
xg +

x1

2
+

x2

2

x4 = 5xg − x1

x5 =
5

2
xg +

x1

2
−

x2

2

x f = −
15

2
xg +

x1

2
+

x2

2

The criss-cross rule applied to this dictionary yields the pivot (4,1), so (1,5) is not a reverse pivot. Contin-
uing in this way we discover that no dictionaries lead to (5.3) by the criss-cross rule. We therefore back-
track to the parent dictionary of (5.3), which we do by performing the criss-cross pivot (1,2) leading back
to (5.2). Note that no storage is required to determine the parent of a dictionary.

In Figure 5.3 we show the complete tree enumerating all dictionaries from (5.3). Due to degener-
acy in the original arrangement, the same vertex in the arrangement may occur as different dictionaries in
the tree. Dictionaries with bases {1,2,4}, {2,3,4}, {2,4,5} correspond to one vertex. We output this vertex
when its lexicographically minimum basis {1,2,4} is reached.

6. Concluding Remarks

We hav epresented a new algorithm that can be used to solve three important geometric enumera-
tion problems without additional space. The simplicity of the algorithm rends it suitable for symbolic
computation in a language such asMaple or Mathematica. Using exact arithmetic, the problem of numer-
ical accuracy which occurs with most geometric algorithms is avoided. Another feature of the algorithm is
that it is easy to efficiently parallelize. Since in the enumeration no dictionary is ever reached by two dif-
ferent paths and no additional storage is required, subproblems can be scheduled arbitrarily onto free pro-
cessors.

The "reverse pivoting" approach can be extended to the setting of oriented matroids, and in particu-
lar to pseudo line arrangements.While the criss-cross method works correctly in the setting of oriented
matroids, Bland’s rule is not finite for oriented matroid programming [8].Todd[17] has found a finite rule
that can replace Bland’s rule in the oriented matroid setting.

The complexity analysis presented in this paper is quite rudimentary. We allow a worst case time
of O(m + n) to determine whether a pair of indices is a reverse pivot. This seems certain to be an overesti-
mate. For theith basic variable to interchange with thejth non-basic variable, at leasti + j signs have to
be "correct". We may compute these signs consecutively and stop the first time an "incorrect" sign is
encountered. Amortizing this cost over the complete enumeration of an arrangement, it is possible that
just a constant amount of work has to be done on the average to determine that a potential reverse pivot is
invalid.

7. Acknowledgements

The work of the first author was performed while visiting the laboratory of Professor Masakazu
Kojima of Tokyo Institute of Technology, supported by the JSPS/NSERC bilateral exchange program.

References

1. R.G. Bland, “A Combinatorial Abstraction of Linear Programming,” J. Combin. Theory B 23, pp.
33-57 (1977).

-14-

2. D.R.Chand and S.S. Kapur, “An Algorithm for Convex Polytopes,”J. ACM 17, pp. 78-86 (1970).

3. V. Chv ́atal,Linear Programming, W.H. Freeman (1983).

4. M.E. Dyer, “The Complexity of Vertex Enumeration Methods,” Math. Oper. Res. 8, pp. 381-402
(1983).

5. H. Edelsbrunner, J. O’Rourke, and R. Seidel, “Constructing Arrangements of Lines and Hyper-
planes with Applications,”SIAM J. Computer Science, pp. 341-363 (1986).

6. H.Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag (1987).

7. H. Edelsbrunner and L. Guibas, “Topologically Sweeping an Arrangement,” J. Comp. Syst. Sci-
ences 38, pp. 165-194 (1989).

8. K. Fukuda, “Oriented Matroid Programming,”Ph.D. Thesis, University of Waterloo (1982).

9. K. Fukuda and T. Matsui, “On the Finiteness of the Criss-Cross Method,” European J. O.R. 52, pp.
119-124 (1991).

10. M. E. Houle, H. Imai, K. Imai, J-M. Robert, and P. Yamamoto, “Orthogonal Weighted LinearL1

andLinfinity Approximation and Applications,”manuscript (September 1990).

11. T.H. Matheiss and D. S. Rubin, “A Survey and Comparison of Methods for Finding all Vertices of
Convex Polyhedral Sets,”Math. Oper. Res. 5, pp. 167-185 (1980).

12. T.S. Motzkin, H. Raiffa, G.L. Thompson, and R. M. Thrall, “The Double Description Method,”
Annals of Math. Studies 8, pp. 51-73, Princeton University Press (1953).

13. R.Seidel, “Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face,” Proc.
1986 S.T.O.C., pp. 404-413.

14. R.Seidel, “A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions,” Report 81-14,
University of British Columbia, Dept. of Computer Science (1981).

15. T. Terlaky, “A Convergent Criss-Cross Method,” Math. Oper. und Stat. ser. Optimization 16, pp.
683-690 (1985).

16. T. Terlaky, “A Finite Criss-Cross Method for Oriented Matroids,” J. Combin. Theory B 42, pp.
319-327 (1987).

17. M. Todd, “Linear and Quadratic Programming in Oriented Matroids,” J. Comb. Theory B 39, pp.
105-133 (1985).

18. Z.Wang, “A Conformal Elimination Free Algorithm for Oriented Matroid Programming,” Chinese
Annals of Mathematics 8,B,1 (1987).

