On the Fractional Chromatic Index of a Graph and its Complement

David Avis,¹ Caterina De Simone² and Bruce Reed¹

School of Computer Science, McGill University, 3480 University Street, Montreal, Canada, H3A2A7.¹

Istituto di Analisi dei Sistemi ed Informatica (IASI), CNR, Viale Manzoni 30, 00185 Rome, Italy.²

24 September 2004

ABSTRACT

The *chromatic index* $\chi_e(G)$ of an undirected graph G is the minimum number of matchings needed to partition its edge set. Let $\Delta(G)$ denote the maximum vertex degree of G, and let \overline{G} denote the complement of G. Jensen and Toft conjectured that for a graph G with an even number of vertices, either $\chi_e(G) = \Delta(G)$ or $\chi_e(\overline{G}) = \Delta(\overline{G})$. We prove a fractional version of this conjecture.

1. The Introduction

The *chromatic index* $\chi_e(G)$ of a graph G = (V(G), E(G)) is the minimum number of matchings needed to partition its edge set (for the definition of matching and other standard terms in graph theory, see Bondy and Murty[1]). Since all the edges incident to a vertex must be in different matchings, we know that $\chi_e(G)$ is at least the maximum degree of G, which we denote by $\Delta(G)$. In fact Vizing[5] proved that $\chi_e(G)$ is at most $\Delta(G) + 1$, whilst Holyer[3] proved it is NP-complete to determine if $\chi_e(G)$ is $\Delta(G)$. If H is a subgraph of G with 2t + 1 vertices, then we need at least $\lceil |E(H)| / t \rceil$ matchings to cover E(H). Thus if $|E(H)| > t \Delta(G)$, then H and hence G have chromatic index $\Delta(G) + 1$. A subgraph H of G is called *overfull* if it has an odd number of vertices and

$$|E(H)| > \Delta(G) \ \frac{|V(H)| - 1}{2.}$$
 (1)

If *G* is a regular graph with an odd number of vertices then *G* is overfull, and its complement, \overline{G} , being regular, is also overfull. Thus for such graphs $\chi_e(G) = \Delta(G) + 1$ and $\chi_e(\overline{G}) = \Delta(\overline{G}) + 1$. In [4], Jensen and Toft conjectured that this could not happen for graphs with an even number of vertices. They conjectured that if *G* has an even number of vertices then either $\chi_e(G) = \Delta(G)$ or $\chi_e(\overline{G}) = \Delta(\overline{G})$. As evidence in support of this conjecture, we show that it is true for fractional edge colourings.

A fractional edge colouring of G is a non-negative weighting w(.) of the set $\mathbf{M}(G)$ of matchings in G so that for every edge $e \in E(G)$,

$$\sum_{M:e\in M} w(M) = 1.$$

The weight α of this colouring is defined by

$$\alpha = \sum_{M \in \mathbf{M}(G)} w(M),$$

and in this case we say that G has a fractional α -edge colouring.

The fractional chromatic index, $\chi_e^f(G)$, of G is the minimum α for which G has a fractional α -edge colouring. By dividing the weight function by α , we see that G has a fractional α -edge colouring if and only if the vector $(1/\alpha, \ldots, 1/\alpha) \in R^{|E(G)|}$ is a convex combination of incidence vectors of matchings of G. It follows from Edmonds' characterization of the matching polytope[2] that $\chi_e^f(G)$ can be computed in polynomial time, and that in fact

$$\chi_e^f(G) = \max\left\{\Delta(G), \max_{H \subseteq G, H \text{ overfull}} \frac{2 \mid E(H) \mid}{|V(H)| - 1}\right\}.$$

We will use the corollary that if $\chi_e^f(G) > \Delta(G)$ then G must contain an overfull subgraph. We may now state our result.

The Theorem. Let *G* be a graph such that $\chi_e^f(G) > \Delta(G)$ and $\chi_e^f(\overline{G}) > \Delta(\overline{G})$, then either *G* or \overline{G} is overfull.

Since overfull subgraphs have an odd number of vertices, this yields:

The Corollary If *G* has an even number of vertices then either $\chi_e^f(G) = \Delta(G)$ or $\chi_e^f(\overline{G}) = \Delta(\overline{G})$.

2. The Proof.

Arguing by contradiction, we suppose there is a graph *G* such that neither *G* nor its complement is overfull, yet $\chi_e^f(G) > \Delta(G)$ and $\chi_e^f(\overline{G}) > \Delta(\overline{G})$. We may choose an overfull subgraph *H* of *G* and an overfull subgraph *F* of \overline{G} . To simplify the exposition, in what follows we let *G*, *F* and *H* also stand for their vertex sets where no confusion arises. Since the sum of the degrees of all vertices of a graph is twice the number of its edges, letting $d_H(v)$ be the degree of a vertex *v* in *H*, we see that (1) is equivalent to

$$\sum_{v \in H} (\Delta(G) - d_H(v)) \le \Delta(G) - 1.$$
⁽²⁾

and implies that

$$|H| \ge \Delta(G) + 1 \text{ and } |F| \ge \Delta(G) + 1.$$
 (3)

We call $def_G(v) = \Delta(G) - d_G(v)$ the *deficiency*, of a vertex v in G, and let $E_G(A, B)$ be the set of edges in G with one endpoint in $A \subseteq V$ and one endpoint in $B \subseteq V$. With these definitions and using (2) and (3) we have

$$\sum_{v \in H} def_G(v) + |E_G(H, G - H)| \le \Delta(G) - 1 \le |H| - 2.$$
(4)

Similarly, in the complement \overline{G} , we have

$$\sum_{v \in F} def_{\bar{G}}(v) + |E_{\bar{G}}(F, \bar{G} - F)| \le \Delta(\bar{G}) - 1 \le |F| - 2.$$
(5)

The subgraphs H and F naturally partition the vertices of G into four parts with cardinalities a, b, c, d, as defined by

$$a = |H \cap F|, \quad b = |H - F|, \quad c = |F - H|, \text{ and } d = |G - F - H|.$$

This partition is illustrated in Table 1. Let n = |V(G)|.

Table 1: Partition of G into four subsets

We note that if $v \in F - H$ and $w \in H - F$ then vw is either an edge of $E_G(H, G - H)$ or of $E_{\overline{G}}(F, G - F)$. The same statement holds when $v \in F \cap H$ and $w \in G - F - H$. This implies the inequality

$$ad + bc \le |E_{\bar{G}}(H, G - H)| + |E_{\bar{G}}(F, G - F)|.$$
(6)

For every vertex v of G we have $d_G(v) + d_{\bar{G}}(v) = n - 1$ and so $\Delta(G) + \Delta(\bar{G}) \ge n - 1$. Hence we can define the nonnegative integer k by

$$k = \Delta(G) + \Delta(G) - n + 1. \tag{7}$$

We also have that for all *v*,

$$k = def_G(v) + def_{\bar{G}}(v) \tag{8}$$

and so

$$\sum_{v \in H} def_G(v) + \sum_{v \in F} def_{\bar{G}}(v) \ge \sum_{v \in H \cap F} (def_G(v) + def_{\bar{G}}(v)) = ak.$$
(9)

Combining the inequalities (4)-(9) we obtain the key inequality:

$$bc + a(d+k) \leq \Delta(G) + \Delta(\bar{G}) - 2 = n+k-3.$$
(10)

Manipulating this inequality will give the desired result. By (3)

$$2a + b + c \ge \Delta(G) + \Delta(G) + 2$$

Combining with (10) we have

$$bc + a(d+k) \le 2a + b + c - 4 \tag{11}$$

Now if $b, c \ge 1$ then $bc \ge b + c - 1$. If in addition $d + k \ge 2$ then

$$bc + a(d+k) \ge b + c - 1 + 2a > 2a + b + c - 4$$

a contradiction.

The remaining cases to consider are when either b = 0 or c = 0 or $0 \le d + k \le 1$. We will need the following two observations.

Observation 1: $|H|, |F| \le |G| - 2.$

Proof: We know by hypothesis that $|H| \neq |G|$. Suppose |H| = |G| - 1. Let *w* be the vertex of G - H. From (4) we have

$$d_G(w) = |E(H, G - H)| \le \Delta(G) - 1 - \sum_{v \in H} def_G(v).$$

In fact $d_G(w) \leq \Delta(G) - 2$. This follows immediately if $def_G(v) \geq 1$ for some $v \in H$. Otherwise every vertex of H has degree $\Delta(G)$. Since the total degree of G must be even and |H| is odd, $d_G(w)$ must have the same parity as $\Delta(G)$ and again $d_G(w) \leq \Delta(G) - 2$. On the other hand, $d_{\bar{G}}(w) \leq \Delta(\bar{G})$, which combined with (7) and (8) gives

$$k \ge \Delta(G) + d_{\bar{G}}(w) - n + 1 = \Delta(G) - d_G(w) \ge 2.$$

This also implies that $d_G(w) \ge \Delta(G) - k$. Since $F \cap H = F - w$,

$$\sum_{v \in F \cap H} (def_{\bar{G}}(v) + def_{G}(v)) + |E(H, G - H)| \ge k(|F| - 1) + \Delta(G) - k$$
$$= k|F| + \Delta(G) - 2k \ge \Delta(\bar{G}) + 1 + \Delta(G) - 2k + (k - 1)|F|,$$

where we used (3) to get the last inequality. Since F is overfull, $|F| \ge 3$ and we have

$$\sum_{v \in F \cap H} (def_{\bar{G}}(v) + def_{\bar{G}}(v)) + |E(H, G - H)| \ge \Delta(G) + \Delta(\bar{G}) + k - 2 \ge \Delta(G) + \Delta(\bar{G}).$$

By combining (4) and (5), we see that this cannot happen, giving the desired contradiction. By replacing *G* by its complement, we obtain $F \le |G| - 2$. \Box

Observation 2: $\min(\Delta(G), \Delta(\overline{G})) \ge n/2 - 1$.

Proof: We assume that $\Delta(\bar{G}) \le n/2 - 3/2$ and derive a contradiction. Since $\Delta(G) + \Delta(\bar{G}) \ge n - 1$ it follows that $\Delta(G) \ge n/2 + 1/2$ and hence $|H| \ge n/2 + 3/2$, while $|G - H| \le n/2 - 3/2$. Furthermore every vertex of *G* must have degree at least n/2 + 1/2 and so

$$|E(H, G - H)| \ge |G - H|(n/2 + 1/2 - (|G - H| - 1)) = |G - H|(n/2 + 3/2 - |G - H|).$$

When |G - H| = 2 this value is n - 1 and when |G - H| = n/2 - 3/2 it is 3n/2 - 9/2. By Observation 1, we have $|H| \le n - 2$, i.e. $|G - H| \ge 2$, and so

$$|E(H, G - H)| \ge \min(n - 1, 3n/2 - 9/2) \ge n - 3 \ge |H| - 1$$

which violates (4). \Box

We now return to our manipulation of (10) for the cases when b = 0 or c = 0 or $0 \le d + k \le 1$. First assume that b = 0 and so $H \subseteq F$. By Observation 2 and (3) we have

$$a = |F \cap H| = |H| \ge \Delta(G) + 1 \ge n/2,$$

and so $a \ge b + c + d$. If $d + k \ge 3$ then $a(d + k) \ge 3a \ge 2a + b + c + d$ contradicting (11). If d + k = 2 then $a(d + k) = 2a \ge a + b + c + d = n$ contradicting (10). Similarly we obtain contradictions if c = 0 and $d + k \ge 2$.

It remains to settle the cases where d + k = 0 or 1. If d = 0 then neither *b* nor *c* can be zero (or else either *G* or \overline{G} is overfull), and so $bc \ge b + c - 1$. Hence if d = 0 and k = 1 then

$$bc + a(d + k) \ge a + b + c + d - 1 = n - 1$$

again contradicting (10).

If k = 0 then by (8) *G* is $\Delta(G)$ -regular and \overline{G} is $\Delta(\overline{G})$ -regular. Since regular graphs with an odd number of vertices are overfull, this means that *n* is even. We have by (7) that $\Delta(G) + \Delta(\overline{G}) = n - 1$, and so can assume that $\Delta(G) \ge n/2$. Hence by (3) we have that $|H| \ge n/2 + 1$ and so $|G - H| \le n/2 - 1$. On the other hand, Observation 1 gives $|G - H| \ge 2$, thus

$$|E_G(H, G - H)| \ge |G - H|(n/2 - (|G - H| - 1)) \ge n - 2,$$
(12)

where the last inequality is obtained by checking the two extremal values of |G - H|. Combining (4) and (12) gives the required contradiction and completes the proof of the theorem. \Box

References

- 1. A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, American Elsevier (1976).
- 2. J. Edmonds, "Maximum Matching and a Polyhedron with 0,1-Vertices," J. of Research of the National Bureau of Standards (B), 69, pp. 125-130 (1965).
- 3. I. Hoyler, "The NP-Completeness of Some Edge-Partition Problems," *SIAM J. Computing*, 10, pp. 713-717 (1981).
- 4. T.R. Jensen and B. Toft, *Graph Coloring Problems*, Wiley, New York (1995).
- 5. V.G. Vizing, "On an Estimate of the Chromatic Class of a *p*-graph (in Russian)," *Diskret Analiz.*, 3, pp. 25-30 (1964).