On the Fractional Chromatic Index of a Graph and its Complement

David Avis, ${ }^{1}$ Caterina De Simone ${ }^{2}$ and Bruce Reed ${ }^{1}$
School of Computer Science, McGill University, 3480 University Street, Montreal, Canada, H3A2A7. ${ }^{1}$
Istituto di Analisi dei Sistemi ed Informatica (IASI), CNR, Viale Manzoni 30, 00185 Rome, Italy. ${ }^{2}$

24 September 2004

Abstract

The chromatic index $\chi_{e}(G)$ of an undirected graph G is the minimum number of matchings needed to partition its edge set. Let $\Delta(G)$ denote the maximum vertex degree of G, and let \bar{G} denote the complement of G. Jensen and Toft conjectured that for a graph G with an even number of vertices, either $\chi_{e}(G)=\Delta(G)$ or $\chi_{e}(\bar{G})=\Delta(\bar{G})$. We prove a fractional version of this conjecture.

1. The Introduction

The chromatic index $\chi_{e}(G)$ of a graph $G=(V(G), E(G))$ is the minimum number of matchings needed to partition its edge set (for the definition of matching and other standard terms in graph theory, see Bondy and Murty[1]). Since all the edges incident to a vertex must be in different matchings, we know that $\chi_{e}(G)$ is at least the maximum degree of G, which we denote by $\Delta(G)$. In fact Vizing[5] proved that $\chi_{e}(G)$ is at most $\Delta(G)+1$, whilst Holyer[3] proved it is NP-complete to determine if $\chi_{e}(G)$ is $\Delta(G)$. If H is a subgraph of G with $2 t+1$ vertices, then we need at least $\lceil|E(H)| / t\rceil$ matchings to cover $E(H)$. Thus if $|E(H)|>t \Delta(G)$, then H and hence G have chromatic index $\Delta(G)+1$. A subgraph H of G is called overfull if it has an odd number of vertices and

$$
\begin{equation*}
|E(H)|>\Delta(G) \frac{|V(H)|-1}{2 .} \tag{1}
\end{equation*}
$$

If G is a regular graph with an odd number of vertices then G is overfull, and its complement, \bar{G}, being regular, is also overfull. Thus for such graphs $\chi_{e}(G)=\Delta(G)+1$ and $\chi_{e}(\bar{G})=\Delta(\bar{G})+1$. In [4], Jensen and Toft conjectured that this could not happen for graphs with an even number of vertices. They conjectured that if G has an even number of vertices then either $\chi_{e}(G)=\Delta(G)$ or $\chi_{e}(\bar{G})=\Delta(\bar{G})$. As evidence in support of this conjecture, we show that it is true
for fractional edge colourings.
A fractional edge colouring of G is a non-negative weighting $w($.$) of the set \mathbf{M}(G)$ of matchings in G so that for every edge $e \in E(G)$,

$$
\sum_{M: e \in M} w(M)=1
$$

The weight α of this colouring is defined by

$$
\alpha=\sum_{M \in \mathbf{M}(G)} w(M),
$$

and in this case we say that G has a fractional α-edge colouring.
The fractional chromatic index, $\chi_{e}^{f}(G)$, of G is the minimum α for which G has a fractional α-edge colouring. By dividing the weight function by α, we see that G has a fractional α-edge colouring if and only if the vector $(1 / \alpha, \ldots, 1 / \alpha) \in R^{|E(G)|}$ is a convex combination of incidence vectors of matchings of G. It follows from Edmonds' characterization of the matching polytope[2] that $\chi_{e}^{f}(G)$ can be computed in polynomial time, and that in fact

$$
\chi_{e}^{f}(G)=\max \left\{\Delta(G), \max _{H \subseteq G, H \text { overfull }} \frac{2|E(H)|}{|V(H)|-1}\right\} .
$$

We will use the corollary that if $\chi_{e}^{f}(G)>\Delta(G)$ then G must contain an overfull subgraph. We may now state our result.
The Theorem. Let G be a graph such that $\chi_{e}^{f}(G)>\Delta(G)$ and $\chi_{e}^{f}(\bar{G})>\Delta(\bar{G})$, then either G or \bar{G} is overfull.
Since overfull subgraphs have an odd number of vertices, this yields:
The Corollary If G has an even number of vertices then either $\chi_{e}^{f}(G)=\Delta(G)$ or $\chi_{e}^{f}(\bar{G})=\Delta(\bar{G})$.

2. The Proof.

Arguing by contradiction, we suppose there is a graph G such that neither G nor its complement is overfull, yet $\chi_{e}^{f}(G)>\Delta(G)$ and $\chi_{e}^{f}(\bar{G})>\Delta(\bar{G})$. We may choose an overfull subgraph H of G and an overfull subgraph F of \bar{G}. To simplify the exposition, in what follows we let G, F and H also stand for their vertex sets where no confusion arises. Since the sum of the degrees of all vertices of a graph is twice the number of its edges, letting $d_{H}(v)$ be the degree of a vertex v in H, we see that (1) is equivalent to

$$
\begin{equation*}
\sum_{v \in H}\left(\Delta(G)-d_{H}(v)\right) \leq \Delta(G)-1 \tag{2}
\end{equation*}
$$

and implies that

$$
\begin{equation*}
|H| \geq \Delta(G)+1 \text { and }|F| \geq \Delta(\bar{G})+1 \tag{3}
\end{equation*}
$$

We call $\operatorname{def}_{G}(v)=\Delta(G)-d_{G}(v)$ the deficiency, of a vertex v in G, and let $E_{G}(A, B)$ be the set of edges in G with one endpoint in $A \subseteq V$ and one endpoint in $B \subseteq V$. With these definitions and using (2) and (3) we have

$$
\begin{equation*}
\sum_{v \in H} \operatorname{def}_{G}(v)+\left|E_{G}(H, G-H)\right| \leq \Delta(G)-1 \leq|H|-2 . \tag{4}
\end{equation*}
$$

Similarly, in the complement \bar{G}, we have

$$
\begin{equation*}
\sum_{v \in F} \operatorname{def}_{\bar{G}}(v)+\left|E_{\bar{G}}(F, \bar{G}-F)\right| \leq \Delta(\bar{G})-1 \leq|F|-2 . \tag{5}
\end{equation*}
$$

The subgraphs H and F naturally partition the vertices of G into four parts with cardinalities a, b, c, d, as defined by

$$
a=|H \cap F|, \quad b=|H-F|, \quad c=|F-H|, \quad \text { and } d=|G-F-H| .
$$

This partition is illustrated in Table 1. Let $n=|V(G)|$.

	F	
H	a	$\mathrm{b}-\mathrm{F}$
$\mathrm{G}-\mathrm{H}$	c	d

Table 1: Partition of G into four subsets

We note that if $v \in F-H$ and $w \in H-F$ then $v w$ is either an edge of $E_{G}(H, G-H)$ or of $E_{\bar{G}}(F, G-F)$. The same statement holds when $v \in F \cap H$ and $w \in G-F-H$. This implies the inequality

$$
\begin{equation*}
a d+b c \leq\left|E_{G}(H, G-H)\right|+\left|E_{\bar{G}}(F, G-F)\right| . \tag{6}
\end{equation*}
$$

For every vertex v of G we have $d_{G}(v)+d_{\bar{G}}(v)=n-1$ and so $\Delta(G)+\Delta(\bar{G}) \geq n-1$. Hence we can define the nonnegative integer k by

$$
\begin{equation*}
k=\Delta(G)+\Delta(\bar{G})-n+1 \tag{7}
\end{equation*}
$$

We also have that for all v,

$$
\begin{equation*}
k=\operatorname{def}_{G}(v)+\operatorname{def}_{\bar{G}}(v) \tag{8}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sum_{v \in H} \operatorname{def}_{G}(v)+\sum_{v \in F} \operatorname{def}_{\bar{G}}(v) \geq \sum_{v \in H \cap F}\left(\operatorname{def}_{G}(v)+\operatorname{def}_{\bar{G}}(v)\right)=a k \tag{9}
\end{equation*}
$$

Combining the inequalities (4)-(9) we obtain the key inequality:

$$
\begin{equation*}
b c+a(d+k) \leq \Delta(G)+\Delta(\bar{G})-2=n+k-3 \tag{10}
\end{equation*}
$$

Manipulating this inequality will give the desired result. By (3)

$$
2 a+b+c \geq \Delta(G)+\Delta(\bar{G})+2
$$

Combining with (10) we have

$$
\begin{equation*}
b c+a(d+k) \leq 2 a+b+c-4 \tag{11}
\end{equation*}
$$

Now if $b, c \geq 1$ then $b c \geq b+c-1$. If in addition $d+k \geq 2$ then

$$
b c+a(d+k) \geq b+c-1+2 a>2 a+b+c-4
$$

a contradiction.
The remaining cases to consider are when either $b=0$ or $c=0$ or $0 \leq d+k \leq 1$. We will need the following two observations.

Observation 1: $|H|,|F| \leq|G|-2$.
Proof: We know by hypothesis that $|H| \neq|G|$. Suppose $|H|=|G|-1$. Let w be the vertex of $G-H$. From (4) we have

$$
d_{G}(w)=|E(H, G-H)| \leq \Delta(G)-1-\sum_{v \in H} \operatorname{def}_{G}(v) .
$$

In fact $d_{G}(w) \leq \Delta(G)-2$. This follows immediately if $\operatorname{def}_{G}(v) \geq 1$ for some $v \in H$. Otherwise every vertex of H has degree $\Delta(G)$. Since the total degree of G must be even and $|H|$ is odd, $d_{G}(w)$ must have the same parity as $\Delta(G)$ and again $d_{G}(w) \leq \Delta(G)-2$. On the other hand, $d_{\bar{G}}(w) \leq \Delta(\bar{G})$, which combined with (7) and (8) gives

$$
k \geq \Delta(G)+d_{\bar{G}}(w)-n+1=\Delta(G)-d_{G}(w) \geq 2
$$

This also implies that $d_{G}(w) \geq \Delta(G)-k$. Since $F \cap H=F-w$,

$$
\begin{gathered}
\sum_{v \in F \cap H}\left(\operatorname{def}_{\bar{G}}(v)+\operatorname{def}_{G}(v)\right)+|E(H, G-H)| \geq k(|F|-1)+\Delta(G)-k \\
\quad=k|F|+\Delta(G)-2 k \geq \Delta(\bar{G})+1+\Delta(G)-2 k+(k-1)|F|
\end{gathered}
$$

where we used (3) to get the last inequality. Since F is overfull, $|F| \geq 3$ and we have

$$
\sum_{v \in F \cap H}\left(\operatorname{def}_{\bar{G}}(v)+\operatorname{def}_{G}(v)\right)+|E(H, G-H)| \geq \Delta(G)+\Delta(\bar{G})+k-2 \geq \Delta(G)+\Delta(\bar{G}) .
$$

By combining (4) and (5), we see that this cannot happen, giving the desired contradiction. By replacing G by its complement, we obtain $F \leq|G|-2$.

Observation 2: $\quad \min (\Delta(G), \Delta(\bar{G})) \geq n / 2-1$.
Proof: We assume that $\Delta(\bar{G}) \leq n / 2-3 / 2$ and derive a contradiction. Since $\Delta(G)+\Delta(\bar{G}) \geq n-1$ it follows that $\Delta(G) \geq n / 2+1 / 2$ and hence $|H| \geq n / 2+3 / 2$, while $|G-H| \leq n / 2-3 / 2$. Furthermore every vertex of G must have degree at least $n / 2+1 / 2$ and so

$$
|E(H, G-H)| \geq|G-H|(n / 2+1 / 2-(|G-H|-1))=|G-H|(n / 2+3 / 2-|G-H|) .
$$

When $|G-H|=2$ this value is $n-1$ and when $|G-H|=n / 2-3 / 2$ it is $3 n / 2-9 / 2$. By Observation 1, we have $|H| \leq n-2$, i.e. $|G-H| \geq 2$, and so

$$
|E(H, G-H)| \geq \min (n-1,3 n / 2-9 / 2) \geq n-3 \geq|H|-1
$$

which violates (4).

We now return to our manipulation of (10) for the cases when $b=0$ or $c=0$ or $0 \leq d+k \leq 1$. First assume that $b=0$ and so $H \subseteq F$. By Observation 2 and (3) we have

$$
a=|F \cap H|=|H| \geq \Delta(G)+1 \geq n / 2
$$

and so $a \geq b+c+d$. If $d+k \geq 3$ then $a(d+k) \geq 3 a \geq 2 a+b+c+d$ contradicting (11). If $d+k=2$ then $a(d+k)=2 a \geq a+b+c+d=n$ contradicting (10). Similarly we obtain contradictions if $c=0$ and $d+k \geq 2$.

It remains to settle the cases where $d+k=0$ or 1 . If $d=0$ then neither b nor c can be zero (or else either G or \bar{G} is overfull), and so $b c \geq b+c-1$. Hence if $d=0$ and $k=1$ then

$$
b c+a(d+k) \geq a+b+c+d-1=n-1
$$

again contradicting (10).
If $k=0$ then by (8) G is $\Delta(G)$-regular and \bar{G} is $\Delta(\bar{G})$-regular. Since regular graphs with an odd number of vertices are overfull, this means that n is even. We have by (7) that $\Delta(G)+\Delta(\bar{G})=n-1$, and so can assume that $\Delta(G) \geq n / 2$. Hence by (3) we have that $|H| \geq n / 2+1$ and so $|G-H| \leq n / 2-1$. On the other hand, Observation 1 gives $|G-H| \geq 2$, thus

$$
\begin{equation*}
\left|E_{G}(H, G-H)\right| \geq|G-H|(n / 2-(|G-H|-1)) \geq n-2, \tag{12}
\end{equation*}
$$

where the last inequality is obtained by checking the two extremal values of $|G-H|$. Combining (4) and (12) gives the required contradiction and completes the proof of the theorem.

References

1. A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier (1976).
2. J. Edmonds, "Maximum Matching and a Polyhedron with 0,1-Vertices," J. of Research of the National Bureau of Standards (B), 69, pp. 125-130 (1965).
3. I. Hoyler, "The NP-Completeness of Some Edge-Partition Problems," SIAM J. Computing, 10, pp. 713-717 (1981).
4. T.R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York (1995).
5. V.G. Vizing, "On an Estimate of the Chromatic Class of a p-graph (in Russian)," Diskret Analiz., 3, pp. 25-30 (1964).
