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ABSTRACT

The chromatic index χ e(G) of an undirected graph G is the minimum
number of matchings needed to partition its edge set. Let ∆(G) denote the maxi-
mum vertex degree of G, and let G denote the complement of G. Jensen and
Toft conjectured that for a graph G with an even number of vertices, either
χ e(G) = ∆(G) or χ e(G) = ∆(G). We prove a fractional version of this conjec-
ture.

1. The Introduction

The chromatic index χ e(G) of a graph G = (V (G), E(G)) is the minimum number of
matchings needed to partition its edge set (for the definition of matching and other standard
terms in graph theory, see Bondy and Murty[1] ). Since all the edges incident to a vertex must be
in different matchings, we know that χ e(G) is at least the maximum degree of G, which we
denote by ∆(G). In fact Vizing[5] proved that χ e(G) is at most ∆(G) + 1, whilst Holyer[3] proved
it is NP-complete to determine if χ e(G) is ∆(G). If H is a subgraph of G with 2t + 1 vertices,
then we need at least |E(H) | / t matchings to cover E(H). Thus if |E(H) | > t ∆(G), then H
and hence G have chromatic index ∆(G) + 1. A subgraph H of G is called overfull if it has an
odd number of vertices and

|E(H)| > ∆(G)
|V (H)| − 1

2.
(1)

If G is a regular graph with an odd number of vertices then G is overfull, and its comple-
ment, G, being regular, is also overfull. Thus for such graphs χ e(G) = ∆(G) + 1 and
χ e(G) = ∆(G) + 1. In [4], Jensen and Toft conjectured that this could not happen for graphs with
an even number of vertices. They conjectured that if G has an even number of vertices then either
χ e(G) = ∆(G) or χ e(G) = ∆(G). As evidence in support of this conjecture, we show that it is true
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for fractional edge colourings.

A fractional edge colouring of G is a non-negative weighting w(. ) of the set M(G) of
matchings in G so that for every edge e ∈ E(G),

M :e∈M
Σ w(M) = 1.

The weight α of this colouring is defined by

α =
M ∈M(G)

Σ w(M),

and in this case we say that G has a fractional α -edge colouring.

The fractional chromatic index, χ f
e (G), of G is the minimum α for which G has a frac-

tional α -edge colouring. By dividing the weight function by α , we see that G has a fractional
α -edge colouring if and only if the vector (1/α , . . . , 1/α ) ∈ R|E(G)| is a convex combination of
incidence vectors of matchings of G. It follows from Edmonds’ characterization of the matching
polytope[2] that χ f

e (G) can be computed in polynomial time, and that in fact

χ f
e (G) = max




∆(G),

H⊆G,H overfull
max

2 | E(H) |

|V (H)| − 1




.

We will use the corollary that if χ f
e (G) > ∆(G) then G must contain an overfull subgraph. We

may now state our result.

The Theorem. Let G be a graph such that χ f
e (G) > ∆(G) and χ f

e (G) > ∆(G), then either G or G
is overfull.

Since overfull subgraphs have an odd number of vertices, this yields:

The Corollary If G has an even number of vertices then either χ f
e (G) = ∆(G) or χ f

e (G) = ∆(G).

2. The Proof.

Arguing by contradiction, we suppose there is a graph G such that neither G nor its com-
plement is overfull, yet χ f

e (G) > ∆(G) and χ f
e (G) > ∆(G). We may choose an overfull subgraph

H of G and an overfull subgraph F of G. To simplify the exposition, in what follows we let G,
F and H also stand for their vertex sets where no confusion arises. Since the sum of the degrees
of all vertices of a graph is twice the number of its edges, letting dH (v) be the degree of a vertex
v in H , we see that (1) is equivalent to

v∈H
Σ (∆(G) − dH (v)) ≤ ∆(G) − 1. (2)

and implies that

|H | ≥ ∆(G) + 1 and |F | ≥ ∆(G) + 1. (3)

We call defG(v) = ∆(G) − dG(v) the deficiency, of a vertex v in G, and let EG(A, B) be the
set of edges in G with one endpoint in A⊆V and one endpoint in B⊆V . With these definitions
and using (2) and (3) we have

v∈H
Σ defG(v) + |EG(H , G − H)| ≤ ∆(G) − 1 ≤ |H | − 2. (4)

Similarly, in the complement G, we hav e
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v∈F
Σ defG(v) + |EG(F , G − F)| ≤ ∆(G) − 1 ≤ |F | − 2. (5)

The subgraphs H and F naturally partition the vertices of G into four parts with cardinali-
ties a, b, c, d , as defined by

a = |H∩F |, b = |H − F |, c = |F − H |, and d = |G − F − H |.

This partition is illustrated in Table 1. Let n = |V (G)|.

F G - F

H a  b

G - H  c d

Table 1: Partition of G into four subsets

We note that if v∈F − H and w∈H − F then vw is either an edge of EG(H , G − H) or of
EG(F , G − F). The same statement holds when v∈F∩H and w∈G − F − H . This implies the
inequality

ad + bc ≤ |EG(H , G − H) | + |EG(F , G − F) |. (6)

For every vertex v of G we have dG(v) + dG(v) = n − 1 and so ∆(G) + ∆(G) ≥ n − 1. Hence
we can define the nonnegative integer k by

k = ∆(G) + ∆(G) − n + 1. (7)

We also have that for all v,

k = defG(v) + defG(v) (8)

and so

v∈H
Σ defG(v) +

v∈F
Σ defG(v) ≥

v∈H∩F
Σ (defG(v) + defG(v)) = ak. (9)

Combining the inequalities (4)-(9) we obtain the key inequality:

bc + a(d + k) ≤ ∆(G) + ∆(G) − 2 = n + k − 3. (10)

Manipulating this inequality will give the desired result. By (3)

2a + b + c ≥ ∆(G) + ∆(G) + 2.

Combining with (10) we have

bc + a(d + k) ≤ 2a + b + c − 4 (11)

Now if b, c ≥ 1 then bc ≥ b + c − 1. If in addition d + k ≥ 2 then

bc + a(d + k) ≥ b + c − 1 + 2a > 2a + b + c − 4

a contradiction.

The remaining cases to consider are when either b = 0 or c = 0 or 0 ≤ d + k ≤ 1. We will
need the following two observations.
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Observation 1: |H |, |F | ≤ |G| − 2.

Proof: We know by hypothesis that |H | ≠ |G|. Suppose |H | = |G| − 1. Let w be the vertex of
G − H . From (4) we have

dG(w) = |E(H , G − H)| ≤ ∆(G) − 1 −
v∈H
Σ defG(v).

In fact dG(w) ≤ ∆(G) − 2. This follows immediately if defG(v) ≥ 1 for some v∈H . Otherwise
ev ery vertex of H has degree ∆(G). Since the total degree of G must be even and |H | is odd,
dG(w) must have the same parity as ∆(G) and again dG(w) ≤ ∆(G) − 2. On the other hand,
dG(w) ≤ ∆(G), which combined with (7) and (8) gives

k ≥ ∆(G) + dG(w) − n + 1 = ∆(G) − dG(w) ≥ 2.

This also implies that dG(w) ≥ ∆(G) − k. Since F∩H = F − w,

v∈F∩H
Σ (defG(v) + defG(v)) + |E(H , G − H)| ≥ k(|F | − 1) + ∆(G) − k

= k |F | + ∆(G) − 2k ≥ ∆(G) + 1 + ∆(G) − 2k + (k − 1)|F |,

where we used (3) to get the last inequality. Since F is overfull, |F | ≥ 3 and we have

v∈F∩H
Σ (defG(v) + defG(v)) + |E(H , G − H)| ≥ ∆(G) + ∆(G) + k − 2 ≥ ∆(G) + ∆(G).

By combining (4) and (5), we see that this cannot happen, giving the desired contradiction. By
replacing G by its complement, we obtain F ≤ |G| − 2.

Observation 2: min(∆(G), ∆(G)) ≥ n/2 − 1.

Proof: We assume that ∆(G) ≤ n/2 − 3/2 and derive a contradiction. Since ∆(G) + ∆(G) ≥ n − 1
it follows that ∆(G) ≥ n/2 + 1/2 and hence |H | ≥ n/2 + 3/2, while |G − H | ≤ n/2 − 3/2. Further-
more every vertex of G must have degree at least n/2 + 1/2 and so

|E(H , G − H)| ≥ |G − H |(n/2 + 1/2 − (|G − H | − 1)) = |G − H |(n/2 + 3/2 − |G − H |).

When |G − H | = 2 this value is n − 1 and when |G − H | = n/2 − 3/2 it is 3n/2 − 9/2.
By Observation 1, we have |H | ≤ n − 2, i.e. |G − H | ≥ 2, and so

|E(H , G − H)| ≥ min(n − 1, 3n/2 − 9/2) ≥ n − 3 ≥ |H | − 1

which violates (4).

We now return to our manipulation of (10) for the cases when b = 0 or c = 0 or
0 ≤ d + k ≤ 1. First assume that b = 0 and so H⊆F . By Observation 2 and (3) we have

a = |F∩H | = |H | ≥ ∆(G) + 1 ≥ n/2,

and so a ≥ b + c + d . If d + k ≥ 3 then a(d + k) ≥ 3a ≥ 2a + b + c + d contradicting (11). If
d + k = 2 then a(d + k) = 2a ≥ a + b + c + d = n contradicting (10). Similarly we obtain contra-
dictions if c = 0 and d + k ≥ 2.

It remains to settle the cases where d + k = 0 or 1. If d = 0 then neither b nor c can be
zero (or else either G or G is overfull), and so bc ≥ b + c − 1. Hence if d = 0 and k = 1 then
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bc + a(d + k) ≥ a + b + c + d − 1 = n − 1

again contradicting (10).

If k = 0 then by (8) G is ∆(G)-regular and G is ∆(G)-regular. Since regular graphs with an
odd number of vertices are overfull, this means that n is even. We hav e by (7) that
∆(G) + ∆(G) = n − 1, and so can assume that ∆(G) ≥ n/2. Hence by (3) we have that
|H | ≥ n/2 + 1 and so |G − H | ≤ n/2 − 1. On the other hand, Observation 1 gives |G − H | ≥ 2, thus

|EG(H , G − H)| ≥ |G − H |(n/2 − (|G − H | − 1)) ≥ n − 2, (12)

where the last inequality is obtained by checking the two extremal values of |G − H |. Combining
(4) and (12) gives the required contradiction and completes the proof of the theorem.
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