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Abstract

The solitaire cone SB is the cone of all feasible fractional Solitaire Peg games.
Valid inequalities over this cone, known as pagoda functions, were used to show the
infeasibility of various peg games. The link with the well studied dual metric cone
and the similarities between their combinatorial structures - see (3) - leads to the
study of a dual cut cone analogue; that is, the cone generated by the {0, 1}-valued
facets of the solitaire cone. This cone is called binary solitaire cone and denoted
BSB. We give some results and conjectures on the combinatorial and geometric
properties of the binary solitaire cone. In particular we prove that the extreme rays
of SB are extreme rays of BSB strengthening the analogy with the dual metric cone
whose extreme rays are extreme rays of the dual cut cone. Other related cones are
also considered.

1 Introduction and Basic Properties

1.1 Introduction

Peg solitaire is a peg game for one player which is played on a board containing
a number of holes. The most common modern version uses a cross shaped
board with 33 holes - see Fig. 1 - although a 37 hole board is common in France.
Computer versions of the game now feature a wide variety of shapes, including
rectangles and triangles. Initially the central hole is empty, the others contain
pegs. If in some row (column respectively) two consecutive pegs are adjacent
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to an empty hole in the same row (column respectively), we may make a move
by removing the two pegs and placing one peg in the empty hole. The objective
of the game is to make moves until only one peg remains in the central hole.
Variations of the original game, in addition to being played on different boards,
also consider various alternate starting and finishing configurations.

The game itself has uncertain origins, and different legends attest to its dis-
covery by various cultures. An authoritative account with a long annotated
bibliography can be found in the comprehensive book of Beasley (4). The
book mentions an engraving of Berey, dated 1697, of a lady with a Soli-
taire board. The modern mathematical study of the game dates to the 1960s
at Cambridge University. The group was led by Conway who has written a
chapter in (5) on various mathematical aspects of the subject. One of the
problems studied by the Cambridge group is the following basic feasibility
problem of peg solitaire:

For a given board B, starting configuration c and finishing configuration
c′, determine if there is a legal sequence of moves from c to c′.

      Final
configuration
    Starting 

configuration

Fig. 1. A feasible English solitaire peg game with possible first and last moves

The complexity of the feasibility problem for the game played on a n by n

board was shown by Uehara and Iwata (11) to be NP-complete, so easily
checked necessary and sufficient conditions for feasibility are unlikely to exist.
One of the tools used to show the infeasibility of certain starting and finishing
configurations is a polyhedral cone called the solitaire cone SB, corresponding
to some given board B.

1.2 Basic properties

For ease of notation, we will mostly be concerned with rectangular boards
which we represent by 0-1 matrices. A zero represents an empty hole and a
one represents a peg. For example, let c =[ 1 0 1 1 ] and c′ =[ 0 0 1 0] be
starting and finishing positions for the 1 by 4 board. This game is feasible,
involving two moves and the intermediate position [ 1 1 0 0]. For any move
on an m by n board B we can define an m by n move matrix which has 3
nonzero entries: two entries of -1 in the positions from which pegs are removed
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and one entry of 1 for the hole receiving the new peg. The two moves involved
in the previous example are represented by m1 =[ 0 1 -1 -1] and m2 =[ -1 -1
1 0]. Clearly c′ = c + m1 + m2. By abuse of language, we use the term move
for both the move itself and the move matrix. In general it is easily seen that
if c, c′ define a feasible game of k moves there exist move matrices m1, . . . , mk

such that

c′ − c =
k

∑

i=1

mi. (1)

Clearly, Equation 1 is necessary but not sufficient for the feasibility of a peg
game. For example, take c=[ 1 1 1 1 ] and c′ =[ 0 0 0 1]. We have c′ − c = [ -1
-1 1 0] + [ 0 1 -1 -1 ] + [ 0 -1 -1 1 ], but c, c′ do not define a feasible game; in
fact there are no legal moves! Let us relax the conditions of the original peg
game to allow a fractional (positive or negative) number of pegs to occupy
any hole. We call this game the fractional game, and call the original game
the 0-1 game (in a 0-1 game we require that in every position of the game
a hole is either empty or contains a single peg). A fractional move matrix is
obtained by multiplying a move matrix by any positive scalar and is defined
to correspond to the process of adding a move matrix to a given position. For
example, let c =[ 1 1 1], c′ =[ 1 0 1]. Then c′ − c =[ 0 -1 0 ] = 1

2
[ -1 -1 1] + 1

2

[ 1 -1 -1] is a feasible fractional game and can be expressed as the sum of two
fractional moves, but is not feasible as a 0-1 game.

Let B be a board and nB the total number of possible moves on the board.
The solitaire cone SB is the set of all non-negative combinations of the nB

corresponding move matrices. Thus c′ − c ∈ SB if:

c′ − c =
nB
∑

i=1

yimi, yi ≥ 0, i = 1, . . . , nB. (2)

In the above definition it is assumed that the hB holes in the board B are
ordered in some way and that c′ − c and mi are hB-vectors. When B is a
rectangular m by n board Bm,n it is convenient to display c′ − c and mi as
m by n matrices, although of course all products should be interpreted as dot
products of the corresponding mn-vectors. For n ≥ 4 or m ≥ 4, the solitaire
cone Sm×n associated to the m by n board is a pointed full-dimensional cone
and the moves of the solitaire cone are extreme rays; see (3) for a detailed
study of the solitaire cone. The following result obtained in 1961 is credited
to Boardman (who apparently has not published anything on the subject)
by Beasley (4), page 87. We identify c′ − c with the fractional game defined
by c and c′.

Proposition 1 Equation 2 (c′ − c ∈ SB) is necessary and sufficient for the
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feasibility of the fractional game; that is, the solitaire cone SB is the cone of
all feasible fractional games.

The condition c′ − c ∈ SB is therefore a necessary condition for the feasibility
of the original peg game and, more usefully, provides a certificate for the
infeasibility of certain games. The certificate of infeasibility is any inequality
valid for SB which is violated by c′ − c. According to (4), page 71, these
inequalities “were developed by J.H. Conway and J.M. Boardman in 1961, and
were called pagoda functions by Conway...”. They are also known as resource
counts, and are discussed in some detail in Conway (5). The strongest such
inequalities are induced by the facets of SB.

Other tools to show the infeasibility of various peg games include the so-called
rule-of-three which simply amounts to color the board by diagonals of α, β and
γ (in either direction). Then, with #α (#β, #γ resp.) denoting the number
of pegs in an α-colored (β, γ resp.) holes, one can check that the parity of
#α − #β, #β − #γ and #γ − #α is an invariant for the moves. The rule-
of-three was apparently first exposed in 1841 by Suremain de Missery; see
Beasley’s book (4) for a detailed historical background. Another necessary
condition generalizing the rule-of-three - the solitaire lattice criterion - is to
check if c′ − c belong to the solitaire lattice generated by all integer linear
combinations of moves, that is:

c′ − c =
nB
∑

i=1

yimi, yi ∈ Z, i = 1, . . . , nB

While the lattice criterion is shown to be equivalent to the rule-of-three for the
classical English 33-board and French 37-board as well as for any m×n board,
the lattice criterion is stronger than the rule-of-three for games played on
more complex boards. In fact, for a wide family of boards the lattice criterion
exponentially outperforms the rule-of-three, see Deza and Onn (7).

The solitaire cone is generated by a set of extreme rays, each of which is all zero
except for three nonzero components which are 1,-1,-1. In Avis and Deza

(3), the solitaire cone is related to another cone with the same property, the
flow cone which is dual to the much studied metric cone which arises in the
study of multicommodity flows; see, for example, (1; 6; 8; 10).

2 Facets of the Solitaire Cone

For simplicity we consider rectangular boards and, to avoid the special effects
created by the boundary, we study their toric closures which are simply called
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toric boards . In other words, the toric m by n board is an m by n rectangu-
lar board with additional jumps which traverse the boundary. Note that the
associated toric solitaire cone Sm×n is pointed and full-dimensional for m ≥ 3
or n ≥ 3. Let B be a rectangular m by n board, with m ≥ 3 or n ≥ 3. Using
the notation described following equation 2, we will represent the coefficients
of the facet inducing inequality

az ≤ 0 (3)

by the m by n array a = [ai,j]. Inequality 3 holds for every z ∈ Sm×n. It is a
convenient abuse of terminology to refer to a as a facet of Sm×n. Three con-
secutive row or column elements of an m by n array are denoted by (t1, t2, t3)
and called a consecutive triple of row or column indices. For example both
t1 = i, j, t2 = i, j + 1, t3 = i, j + 2 and t1 = i + 2, j, t2 = i + 1, j, t3 = i, j

are consecutive triples. Using this notation we see that a move matrix for B

is an m by n matrix that is all zero except for elements of some consecutive
triple which take the values 1,-1,-1. Each consecutive triple defines a triangle
inequality

at1 ≤ at2 + at3 (4)

The definition of consecutive triple is extended by allowing row indices to
be taken modulo m and column indices to be taken modulo n. For example,
for a 4 by 4 toric board both t1 = 2, 3, t2 = 2, 4, t3 = 2, 1 and t1 = 1, 3,
t2 = 4, 3, t3 = 3, 3 are consecutive triples. Similarly we extend the definition
of a consecutive string of entries to include strings that traverse the boundary.

Fig. 2. Moves on the 4 by 4 toric board

The {0, 1}-valued facets the solitaire cone are considerably more complex than
the {0, 1}-valued facets of the dual metric cone, which are generated by cuts
in the complete graph. For a toric board B, a complete characterization of
{0, 1}-valued facets of Sm×n was given in (3). Let a be an m by n 0-1 matrix.
We define the 1-graph Ga on a as follows: vertices of Ga correspond to the
ones, and two ones are adjacent if the corresponding coefficients are in some
consecutive triple where the remaining coefficient is zero. Note that in fact
there must be at least two such triples since if (t1, t2, t3) is such a triple then
so is (t3, t2, t1).

Theorem 2 Let B be the m by n toric board. A m by n 0-1 matrix a is a facet
of Sm×n if and only if (i) no nonzero row or column contains two consecutive
zeroes, and (ii) the 1-graph Ga is connected.
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Fig. 3. Two pagoda functions of S4×4, only the first one being a facet

Theorem 2 is useful for proving large classes of 0-1 matrices are facets. Let
x = (x1, . . . , xm) and y = (y1, . . . , yn) be two vectors. We say the m by n

matrix a is the product of x and y if for all 1 ≤ i ≤ m and 1 ≤ j ≤ n

ai,j = xiyj. A simple application of Theorem 2 gives:

Corollary 3

(1) Let B1,n be the 1 by n toric board. A {0, 1}-valued n-vector is a facet of
S1×n if and only if it has no pair of consecutive zeroes, no string of five
or more ones, and at most one string of four ones.

(2) Let Bm,n be the m by n toric board. The product of two {0, 1}-valued facets
of S1×m and S1×n gives a {0, 1}-valued facet of Sm×n.

Proposition 4 Let h(n) be the number of {0, 1}-valued facets of S1×n.
For n ≥ 7, (n + 18)1.46n−8 ≤ h(n) ≤ (n + 19)1.47n−6.

PROOF. The formula can be verified directly for n ≤ 11 by referring to
the 5th column of Table 1. We define an f -vector to be a {0, 1}-valued vector
of length n with no 2 consecutive zeroes, no string of 4 or more ones and
starting and ending with a one. We first count f(n), the number of f -vectors.
Direct calculation shows that: f(2) = 1, f(3) = 2, f(4) = 2, f(5) = 4. For
n ≥ 6, a f -vector has the form [1 0 1 ... 1], [ 1 1 0 1 ... 1 ] or [ 1 1 1
0 1 ... 1], where the string 1 ... 1 is an f -vector. In other words, we have
f(n) = f(n − 2) + f(n − 3) + f(n − 4). It is easy to show by induction that
for n ≥ 6,

1.46n−2 ≤ f(n) ≤ 1.47n. (5)

Now, for n ≥ 12, by Item (1) of Corollary 3, the number h(n) of {0, 1}-valued
facets of S1×n is the number of toric {0, 1}-valued vectors of length n with no
2 consecutive zeroes, no string of 5 or more ones, and at most one string of 4
ones. Call such vectors h-vectors. If an h-vector has no string of 4 ones, then
it either starts with [ 0 1 ... 1], [ 1 0 1 ... ], [ 1 1 0 1 ... 1 0 ], [ 1 1 0 1 ... 1 0 1
] or [ 1 1 1 0 1 ... 1 0 ] where the string 1 ... 1 is an f -vector. In other words,
we have 2f(n− 1) + f(n− 4) + 2f(n− 5) = 2f(n− 3) + 3f(n− 4) + 4f(n− 5)
h-vectors without a string of 4 ones. We have nf(n − 6) h-vectors with one
string of 4 ones as each is of the form [ ... 1 0 1 1 1 1 0 1 ...]. Therefore, the
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total number of h-vectors for n ≥ 8 is given by

h(n) = 2f(n − 3) + 3f(n − 4) + 4f(n − 5) + nf(n − 6). (6)

The proposition follows by substituting the asymptotic bounds for f obtained
above in this equation.

3 The Binary Solitaire Cone and Other relatives

The link with the dual metric cone and the similarities between their combina-
torial structures - see (3) - leads to the study of a dual cut cone analogue; that
is, the binary solitaire cone BSB generated by the {0, 1}-valued facets of the
solitaire cone. We give some results and conjectures on the combinatorial and
geometric properties of the binary solitaire cone. In particular we prove that
the extreme rays of SB are extreme rays of BSB strengthening the analogy
with the dual metric cone, for which the extreme rays are also extreme rays
of the dual cut cone. Other related cones are also considered.

3.1 The binary solitaire cone

The dual cut cone is generated by the {0, 1}-valued facets of the dual metric
cone. Similarly, we consider the cone generated by the {0, 1}-valued facets of
the solitaire cone. This cone is called binary solitaire cone and denoted BSB.

We present in details some small dimensional cases and give some results and
conjectures on the combinatorial and geometric properties of the binary soli-
taire cone. In particular, we investigate the diameter, adjacency and incidence
relationships of the binary solitaire cone BSm×n and its dual BS∗

m×n. Two
extreme rays (resp. facets) of a polyhedral cone are adjacent if they belong to
a face of dimension (resp. codimension) two. The number of rays (resp. facets)
adjacent to the ray r (resp. facet F ) is denoted Ar (resp. AF ). A ray and a
facet are incident if the ray belongs to the facet. We denote by Ir (resp. IF )
the number of facets (resp. rays) incident to the ray r (resp. facet F ). The
diameter of BSB (its dual BS∗

B resp.), that is, the smallest number δ such
that any two vertices can be connected by a path with at most δ edges, is
δ(BSB) (δ(BS∗

B) resp.); see Table 1.

Finding all extreme rays of the cone BSB (such as the 930 048 rays of BS4×4)
is an example of a convex hull or vertex enumeration problem, for which
various computer programs are available. The computational results in this
paper were obtained using the double description method cdd implemented by
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Table 1
Small binary toric boards

Board #rays Ir Ar #facets IF AF δ(BSB ) δ(BS∗

B
)

1 × 3 3 2 2 3 2 2 1 1

1 × 4 8 3 3 6 4 4 3 2

1 × 5 15 4∼5 4∼5 10 6∼8 5∼7 3 2

1 × 6 30 5∼6 5∼6 11 12∼16 8∼9 4 2

1 × 7 42 8∼11 7∼10 21 18∼20 11∼13 3 2

1 × 8 72 10∼16 9∼14 30 24∼36 14∼18 3 2

1 × 9 126 9∼25 9∼19 48 32∼54 18∼26 3 2

1 × 10 200 14∼36 12∼24 67 40∼80 16∼33 4 2

1 × 11 231 11∼58 11∼26 110 50∼86 24∼45 4 3

1 × 12 516 12∼85 12∼51 159 60∼172 21∼62 4 3

3 × 3 18 11 15 15 12∼14 12∼14 2 2

4 × 4 930 048 15∼168 15∼? 340 ? ? ? ?

3 × 4 1 284 11∼(30 34) 11∼369 54 194∼506 35∼52 3 2

3 × 5 101 444 14∼(118 129) 14∼14 607 240 ? ? ? ?

Fukuda (9), and the reverse search method lrs implemented by Avis (2). The
diameters of cones were computed using graphy implemented by Fukuda (9).

Theorem 5 The extreme rays of the solitaire cone, that is, the moves, are
extreme rays of the binary solitaire cone.

PROOF. Given any extreme ray (move) c of Sm×n, let Φ be the intersection
of all the facets of BSm×n containing c. We want to prove that any vector
r ∈ Φ is a scalar multiple of c.

Case m ≤ 2. First, take m = 1. For n = 3, . . . 12 Theorem5 was checked
by computer so we can assume that n ≥ 13. All extreme rays of S1×n being
equivalent up to scrolling and reversing, we can assume that c = [ -1 -1 1 0
. . . 0 ]. For j = 4, . . . , n, consider the two inequalities defined by f 1

1jr ≤ 0 and
f 0

1jr ≤ 0 as given bellow where the boxed value is the jth coordinate

f 1
1j = 1, 0, 1, 0, 1, 0 . . . , 0, 1, 0, 1, 1 , 1, 0, 1, 0 . . .

f 0
1j = 1, 0, 1, 0, 1, 0 . . . , 0, 1, 0, 1, 0 , 1, 0, 1, 0 . . .

Since the associated 1-graphs Gf1

1j
and Gf0

1j
are connected, Theorem 2 gives

that those inequalities induce 2 facets F 1
1j and F 0

1j of BS1×n. As clearly f 1
1jc =

f 0
1jc = 0, we have F 1

1j ∩ F 0
1j ⊂ Φ. Therefore, any vector r ∈ Φ satisfies f 1

1jr =
f 0

1jr = 0 for j = 4 . . . n. This implies rj = 0 for j = 4 . . . n. Moreover, the two
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inequalities defined by f1,1r ≤ 0 and f1,2r ≤ 0 as given bellow

f1,1 = 0, 1, 1, 0, 1, 0, 1, . . . f1,2 = 1, 0, 1, 0, 1, 0, 1 . . .

clearly induce 2 facets also belonging to Φ. It implies f1,1r = f1,2r = 0, that
is, r2 + r3 = r1 + r3 = 0. In other words r = r3 × c; which completes the proof.
Since the case m = 2 is almost equivalent to the case m = 1, we next consider
case m = 3.

Case m = 3. For n = 3, 4, 5 Theorem5 was checked by computer so we can
assume that n ≥ 6. The two cases c′1,1 = c′1,2 = −c′1,3 = −1 and c”1,1 =
c”2,1 = −c”3,1 = −1 being essentially the same, we can assume that c = c′.
For i = 1, 2, 3 and j = 4, . . . , n, consider the inequalities defined by f 1

ijr ≤ 0
(f 0

ijr ≤ 0 resp.) as given bellow where the boxed value is the ijth coordinate.
The coordinates of f 0

ij differ from f 1
ij only for the ijth coordinate which is set

to 0.

f 1
ij =













1 0 1 1 . . . 1 0 1 1 0 1 1 1 0 1 1 0 . . .

0 1 1 0 . . . 0 1 1 0 1 1 1 0 1 1 0 1 . . .

1 1 0 1 . . . 1 1 0 1 1 1 0 1 1 0 1 1 . . .













Similarly to the case m ≤ 2, the associated 1-graphs Gf1

ij
and Gf0

ij
are con-

nected and, up to a rotation along the axis i = 2, we have f 1
ijc

′ = f 0
ijc

′ = 0;
that is, the induced facets satisfy F 1

ij ∩ F 0
ij ⊂ Φ. Therefore, any vector r ∈ Φ

satisfies f 1
ijr = f 0

ijr = 0 for i = 1, 2, 3 and j = 4, . . . , n. This implies rij = 0
for i = 1, 2, 3 and j = 4, . . . , n. Slightly modified f 1

ij and f 0
ij for i = 2, 3

and j = 1, 2, 3 give rij = 0 for i = 2, 3 and j = 1, 2, 3. Moreover, the two
inequalities defined by f1,1r ≤ 0 and f1,2r ≤ 0 as given bellow

f1,1 =













1 0 1 0 1 . . . 0 1 0 . . .

0 0 0 0 0 . . . 0 0 0 . . .

1 0 1 0 1 . . . 0 1 0 . . .













f1,2 =













0 1 1 0 1 . . . 1 0 1 . . .

0 0 0 0 0 . . . 0 0 0 . . .

0 1 1 0 1 . . . 1 0 1 . . .













implies r1,1 = r1,2 = −r1,3, that is, r = r3 × c′; which completes the proof.

Case m ≥ 4. Theorem5 was checked by computer for n = 4 so we can as-
sume that n ≥ 5. We can take cij = 0 except c1,1 = c1,2 = −c1,3 = −1. For
i = 3, . . . , m − 1 or j = 4, . . . , n, consider the inequalities defined by f 1

ijr ≤ 0
(f 0

ijr ≤ 0 resp.) as given bellow where the boxed value is the ijth coordinate.
The coordinates of f 0

ij differ from f 1
ij only for the ijth coordinate which is set
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to 0.

f 1
ij =





































































1 0 1 0 . . . 0 1 0 1 0 1 1 1 0 1 0 0 . . .

0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 . . .

...
...

...
... · · ·

...
...

...
...

...
...

...
...

...
...

...
... · · ·

1 0 1 0 . . . 0 1 0 1 0 1 1 1 0 1 0 0 . . .

0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 . . .

1 0 1 0 . . . 0 1 0 1 0 1 1 1 0 1 0 0 . . .

1 0 1 0 . . . 0 1 0 1 0 1 1 1 0 1 0 0 . . .

1 0 1 0 . . . 0 1 0 1 0 1 1 1 0 1 0 0 . . .

0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 . . .

1 0 1 0 . . . 0 1 0 1 0 1 1 1 0 1 0 0 . . .

...
...

...
... · · ·

...
...

...
...

...
...

...
...

...
...

...
... · · ·





































































Clearly, we have f 1
ijc = f 0

ijc = 0. By filling the gaps with the following {0, 1}-
valued matrices (or their transposes), the associated 1-graphs Gf1

ij
and Gf0

ij

are both connected. Therefore, any vector r ∈ Φ satisfies rij = 0 for i =
3, . . . , m − 1 or j = 4, . . . , n.



























1 0 1 0 . . . 1 0 1 1 1 0 1 0 . . .

0 0 0 0 . . . 0 0 0 0 0 0 0 0 . . .

1 0 1 0 . . . 1 0 1 1 1 0 1 0 . . .

0 0 0 0 . . . 0 0 0 0 0 0 0 0 . . .

...
...

...
... · · ·

...
...

...
...

...
...

...
... · · ·





















































1 0 1 0 . . . 1 0 1 1 1 0 1 0 . . .

1 0 1 0 . . . 1 0 1 1 1 0 1 0 . . .

0 0 0 0 . . . 0 0 0 0 0 0 0 0 . . .

1 0 1 0 . . . 1 0 1 1 1 0 1 0 . . .

...
...

...
... · · ·

...
...

...
...

...
...

...
... · · ·



























Slightly modified f 1
ij and f 0

ij for i = 2, m and j = 1, 2, 3 give rij = 0 for
i = 2, m and j = 1, 2, 3. For example, the following inequalities set r2,2 to 0

f 1
2,2 =

































0 1 1 1 0 1 0 1 . . .

1 1 1 0 1 0 1 0 . . .

0 1 0 1 0 1 0 1 . . .

1 0 1 0 1 0 1 0 . . .

0 1 0 1 0 1 0 1 . . .

...
...

...
...

...
...

...
... · · ·

































f 0
2,2 =

































0 1 1 1 0 1 0 1 . . .

1 0 1 0 1 0 1 0 . . .

0 1 0 1 0 1 0 1 . . .

1 0 1 0 1 0 1 0 . . .

0 1 0 1 0 1 0 1 . . .

...
...

...
...

...
...

...
... · · ·
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Finally, the following two inequalities set r1,1 = r1,2 = −r1,3,

f1,1 =



























1 0 1 0 1 . . .

0 0 0 0 0 . . .

1 0 1 0 1 . . .

...
...

...
...

... · · ·

0 0 0 0 0 . . .



























f1,2 =



























0 1 1 0 1 . . .

0 0 0 0 0 . . .

0 1 1 0 1 . . .

...
...

...
...

... · · ·

0 0 0 0 0 . . .



























that is, r = r3 × c; which completes the proof.

Corollary 6 The binary solitaire cone is full-dimensional.

Out of the 930 048 extreme rays of BS4×4, the 64 extreme rays of S4×4, that
is, the moves, reached the highest incidence Imax

r = 168 which is almost three
times larger than the second highest incidence Isubmax

r = 57. Similarly, out
of the 101 444 extreme rays of BS3×5, the 15 vertical moves of S3×5, reached
the highest adjacency Amax

r = 14 607 while the average adjacency is Aave
r ≃

33.16. These computational results and other similarities with the metric cone
- see (3) - lead us to the following conjectures:

Conjecture 7

(1) For n ≥ 3 and m ≥ 3, the moves form a dominating set in the skeleton
of BSm×n.

(2) The incidence of the moves is maximal in the skeleton of BSm×n.
(3) For m,n large enough, at least one ray r of BSm×n is simple, (that is,

Ir = mn − 1).

Item (1) of Conjecture 7 holds for BS3×4 and is false for m ≤ 2. The smallest
1 by n board for which the conjecture fails is the 1 by 10 board. Item (2) holds
for all cones presented in Table 1 and is false if we replace the incidence by
the adjacency as, for example, for BS3×5. If true, Item (3) would imply that
the edge connectivity, the minimal incidence and the minimal adjacency of
the skeleton of BSm×n are equal to nm− 1. This holds for BS3×4, BS3×5 and
BS4×4.

3.2 The trellis solitaire cone

The {0, 1}-valued facets of the solitaire cone have much less structure than the
set of cut metrics. In fact, the cut metrics are related to products of vectors
of length n. This motivates the next definition. Let f and g be {0, 1}-valued
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vectors of length m and n respectively, and let cij = fi · gj for i = 1, . . .m,
j = 1, . . . n. If c · x ≤ 0 defines a facet of BSm×n, we call it a trellis facet . The
trellis solitaire cone TSB is generated by all of the trellis facets of the binary
solitaire cone BSB. See Item (2) of Corollary 3 for an easy construction of
trellis facets. For example, among the two following facets of BS3×5, only the
right one is a trellis facet.

1

0 0

100

1

000

1 100

1

1 1

1 0

0

0

0

1 01

1

1

1 1 1

Fig. 4. A facet and a trellis facet of BS3×5

Conjecture 8 The binary trellis solitaire cone is full-dimensional.

3.3 The complete solitaire cone

The complete solitaire cone CSB is induced by a variation of the Solitaire
game. To the classical moves we add the moves which consist of removing two
pegs surrounding an empty hole and placing one peg in this empty hole as
shown in Fig. 5. The incidence and adjacency relationships and diameters of
small dimensional complete solitaire cones are presented in Table 2. Two rays

r

0 01 -1-1

C C’

Fig. 5. The extreme ray r of CS1×5 corresponding to the move from c to c′

Table 2
Small complete toric boards

Board #rays Ir Ar #facets IF AF δ(CSB) δ(CS∗

B
)

1 × 7 21 26∼33 16∼17 91 6∼12 6∼32 2 4

1 × 8 24 119∼130 19∼20 404 7∼12 7∼44 2 5

3 × 3 18 11 15 15 12∼14 12∼14 2 2

3 × 4 48 904∼1 192 39∼45 3 576 11∼33 11∼738 2 ?

are called strongly conflicting in there exist two pairs i, j and k, l such that the
two rays have nonzero coordinates of distinct signs at positions i, j and k, l

(respectively i, j). We have CS3×3 = S3×3 and, by analogy with the classical
solitaire cone case, we conjecture:

Conjecture 9 For n ≥ 7 and m ≥ 7 a pair of extreme rays of CSm×n are
adjacent if and only if they are not strongly conflicting.

If true, Conjecture 9 would imply that δ(CSm×n) = 2.
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3.4 The binary complete solitaire cone

In the same way as we did for the solitaire cone, we consider the cone generated
by the facets of the complete solitaire cone CSB whose coordinates are, up to a
constant multiplier, {0, 1}-valued. This cone is called complete binary solitaire
cone and denoted BCSB. The incidence and adjacency relationships of small
dimensional complete binary solitaire cones BCSB are presented in Table 3.

Table 3
Small binary complete toric boards

Board #rays Ir Ar #facets IF AF δ(BCSB) δ(BCS∗

B
)

1 × 7 7 6 6 7 6 6 1 1

1 × 8 16 9 10 12 12 9∼10 2 2

3 × 3 18 11 15 15 12∼14 12∼14 2 2

3 × 4 72 14∼28 15∼58 36 30∼45 30∼35 2 2

4 Conclusion

Theorem 5 strengthens the analogy of the solitaire cone with the dual metric
cone, for which the extreme rays are also extreme rays of the dual cut cone. On
the other hand, so far we have not yet found an analogue of the hypermetric
facets of the metric cone Mn, that is, a “nice” family of {0,−1, 1}-valued
extreme rays of the binary solitaire cone BSB. Another open question is the
determination of a tighter relaxation of the solitaire cone SB by some cuts
analogue. The trellis solitaire cone TSB is a candidate as well as the cone
generated by the {0, 1}-valued facets with the minimal number of ones. For
S4×4 and S3×i : i = 3, 4, 5, these facets have maximal incidence and adjacency
in the skeleton of S∗

m×n.
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