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Abstract

We disprove a conjecture of Baiou and Balinski concerning a variation on the
Birkhoff-von Neumann theorem.



Let BB,, denote the set of all integer n x n matrices X that satisfy

Y X(i,j) <1 foralli=1,2,...,n (1)
j=1
Y X(i,1) <1 (2)
1=1
S X(4,5) <> X(i,5—1) forallj =2,3,...,n (3)
=1 i=1
X(i,j) >0  for all 4 and j; (4)

to put it differently, BB, is the set of all matrices that arise from n x n
permutation matrices by first choosing an integer k£ such that 0 < k£ < n
and then overwriting all entries in the last k£ columns with zeros. This set of
matrices has been introduced by Mourad Baiou and Michel Balinski. At first
(Baiou and Balinski (1998)), they asserted that an arbitrary n x n matrix X
belongs to the convex hull of BB, if and only if it satisfies (1), (2), (3), (4)
as well as all inequalities

n n ||
Y X)) < 3> X(i,) 6
i€l j=1 i=1j=1
where I C {1,2,...,n}. Later (Baiou and Balinski (1998)), they realized
that this assertion is false — matrix
1/2 0 1/2 0
/2 0 0 1/2
0 1/2 0 0
0 1/2 0 0

is an extreme point of the polytope of all X in R™ ™ that satisfy (1), (2),
(3), (4), and so it constitutes a counterexample — and conjectured that an
arbitrary n x n matrix X belongs to the convex hull of BB,, if and only if it
satisfies (1), (2), (3), (4) as well as all inequalities

;ZJX(M) =D _; X (i, 5) (6)

where k € {1,2,...,n—1}, I C{1,2,...,n}, J C{1,2,...,k},and |I| = |J|.
The purpose of our note is to point out that this conjecture, too, is false.



Theorem 1 For all positive integers n greater than four, every X in BB,
satisfies

n n n 3 n
DX+ X(6,2) - X(L,3) + D X(5,4) - Y X(36,5) >0 (7)
i=4 i=2 i=4 i=1j=5

and inequality (7) induces a facet of the convex hull of BB,.

Proof. First, consider an arbitrary X in BB,,. We have

j X(3,1) + iX(i, 2) — X(1,3) + iX(iA) - Zj ijx(i,j) >
So(X( 1)+ X(,2) + X(54) = (X (1) + X(2,) + X(3,5) 2
i(X(i, 1)+ X(4,2) + X(4,4)) — 3,

and so (7) holds as long as >0 ; X (¢,4) = 1. If 37 ; X (i,4) = 0, then

:4)((2', 1)+ gX(i, 2) — X(1,3) + iZ:X(iA) - g;X(i’j) _
_n4X(i71)+Zn;X(i,2)_X(1,3) >
Zzn;X(”Q)—ji:lX(l,J) >

> X(:2)-1,

and so (7) holds as long as Y1 ; X(4,2) = 1. If 7 ; X (¢,2) = 0, then

:X(i,l)-i—.z:X(i,Q)—X(1,3)+2X(i,4)—;iX(i,j) =
SX@1) > o,



and so (7) holds again.

Next, let S, denote the set of all X in BB, that satisfy

.X@D+iX@@—X@$+iX@®—ZZﬂﬁ@:O (8)

n 3
=4 1=2 =4 i=1j=5

and consider an arbitrary equation

S AG )X () = b ©)

i=1j=1

that is satisfied by all X in S,. To prove that (7) induces a facet of the
convex hull of BB,,, we will show that (9) is a multiple of (8).
Since the all zeros matrix belongs to S,,, we have

b=0.

For each i = 1,2,3, the X in BB, defined by X(i,1) = 1 and X(r,s) = 0
whenever s > 1 belongs to S,; it follows that

A1,1) = A(2,1) = A(3,1) = 0.

The X in BB, defined by X(2,1) = X(1,2) =1 and X (r,s) = 0 whenever
s > 2 belongs to S,; it follows that

A(1,2) = 0.
For every choice of 7 such that 2 < i < n, there is an ¢’ in {2,3} — {i}; the X
in BB, defined by X (i',1) = X(1,2) = X(4,3) = 1 and X(r, s) = 0 whenever
s > 3 belongs to &,; it follows that
A(i,3) =0 whenever 2 < i <n.

For either choice of i in {2,3}, there is an i’ in {2,3} — {i}; the X in BB,
defined by X(¢,1) = X(1,2) = X(4,3) = X(4,4) = 1 and X(r,s) = 0
whenever s > 4 belongs to S,; it follows that

A(2,4) = A(3,4) = 0.
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For every choice of 7 and j such that 4 <7 <n and 5 < j < n, there are an
i in {4,5} — {i} and an X in S, such that X(2,1) = X(1,2) = X(¢,3) =
X (3,4) = X(i,j) = 1 and X (r,s) = 0 whenever s > j; it follows by induction
on j that
A(i,j) =0 whenever 4 <i<nand5<j<n.
For every choice of i such that 2 < i < n, there is an ¢’ in {2,3} — {i}; the X
in BB, defined by X (i',1) = X (i,2) = X(1,3) =1 and X(r, s) = 0 whenever
s > 3 belongs to S,,; it follows that
A(i,2) = —A(1,3) whenever 2 <i <n.
For every choice of 7 in {1,2,3} and j such that 5 < j < n, there are an ¢’
in {1,2,3} — {¢} and an 7" in {2,3} — {i}, such that ¢/ # ¢"; every X in BB,
such that X (¢/,1) = X(4,2) = X(5,3) = X(i",4) = X(4,7) = 1 belongs to
S,,; it follows that
A(1,7) = A(2,5) = A(3,7) = A(1,3) whenever 5 < j <n.
For every choice of 7 such that 4 < i < n, there is an ¢’ in {4,5} — {i}; every
X in BB, such that X (i,1) = X(1,2) = X(¢,3) = X(2,4) = X(3,5) =1
belongs to S,; it follows that

A(i,1) = —A(1,3) whenever 4 <i <n.
Every X in BB, such that X (2,1) = X (4,2) = X(5,3) = X(1,4) = X(3,5) =
1 belongs to S,; it follows that
A(1,4) = 0.
For every choice of 7 such that 4 < i < n, there is an ¢’ in {4,5} — {i}; every
X in BB, such that X(2,1) = X(1,2) = X(¢,3) = X(4,4) = X(3,5) =1
belongs to S,; it follows that

A(i,4) = —A(1,3) whenever 4 <i < n.
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