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On Combinatorial Properties of Linear Program Digraphs

David Avis and Sonoko Moriyama

Abstract. The possible pivot operations of the simplex method to solve a
linear program can be represented as a directed graph defined on the skeleton
of the feasible region P . We consider the case that P is bounded, i.e., a convex
polytope. The directed graph is called an LP digraph. LP digraphs are known
to satisfy the following three properties: acyclicity, unique sink orientation
(USO), and the Holt–Klee property. The three properties are not generally
sufficient for a directed graph on the skeleton of P to be an LP digraph. In
this paper, we first survey some previous results on LP digraphs, showing
relationships among the three properties. Then we introduce a new neces-
sary property for a directed graph on the skeleton of P to be an LP digraph,
called the shelling property. We analyze the relationships between the shelling
property and the three existing properties, showing that it is stronger than a
combination of acyclicity and USO for nonsimple polytopes in dimension at
least four. In all other cases it is equivalent to the intersection of these two
properties.

1. Introduction

Let P be a d-dimensional convex polytope (d-polytope) in <d. We assume that
the reader is familiar with polytopes, a standard reference being [10]. The vertices
and the edges of P form an (abstract) undirected graph called the skeleton of P .
Interest in such graphs stems from the fact that the simplex method with a given
pivot rule can be viewed as an algorithm for finding a path in the skeleton of P to a
vertex that maximizes a linear function f(x) = cT x over P . Research continues on
pivot rules for the simplex method since they leave open the possibility of finding
a strongly polynomial time algorithm for linear programming. Since the simplex
method gives an orientation to edges traversed, it is of interest to study directed
graphs based on the skeleton. We form a directed graph G(P ) by orienting each
edge of the skeleton of P in some manner.

We can distinguish four properties that the digraph G(P ) may have, each of
which has been well studied:

• Acyclicity : G(P ) has no directed cycles.
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• Unique sink orientation (USO) (Szabó and E. Welzl [8]): Each subdigraph
of G(P ) induced by a face of P has a unique source and a unique sink.

• Holt–Klee property (Holt and Klee [4]): G(P ) has a unique sink orienta-
tion, and for every k-dimensional face (k-face) H of P there are k vertex
disjoint paths from the unique source to the unique sink of H in the sub-
digraph G(P,H) of G(P ) induced by H.

• LP digraph: There is a linear function f and a polytope P ′ combinatorially
equivalent to P such that for each pair of vertices u and v of P ′ that form
a directed edge (u, v) in G(P ′), we have f(u) < f(v). In this case, we
denote G(P ′) by LP(P ′, f). (This is the same as polytopal digraph in
Mihalsin and Klee [5].)

The main property of interest is the fourth one, since the digraph LP(P, f)
represents the possible pivot operations of the simplex method in maximizing f
over P . The other three properties are necessary conditions for G(P ) to be an
LP-digraph. We note here that Williamson Hoke [9] has defined a property called
complete unimodality which is equivalent to a combination of acyclicity and unique
sink orientation. A definition of complete unimodality and an important result of
Williamson Hoke relating to our work are stated in Section 3.2. First, we survey
known results on the relationships among the four properties, according to the
dimension d of P , collecting them in the following theorem, whose proof along with
bibliographic references, will be given in the next section.

Theorem 1. For a digraph G(P ) based on a d-polytope P , the relationships
among the properties acyclicity, USO, the Holt–Klee property and LP-digraph are as
shown in Figure 1, where the regions A,B, . . . , J are nonempty. These relationships
hold even for simple polytopes. They also hold for cubes, except for d = 3, when
region E is empty.

From Figure 1 it can be seen that LP digraphs are completely characterized
when d = 2, 3 [5]. No such characterization is known yet for higher dimensions.
The letters A, B, . . . , J in the figure refer to a set of ten nonempty regions, as will
be demonstrated by specific examples that will be given in the next section.

In this paper we introduce another necessary property for G(P ) to be an LP
digraph, based on shelling, which is one of the fundamental tools of polytope theory.
A formal definition of shelling is given in Section 3. Suppose a polytope P has m
vertices labelled v1, v2, . . . , vm, and let G(P ) be a digraph based on its skeleton.
A permutation r of the vertices is a topological sort of G(P ) if, whenever (vi, vj)
is a directed edge of G(P ), vi precedes vj in the permutation r. Let L(P ) be
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Figure 1. The relationships for d-polytopes: d = 2 [left],
d = 3 [middle] and d ≥ 4 [right]
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Figure 2. The relationships when d = 2 [upperleft] and d = 3 [up-
perright] and the relationships when for d ≥ 4, P is simple [lower-
left] and general [lowerright]

the face lattice of P . A polytope P ∗ whose face lattice is L(P ) “turned upside-
down” is called a combinatorially polar polytope of P . Combinatorial polarity
interchanges vertices of P with facets of P ∗. We denote by r∗ the facet ordering of
P ∗ corresponding to the vertex ordering of P given by r.

• Shelling property : There exists a topological sort r of G(P ) such that the
facets of P ∗ ordered by r∗ are a shelling of P ∗.

In Section 3 we analyze the relationship between the shelling property and the
four previously defined properties. The results are summarized in the following
theorem.

Theorem 2. For digraphs G(P ) based on a d-polytope P , the relationships
among the properties acyclicity, USO, the Holt–Klee property, LP-digraph and the
shelling property are as shown in Figure 2, where the regions A, B, . . . , J, X, Y are
nonempty.

2. Proof of Theorem 1

2.1. The case when P is a cube. Let P be the d-dimensional cube Cd.
Specialized to Cd, Theorem 1 reduces to Figure 3.

For each of the marked regions we will give a corresponding example based on
a cube. When d = 2, it is immediate that the digraph G(C2) is a USO if and only if
it satisfies the Holt–Klee property and is acyclic. On the other hand, there exists a
G(C2) which is not a USO, does not satsify the Holt–Klee property, but is acyclic.
This is example A of Figure 4. Based on this example, we also generate examples
for the regions B and F, as shown in the same figure. These two examples are
acyclic, but are not USOs.

When d = 3, there is no cyclic orientation of G(C3) which is a USO but does
not satisfy the Holt–Klee property [7], so region E of Figure 1 is empty for cubes.
On the other hand, there are two distinct orientations of C3 which are acyclic USOs,
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Figure 3. Possible orientations of the cube Cd: d = 2 [left],
d = 3 [middle] and d ≥ 4 [right]

but do not satisfy the Holt–Klee property [7]. Example C of Figure 4 is one such
example, and can be used to generate example G, showing the corresponding region
of Figure 3 is nonempty. In Figure 4 a cut set of size two separating source and sink
of C is highlighted. There are two facets in G each isomorphic to C, the Holt–Klee
property fails in each of them and so fails for G.

Furthermore, C3 admits only one cyclic orientation which is a USO and satisfies
the Holt–Klee property [7]. This is example D in Figure 4, which can be used to
generate examples to show that regions H and I are nonempty, shown in the same
figure. The cycles of examples D, H and I are highlighted. In I a cut set of size two
between source and sink is highlighted, showing the Holt–Klee property fails.

On the other hand, there exists an orientation of C4 which satisfies the three
properties, but is not an LP digraph, see Morris [6]. This is example J of Figure 4.

The examples F, G, H, I and J readily extend to cubes in higher dimensions:
duplicate the figure, add an edge between each pair of corresponding vertices and
then direct them all from the first copy to the second.

A B F C G

D H I J

Figure 4. Examples corresponding to nonempty regions of Figure 1
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E

Figure 5. An example for region E of Figure 1

2.2. The case when P is a simple polytope. Since Cd is simple, all of the
preceeding examples apply to this case. It remains to show that the region E may
be nonempty for simple 3-polytopes. Indeed, Figure 5 shows a 3-polytope with a
cyclic USO which does not satisfy the Holt–Klee property. There is a cut set of
size 2: top vertex and bottom left vertex, so the Holt–Klee property is violated.
There is a cycle of length 6 along the boundary of the region left over when the top
left vertex is deleted. These are highlighted in Figure 5.

3. The shelling property and proof of Theorem 2

3.1. Shellings and Line shellings. We use the definition of shelling given
in Ziegler [10, Definition 8.1] which is slightly more restrictive than the one used by
Brugesser and Mani [1]. Let P be a d-polytope in Rd. A shelling of P is a linear
ordering F1, F2, . . . , Fs of the facets of P such that either the facets are points, or
it satisfies the following conditions [10, Definition 8.1]:

(i) the first facet F1 has a linear ordering its facets which is a shelling of F1.
(ii) For 1 < j ≤ m the intersection of the facet Fj with the previous facets is

nonempty and is a beginning segment of a shelling of Fj , that is,

Fj ∩
j−1⋃

i=1

Fi = G1 ∪G2 ∪ · · · ∪Gr

for some shelling G1, G2, . . . , Gr, . . . , Gt of Fj , and 1 ≤ r ≤ t. (In particu-
lar this requires that all maximal faces included in Fj ∩

⋃j−1
i=1 Fi have the

same dimension d− 2.)
Any polytope has at least one shelling because of the existence of line shellings [1],
described below. Hence the condition (i) is in fact redundant [10, Remark 8.3(i)].

It is easy to see that in general, not every sequence s of the m facets of P is
a shelling. Consider a 3-dimensional cube C3 with the facets Fi for i = 1, . . . , 6 as
in Figure 6. Let s be any sequence of the Fi’s whose first three facets are F6, F2

v1

F1

v3

v5

v4

v6

v7

v8

F2F3

v2

F4

F6

F5

Figure 6. A 3-dimensional cube C3 with the six facets
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x x1 x2 xkxk+1 xk+2

xm
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P

Figure 7. The intersection points along a directed straight line L

and F5. If the fourth facet of s is F3, the intersection (F6 ∪ F2 ∪ F5) ∩ F3 consists
of two parallel line segments, which cannot be the beginning of a shelling of F3.

Let P be a d-polytope with m facets in Rd. A directed straight line L that
intersects the interior of P and the affine hulls of the facets of P at distinct points
is called generic with respect to P . We choose a generic line L and label a point
interior to P on L as x. Starting at x, we number consecutively the intersection
points along L with facets as x1, x2, . . . , xm, wrapping around at infinity, as in
Figure 7. The ordering of the corresponding facets of P is the line shelling of P
generated by L. Every line shelling is a shelling of P (see, e.g., [10]).

Using these definitions we can prove the following proposition.

Proposition 3. If G(P ) is an LP-digraph, it satisfies the shelling property.

Proof. Choose c such that G(P ) = LP(P, cT x), and suppose P has m vertices.
Consider the m distinct parallel hyperplanes with normal c that each contains a
vertex of P . Choose a line L parallel to c that intersects the interior of P . Then
the intersection of the m hyperplanes with L gives an ordering r of vertices which
is a topological sort of G(P ). The corresponding ordering r∗ of the facets of the
polar P ∗ is a line shelling of P ∗. Therefore G(P ) satsifies the shelling property. ¤

3.2. Acyclicity and Unique sink orientations. In this subsection we com-
plete the proof of Theorem 2. We begin with the following proposition.

Proposition 4. If G(P ) satisfies the shelling property, it is an acyclic USO.

Proof. Since G(P ) satisfies the shelling property, there exists an ordering r
of the vertices of P such that r∗ is a shelling of P ∗. It follows that G(P ) is acyclic.
We prove that G(P ) is a USO by contradiction.

Let Fi be the i-th facet of r∗. The acyclicity of G(P ) implies that for any face
H of P , the induced subdigraph G(P,H) of G(P ) has no directed cycles. Therefore,
there exists at least one source in G(P, H). When dim(H) = 1 trivially G(P,H)
has only one source. We prove that when dim(H) > 1, G(P,H) also has only one
source. Let U be the set of the indices of the vertices of P included in H. Assume
that there exist more than one source in G(P, H). We denote the set of the indices
of the sources in G(P, H) by S and let k be the smallest index of S. In the polar,
if j ∈ S and k < j, no ridges are included in the intersection Fj ∩

⋃
Fi for i ∈ U

and i < j. However, the intersection is not empty but includes at least H∗, where
H∗ is the face of P ∗ corresponding to H. The intersection Fj ∩

⋃
Fi for i /∈ U and

i < j might include some ridges. However, these ridges do not include H∗, because
the facets Fi for i /∈ U and i < j do not. It follows that Fj ∩

⋃j−1
i=1 Fi contains

a maximal face that is not d − 2 dimensional, contradicting the fact that r∗ is a
shelling of P ∗. Therefore every face subdigraph for G(P ) has a unique source.
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Finally, we show that every face subdigraph for G(P ) also has a unique sink.
Here we reverse the orientation of G(P ) of each edge. We denote this digraph
by Ĝ(P ). One of topological sorts for Ĝ(P ) is the reverse order of r∗. From the
properties of a shelling of any polytope Q, the reverse order of a shelling of Q is also
a shelling of Q [10, Lemma 8.10]. Hence the reverse order of r∗ is also a shelling of
P ∗, and then Ĝ(P ) satisfies the shelling property. Thus every face subdigraph for
Ĝ(P ) also has a unique source. It follows that every face subdigraph for G(P ) also
has a unique sink as a source of Ĝ(P ) corresponds to a sink of G(P ). Therefore, it
is proved that G(P ) is a USO. This completes the proof. ¤

In the next two propositions we show that if P is simple, or if d = 2, 3, then
the converse of this proposition is true. A completely unimodal numbering of the
m vertices of a simple d-polytope P is a numbering 1, . . . , m of the vertices such
that there is exactly one local minimum on every k-face F of P , for k = 2, 3, . . . , d.
That is, on F there is only one vertex with no lower-numbered neighbours on F .

Proposition 5. Let P be a simple d-polytope. If G(P ) is an acyclic USO then
it satisfies the shelling property.

Proof. Williamson Hoke [9] has shown that the completely unimodal num-
berings of P correspond to shellings of P ∗. Since G(P ) is acyclic we may choose a
topological sort of G(P ). Since G(P ) is a USO, it follows that this ordering of the
vertices is completely unimodal. By Williamson Hoke’s result it corresponds to a
shelling of P ∗ and so G(P ) satisfies the shelling property. ¤

Proposition 6. Let P be a d-polytope in Rd, with d = 2, 3. If G(P ) is an
acyclic USO, then it satisfies the shelling property.

Proof. Let P satisfy the conditions of the theorem. Acyclicity implies that
there exists a topological sort of G(P ). When d = 2, it is easy to check that every
topological sort r of G(P ) induces a shelling r∗ of P ∗.

Now suppose d = 3. Let Fi be the i-th facet of r∗. Since G(P ) is a USO,
the intersection I(j) := Fj ∩

⋃j−1
i=1 Fi has at least one 1-face for every j ≥ 2.

We note that the intersection I(j) for j ≥ 2 is connected if and only if it has a
shelling [10, Example 8.2(i)], which is just condition (ii) in the definition of shellings
(see Section 3.1). Hence we prove that for j ≥ 2, the intersection I(j) consists of
only one connected component. By way of contradiction, let us assume that for
some k, I(k) consists of n ≥ 2 components, and for 2 ≤ j ≤ k − 1, I(j) consists
of only one connected component. Consider the Euler characteristic of P ∗ [10,
Corollary 8.17]. The Euler characteristic of P ∗ is defined as χ(P ∗) := v− e+ f − 1,
where v, e and f are the number of vertices, edges and facets of P ∗, respectively.
We compute χ(P ∗) by updating its value when each facet Fj is added according
to r∗. The initial contribution of the facet F1 to χ(P ∗) is zero. Let x(j) be the
number of the vertices newly added by Fj . For 2 ≤ j ≤ k − 1, the contribution of
Fj to χ(P ∗) is equal to x(j)− (x(j)+1)+1 = 0. Hence the contribution of the Fj ’s
to χ(P ∗) for 1 ≤ j ≤ k − 1 is equal to zero. On the other hand, the contribution
of Fk to χ(P ∗) is equal to x(k) − (x(k) + n) + 1 = 1 − n, hence the contribution
of Fj ’s for 1 ≤ j ≤ k becomes 0 + 1 − n = 1 − n. We note that χ(P ∗) = 1 when
d = 3 [10, Corollary 8.17]. The only way to increase χ(P ∗) is to add a facet Fh, for
some h, all of whose vertices and edges are already contained in I(h). In this case
χ(P ∗) increases by one. The last facet in the shelling order satisfies this property.
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Figure 8. An example for region X of Figure 2
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Figure 9. A 4-dimensional polytope ∆ with 7 facets

However, we must have at least n ≥ 2 such facets. Since each such facet Fh is a
sink in G(P ), G(P ) is not a USO. This contradiction completes the proof. ¤

Proposition 6 cannot be extended to the case where d ≥ 4 as Develin showed [3]
with the following example. Let C∗4 be a 4-dimensional crosspolytope. Figure 8
shows an orientation G(C∗4 ) of the skeleton of C∗4 , which is an acyclic USO satisfying
the Holt–Klee property, but not the shelling property, so the region X of Figure 2
is nonempty.

We show another example for the region X, which has fewer vertices and facets
than Develin’s example. Let ∆ be a 4-dimensional polytope with the facets Fi for
i = 1, . . . , 7, as shown in Figure 9 and Table 2. We checked using the software
PORTA [2] that ∆ is convex when the coordinates of the 12 vertices of ∆ are given
as in Table 1. For the coordinates of the 12 vertices in Table 1, the supporting
hyperplanes of the 7 facets of ∆ are given as a1x1 + a2x2 + a3x3 + a4x4 ≤ b with
the coefficients in Table 2.
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Table 1. The coordinates of the 12 vertices of the 4-dimensional
polytope ∆

vertex (x1, x2, x3, x4) vertex (x1, x2, x3, x4)
1 (−2, 1, 2, 1) 2 (2, 1, 2, 1)
3 (0,−2, 2, 1) 4 (−2, 1,−2, 1)
5 (2, 1,−2, 1) 6 (0,−2,−2, 1)
7 (−2, 1, 2,−1) 8 (2, 1, 2,−1)
9 (0,−2, 2,−1) 10 (−2, 1,−2,−1)
11 (2, 1,−2,−1) 12 (0,−2,−2,−1)

Table 2. The 7 facets of the 4-dimensional polytope ∆ in Fig-
ure 9 and the coefficients of their supporting hyperplanes for the
coordinates of the 12 vertices in Table 1

facet vertices (a1, a2, a3, a4, b)
F1 1, 2, 4, 5, 7, 8, 10, 11 (0, 1, 0, 0, 1)
F2 1, 3, 4, 6, 7, 9, 10, 12 (−3,−2, 0, 0, 4)
F3 2, 3, 5, 6, 8, 9, 11, 12 (3,−2, 0, 0, 4)
F4 1, 2, 3, 7, 8, 9 (0, 0, 1, 0, 2)
F5 1, 2, 3, 4, 5, 6 (0, 0, 0, 1, 1)
F6 4, 5, 6, 10, 11, 12 (0, 0,−1, 0, 2)
F7 7, 8, 9, 10, 11, 12 (0, 0, 0,−1, 1)

Let ∆∗ be a combinatorial polar of ∆. An orientation G(∆∗) of the skeleton of
∆∗ is given in Figure 10. One of topological sorts on the orientation is the sequence
of all the 7 facets in order of indices. We have the following result.

Proposition 7. G(∆∗) is an acyclic USO that satisfies the Holt–Klee property,
but not the shelling property.

Proof. In G(∆∗) all edges are directed from smaller index to larger index, so
it is an acyclic USO. ∆∗ is a simplicial polytope, i.e. all i-faces of ∆∗ for i ≤ 3 are
i-dimensional simplices. Hence if an orientation of its skeleton is an acyclic USO, it
also satisfies the Holt–Klee property. There exist five vertex-disjoint paths from F1

to F7 in Figure 10. Therefore, the graph G(C∗4 ) satisfies the Holt–Klee property.
We prove that the graph G(C∗4 ) does not satisfy the shelling property.

There is a path F1, F2, . . . , F7 of all the seven vertices of G(∆∗) in order of their
indices, and so this ordering is the unique topological sort of the graph. By referring
to Table 2 and Figure 9, it can be verified that F3 ∩

⋃2
i=1 Fi is the union of two

disjoint 2-faces of ∆: one with vertices 2, 5, 8, 11 and one with vertices 3, 6, 9, 12.
This union cannot be the beginning of a shelling of F3, hence the unique topological
sort of G(∆∗) is not a shelling of ∆. This completes the proof. ¤

In order to prove Proposition 8, we form a new 4-dimensional polytope Γ in
Figure 11 by adding one new vertex to the 12 vertices of ∆ and decomposing the
facet F4 of ∆ into five new facets. The new 4-dimensional polytope Γ has 13 vertices
and 11 facets, as shown in Table 4. We also checked using the software PORTA [2]
that Γ is convex when the coordinates of the 13 vertices of ∆ are given as in Table 3.
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Figure 10. The graph G(∆∗)

For the coordinates of the 13 vertices in Table 3, the supporting hyperplanes of the
11 facets of Γ are given as a1x1 + a2x2 + a3x3 + a4x4 ≤ b with the coefficients
in Table 4. Let Γ∗ be a combinatorial polar of Γ. An orientation G(Γ∗) of the
skeleton of Γ∗ is given in Figure 12. One of topological sorts on the orientation is
the sequence of all the 11 facets in order of indices. We have the following result.

Proposition 8. G(Γ∗) is an acyclic USO that satisfies neither the Holt–Klee
property nor the shelling property.

Proof. By adding one new vertex to the 12 vertices of ∆, the new 4-polytope
Γ∗ includes 3-faces which are not simplices, as shown in Figure 13. We observe that
the 3-faces with the indices 1 and 9 do not satisfy the Holt–Klee property (as the
vertices F2 and F6 and the vertices F4 and F9 are two-point cut-sets respectively)

4 5

6

10 11

12

7 8

9

1 2

3

13

Figure 11. A 4-dimensional polytope Γ with 13 vertices and 11 facets



ON COMBINATORIAL PROPERTIES OF LINEAR PROGRAM DIGRAPHS 11

Table 3. The coordinates of the 13 vertices of the 4-dimensional
polytope Γ

vertex (x1, x2, x3, x4) vertex (x1, x2, x3, x4)
1 (−2, 1, 2, 1) 2 (2, 1, 2, 1)
3 (0,−2, 2, 1) 4 (−2, 1,−2, 1)
5 (2, 1,−2, 1) 6 (0,−2,−2, 1)
7 (−2, 1, 2,−1) 8 (2, 1, 2,−1)
9 (0,−2, 2,−1) 10 (−2, 1,−2,−1)
11 (2, 1,−2,−1) 12 (0,−2,−2,−1)
13 (0, 0, 4, 0)

Table 4. The 11 facets of the 4-dimensional polytope Γ in Fig-
ure 11 and the coefficients of their supporting hyperplanest for the
coordinates of the 13 vertices in Table 3

facet vertices (a1, a2, a3, a4, b)
F1 1, 2, 4, 5, 7, 8, 10, 11 (0, 1, 0, 0, 1)
F2 1, 2, 7, 8, 13 (0, 2, 1, 0, 4)
F3 1, 3, 7, 9, 13 (−3,−2, 2, 0, 8)
F4 1, 3, 4, 6, 7, 9, 10, 12 (−3,−2, 0, 0, 4)
F5 2, 3, 5, 6, 8, 9, 11, 12 (3,−2, 0, 0, 4)
F6 1, 2, 3, 4, 5, 6 (0, 0, 0, 1, 1)
F7 1, 2, 3, 13 (0, 0, 1, 2, 4)
F8 2, 3, 8, 9, 13 (3,−2, 2, 0, 8)
F9 7, 8, 9, 13 (0, 0, 1,−2, 4)
F10 4, 5, 6, 10, 11, 12 (0, 0,−1, 0, 2)
F11 7, 8, 9, 10, 11, 12 (0, 0, 0,−1, 1)

while the other 3-faces in Figure 13 satisfy it. Moreover, G(Γ∗) does not satisfy the
shelling property by the same proof as that of Proposition 7. ¤

Collecting the above propositions, we have verified the relationships among the
five properties shown in Figure 14 for nonsimple polytopes of dimension at least
four. The examples G and J are orientations of a cube, hence they satisfy the
shelling property [9]. The examples G(C∗4 ) and G(∆∗) above are the examples
X and Y, respectively. Combined with the results for d = 2, 3, we have proved
Theorem 2.

4. Conclusion

In this paper, we introduced a new necessary property for a directed graph of
a d-polytope P to be an LP digraph, called the shelling property. We analyzed the
relationships among the shelling property and the four existing propeties, acyclicity,
unique sink orientation, the Holt–Klee property and LP digraphs. We proved that
if G(P ) satisfies the shelling property, it is an acyclic USO. The converse is true for
simple polytopes but not in general if the dimension is at least four. In showing this
we gave one example not satisfying the Holt–Klee property in addition to Develin’s
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Figure 13. The 3-faces of the graph G(Γ∗)



ON COMBINATORIAL PROPERTIES OF LINEAR PROGRAM DIGRAPHS 13
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Figure 14. The relationships when P is a general polytope and
d ≥ 4

example [3]. This establishes the independence of the shelling property from the
other properties.

Moreover, when d = 2, 3, we also proved that if G(P ) is an acyclic USO then
it also satisfies the shelling property. This is an extension of Williamson Hoke’s
result [9], which states that when P is simple, G(P ) is an acyclic USO if and only
if it satisfies the shelling property.
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2. T. Christof and A. Löbel, PORTA (POlyhedron Representation Transformation Algorithm),
http://www.zib.de/Optimization/Software/Porta/.

3. M. Develin, LP orientations of cubes and crosspolytopes, Adv. Geom. 4 (2006), no. 4, 459–468.
4. F. Holt and V. Klee, A proof of the strict monotone 4-step conjecture, Advances in Discrete

and Computational Geometry (South Hadley, MA, 1996), Contemporary Math., vol. 223,
Amer. Math. Soc., Providence, RI, 1999, pp. 201–216.

5. J. Mihalisin and V. Klee, Convex and linear orientations of polytopal graphs, Discrete Comput.
Geom. 24 (2000), no. 2-3, 421–435.

6. W. D. Morris, Jr., Distinguishing cube orientations arising from linear programs, preprint,
2002.

7. A. Stickney and L. Watson, Digraph models of Bard-type algorithms for the linear comple-
mentarity problem, Math. Oper. Res. 3 (1978), no. 4, 322–333.
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